cupyx.scipy.signal.lombscargle#
- cupyx.scipy.signal.lombscargle(x, y, freqs)[source]#
Computes the Lomb-Scargle periodogram.
The Lomb-Scargle periodogram was developed by Lomb [1] and further extended by Scargle [2] to find, and test the significance of weak periodic signals with uneven temporal sampling.
When normalize is False (default) the computed periodogram is unnormalized, it takes the value
(A**2) * N/4
for a harmonic signal with amplitude A for sufficiently large N.When normalize is True the computed periodogram is normalized by the residuals of the data around a constant reference model (at zero).
Input arrays should be one-dimensional and will be cast to float64.
- Parameters:
- Returns:
pgram – Lomb-Scargle periodogram.
- Return type:
array_like
- Raises:
ValueError – If the input arrays x and y do not have the same shape.
Notes
This subroutine calculates the periodogram using a slightly modified algorithm due to Townsend [3] which allows the periodogram to be calculated using only a single pass through the input arrays for each frequency. The algorithm running time scales roughly as O(x * freqs) or O(N^2) for a large number of samples and frequencies.
References
See also
istft
Inverse Short Time Fourier Transform
check_COLA
Check whether the Constant OverLap Add (COLA) constraint is met
welch
Power spectral density by Welch’s method
spectrogram
Spectrogram by Welch’s method
csd
Cross spectral density by Welch’s method