cupy.kaiser#

cupy.kaiser(M, beta)[source]#

Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function.

\[w(n) = I_0\left( \beta \sqrt{1-\frac{4n^2}{(M-1)^2}} \right)/I_0(\beta)\]

with

\[\quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2}\]

where \(I_0\) is the modified zeroth-order Bessel function.

Args:
M (int):

Number of points in the output window. If zero or less, an empty array is returned.

beta (float):

Shape parameter for window

Returns:

The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd).

Return type:

ndarray

See also

numpy.kaiser()