cupyx.scipy.signal.lombscargle#
- cupyx.scipy.signal.lombscargle(x, y, freqs)[source]#
Computes the Lomb-Scargle periodogram.
The Lomb-Scargle periodogram was developed by Lomb 1 and further extended by Scargle 2 to find, and test the significance of weak periodic signals with uneven temporal sampling.
When normalize is False (default) the computed periodogram is unnormalized, it takes the value
(A**2) * N/4
for a harmonic signal with amplitude A for sufficiently large N.When normalize is True the computed periodogram is normalized by the residuals of the data around a constant reference model (at zero).
Input arrays should be one-dimensional and will be cast to float64.
- Parameters
- Returns
pgram – Lomb-Scargle periodogram.
- Return type
array_like
- Raises
ValueError – If the input arrays x and y do not have the same shape.
Notes
This subroutine calculates the periodogram using a slightly modified algorithm due to Townsend 3 which allows the periodogram to be calculated using only a single pass through the input arrays for each frequency. The algorithm running time scales roughly as O(x * freqs) or O(N^2) for a large number of samples and frequencies.
References
- 1
N.R. Lomb “Least-squares frequency analysis of unequally spaced data”, Astrophysics and Space Science, vol 39, pp. 447-462, 1976
- 2
J.D. Scargle “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data”, The Astrophysical Journal, vol 263, pp. 835-853, 1982
- 3
R.H.D. Townsend, “Fast calculation of the Lomb-Scargle periodogram using graphics processing units.”, The Astrophysical Journal Supplement Series, vol 191, pp. 247-253, 2010
See also
istft
Inverse Short Time Fourier Transform
check_COLA
Check whether the Constant OverLap Add (COLA) constraint is met
welch
Power spectral density by Welch’s method
spectrogram
Spectrogram by Welch’s method
csd
Cross spectral density by Welch’s method