cupyx.scipy.spatial.distance.jensenshannon#
- cupyx.scipy.spatial.distance.jensenshannon(u, v)[source]#
Compute the Jensen-Shannon distance between two 1-D arrays.
The Jensen-Shannon distance is defined as
\[d(u, v) = \sqrt{\frac{KL(u \| m) + KL(v \| m)}{2}}\]where \(KL\) is the Kullback-Leibler divergence and \(m\) is the pointwise mean of u and v.
- Parameters:
u (array_like) – Input array of size (N,)
v (array_like) – Input array of size (N,)
- Returns:
The Jensen-Shannon distance between vectors u and v.
- Return type:
jensenshannon (double)