cupy.kaiser#
- cupy.kaiser(M, beta)[source]#
Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function.
\[w(n) = I_0\left( \beta \sqrt{1-\frac{4n^2}{(M-1)^2}} \right)/I_0(\beta)\]with
\[\quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2}\]where \(I_0\) is the modified zeroth-order Bessel function.
- Args:
- M (int):
Number of points in the output window. If zero or less, an empty array is returned.
- beta (float):
Shape parameter for window
- Returns:
The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd).
- Return type:
See also