cupyx.scipy.linalg.solve_triangular#
- cupyx.scipy.linalg.solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, overwrite_b=False, check_finite=False)[source]#
Solve the equation a x = b for x, assuming a is a triangular matrix.
- Parameters:
a (cupy.ndarray) – The matrix with dimension
(..., M, M)
.b (cupy.ndarray) – The matrix with dimension
(..., M,)
or(..., M, N)
.lower (bool) – Use only data contained in the lower triangle of
a
. Default is to use upper triangle.trans (0, 1, 2, 'N', 'T' or 'C') –
Type of system to solve:
’0’ or ‘N’ – \(a x = b\)
’1’ or ‘T’ – \(a^T x = b\)
’2’ or ‘C’ – \(a^H x = b\)
unit_diagonal (bool) – If
True
, diagonal elements ofa
are assumed to be 1 and will not be referenced.overwrite_b (bool) – Allow overwriting data in b (may enhance performance)
check_finite (bool) – Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns:
The matrix with dimension
(..., M,)
or(..., M, N)
.- Return type:
Note
Unlike the SciPy counterpart, the CuPy implementation supports batches of matrices.
See also