cupyx.scipy.sparse.linalg.cgs#
- cupyx.scipy.sparse.linalg.cgs(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None, atol=None)[source]#
Use Conjugate Gradient Squared iteration to solve
Ax = b
.- Parameters:
A (ndarray, spmatrix or LinearOperator) – The real or complex matrix of the linear system with shape
(n, n)
.b (cupy.ndarray) – Right hand side of the linear system with shape
(n,)
or(n, 1)
.x0 (cupy.ndarray) – Starting guess for the solution.
tol (float) – Tolerance for convergence.
maxiter (int) – Maximum number of iterations.
M (ndarray, spmatrix or LinearOperator) – Preconditioner for
A
. The preconditioner should approximate the inverse ofA
.M
must becupy.ndarray
,cupyx.scipy.sparse.spmatrix
orcupyx.scipy.sparse.linalg.LinearOperator
.callback (function) – User-specified function to call after each iteration. It is called as
callback(xk)
, wherexk
is the current solution vector.atol (float) – Tolerance for convergence.
- Returns:
It returns
x
(cupy.ndarray) andinfo
(int) wherex
is the converged solution andinfo
provides convergence information.- Return type:
See also