# cupyx.scipy.spatial.distance.cdist¶

cupyx.scipy.spatial.distance.cdist(XA, XB, metric='euclidean', out=None, **kwargs)[source]

Compute distance between each pair of the two collections of inputs.

Parameters
• XA (array_like) – An $$m_A$$ by $$n$$ array of $$m_A$$ original observations in an $$n$$-dimensional space. Inputs are converted to float type.

• XB (array_like) – An $$m_B$$ by $$n$$ array of $$m_B$$ original observations in an $$n$$-dimensional space. Inputs are converted to float type.

• metric (str, optional) – The distance metric to use. The distance function can be ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘euclidean’, ‘hamming’, ‘hellinger’, ‘jensenshannon’, ‘kl_divergence’, ‘matching’, ‘minkowski’, ‘russellrao’, ‘sqeuclidean’.

• out (cupy.ndarray, optional) – The output array. If not None, the distance matrix Y is stored in this array.

• **kwargs (dict, optional) – Extra arguments to metric: refer to each metric documentation for a list of all possible arguments. Some possible arguments: p (float): The p-norm to apply for Minkowski, weighted and unweighted. Default: 2.0

Returns

A $$m_A$$ by $$m_B$$ distance matrix is

returned. For each $$i$$ and $$j$$, the metric dist(u=XA[i], v=XB[j]) is computed and stored in the $$ij$$ th entry.

Return type

Y (cupy.ndarray)