cupyx.scipy.signal.windows.hamming#
- cupyx.scipy.signal.windows.hamming(M, sym=True)[source]#
Return a Hamming window.
The Hamming window is a taper formed by using a raised cosine with non-zero endpoints, optimized to minimize the nearest side lobe.
- Parameters:
- Returns:
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear if M is even and sym is True).
- Return type:
Notes
The Hamming window is defined as
\[w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1\]The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most references to the Hamming window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means “removing the foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.
For more information, see [1], [2], [3] and [4]
References
Examples
Plot the window and its frequency response:
>>> import cupyx.scipy.signal.windows >>> import cupy as cp >>> from cupy.fft import fft, fftshift >>> import matplotlib.pyplot as plt
>>> window = cupyx.scipy.signal.windows.hamming(51) >>> plt.plot(cupy.asnumpy(window)) >>> plt.title("Hamming window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample")
>>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = cupy.linspace(-0.5, 0.5, len(A)) >>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max()))) >>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response)) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Hamming window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]")