cupyx.scipy.signal.windows.chebwin#
- cupyx.scipy.signal.windows.chebwin(M, at, sym=True)[source]#
Return a Dolph-Chebyshev window.
- Parameters:
- Returns:
w – The window, with the maximum value always normalized to 1
- Return type:
Notes
This window optimizes for the narrowest main lobe width for a given order M and sidelobe equiripple attenuation at, using Chebyshev polynomials. It was originally developed by Dolph to optimize the directionality of radio antenna arrays.
Unlike most windows, the Dolph-Chebyshev is defined in terms of its frequency response:
\[W(k) = \frac {\cos\{M \cos^{-1}[\beta \cos(\frac{\pi k}{M})]\}} {\cosh[M \cosh^{-1}(\beta)]}\]where
\[\beta = \cosh \left [\frac{1}{M} \cosh^{-1}(10^\frac{A}{20}) \right ]\]and 0 <= abs(k) <= M-1. A is the attenuation in decibels (at).
The time domain window is then generated using the IFFT, so power-of-two M are the fastest to generate, and prime number M are the slowest.
The equiripple condition in the frequency domain creates impulses in the time domain, which appear at the ends of the window.
For more information, see [1], [2] and [3]
References
Examples
Plot the window and its frequency response:
>>> import cupyx.scipy.signal.windows >>> import cupy as cp >>> from cupy.fft import fft, fftshift >>> import matplotlib.pyplot as plt
>>> window = cupyx.scipy.signal.windows.chebwin(51, at=100) >>> plt.plot(cupy.asnumpy(window)) >>> plt.title("Dolph-Chebyshev window (100 dB)") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample")
>>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = cupy.linspace(-0.5, 0.5, len(A)) >>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max()))) >>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response)) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Dolph-Chebyshev window (100 dB)") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]")