
CuPy Documentation
Release 13.0.0

Preferred Networks, inc. and Preferred Infrastructure, inc.

Jan 18, 2024

CONTENTS

1 Overview 1
1.1 Project Goal . 2

2 Installation 3
2.1 Requirements . 3
2.2 Installing CuPy . 4
2.3 Uninstalling CuPy . 6
2.4 Upgrading CuPy . 6
2.5 Reinstalling CuPy . 7
2.6 Using CuPy inside Docker . 7
2.7 FAQ . 7

3 Using CuPy on AMD GPU (experimental) 11
3.1 Requirements . 11
3.2 Environment Variables . 11
3.3 Docker . 11
3.4 Installing Binary Packages . 11
3.5 Building CuPy for ROCm From Source . 12
3.6 Limitations . 12

4 User Guide 15
4.1 Basics of CuPy . 15
4.2 User-Defined Kernels . 18
4.3 Accessing CUDA Functionalities . 28
4.4 Fast Fourier Transform with CuPy . 30
4.5 Memory Management . 36
4.6 Performance Best Practices . 39
4.7 Interoperability . 41
4.8 Differences between CuPy and NumPy . 50
4.9 API Compatibility Policy . 53

5 API Reference 57
5.1 The N-dimensional array (ndarray) . 57
5.2 Universal functions (cupy.ufunc) . 73
5.3 Routines (NumPy) . 98
5.4 Routines (SciPy) . 318
5.5 CuPy-specific functions . 736
5.6 Low-level CUDA support . 747
5.7 Custom kernels . 812
5.8 Distributed . 835

i

5.9 Environment variables . 850
5.10 Comparison Table . 853
5.11 Python Array API Support . 894

6 Contribution Guide 911
6.1 Classification of Contributions . 911
6.2 Development Cycle . 911
6.3 Issues and Pull Requests . 913
6.4 Coding Guidelines . 914
6.5 Unit Testing . 915
6.6 Documentation . 917
6.7 Tips for Developers . 918

7 Upgrade Guide 919
7.1 CuPy v13 . 919
7.2 CuPy v12 . 921
7.3 CuPy v11 . 922
7.4 CuPy v10 . 923
7.5 CuPy v9 . 926
7.6 CuPy v8 . 927
7.7 CuPy v7 . 928
7.8 CuPy v6 . 928
7.9 CuPy v5 . 928
7.10 CuPy v4 . 929
7.11 CuPy v2 . 930
7.12 Compatibility Matrix . 931

8 License 933
8.1 NumPy . 933
8.2 SciPy . 934
8.3 cuSignal . 934

Python Module Index 937

Index 939

ii

CHAPTER

ONE

OVERVIEW

CuPy is a NumPy/SciPy-compatible array library for GPU-accelerated computing with Python. CuPy acts as a drop-in
replacement to run existing NumPy/SciPy code on NVIDIA CUDA or AMD ROCm platforms.

CuPy provides a ndarray, sparse matrices, and the associated routines for GPU devices, all having the same API as
NumPy and SciPy:

• N-dimensional array (ndarray): cupy.ndarray

– Data types (dtypes): boolean (bool_), integer (int8, int16, int32, int64, uint8, uint16, uint32,
uint64), float (float16, float32, float64), and complex (complex64, complex128)

– Supports the semantics identical to numpy.ndarray, including basic / advanced indexing and broadcasting

• Sparse matrices: cupyx.scipy.sparse

– 2-D sparse matrix: csr_matrix, coo_matrix, csc_matrix, and dia_matrix

• NumPy Routines
– Module-level Functions (cupy.*)

– Linear Algebra Functions (cupy.linalg.*)

– Fast Fourier Transform (cupy.fft.*)

– Random Number Generator (cupy.random.*)

• SciPy Routines
– Discrete Fourier Transforms (cupyx.scipy.fft.* and cupyx.scipy.fftpack.*)

– Advanced Linear Algebra (cupyx.scipy.linalg.*)

– Multidimensional Image Processing (cupyx.scipy.ndimage.*)

– Sparse Matrices (cupyx.scipy.sparse.*)

– Sparse Linear Algebra (cupyx.scipy.sparse.linalg.*)

– Special Functions (cupyx.scipy.special.*)

– Signal Processing (cupyx.scipy.signal.*)

– Statistical Functions (cupyx.scipy.stats.*)

Routines are backed by CUDA libraries (cuBLAS, cuFFT, cuSPARSE, cuSOLVER, cuRAND), Thrust, CUB, and
cuTENSOR to provide the best performance.

It is also possible to easily implement custom CUDA kernels that work with ndarray using:

• Kernel Templates: Quickly define element-wise and reduction operation as a single CUDA kernel

• Raw Kernel: Import existing CUDA C/C++ code

1

https://github.com/cupy/cupy
https://developer.nvidia.com/cuda-toolkit
https://www.amd.com/en/graphics/servers-solutions-rocm
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

CuPy Documentation, Release 13.0.0

• Just-in-time Transpiler (JIT): Generate CUDA kernel from Python source code

• Kernel Fusion: Fuse multiple CuPy operations into a single CUDA kernel

CuPy can run in multi-GPU or cluster environments. The distributed communication package (cupyx.distributed)
provides collective and peer-to-peer primitives for ndarray, backed by NCCL.

For users who need more fine-grain control for performance, accessing low-level CUDA features are available:

• Stream and Event: CUDA stream and per-thread default stream are supported by all APIs

• Memory Pool: Customizable memory allocator with a built-in memory pool

• Profiler: Supports profiling code using CUDA Profiler and NVTX

• Host API Binding: Directly call CUDA libraries, such as NCCL, cuDNN, cuTENSOR, and cuSPARSELt APIs
from Python

CuPy implements standard APIs for data exchange and interoperability, such as DLPack, CUDA Array Interface,
__array_ufunc__ (NEP 13), __array_function__ (NEP 18), and Array API Standard. Thanks to these protocols,
CuPy easily integrates with NumPy, PyTorch, TensorFlow, MPI4Py, and any other libraries supporting the standard.

Under AMD ROCm environment, CuPy automatically translates all CUDA API calls to ROCm HIP (hipBLAS, hipFFT,
hipSPARSE, hipRAND, hipCUB, hipThrust, RCCL, etc.), allowing code written using CuPy to run on both NVIDIA
and AMD GPU without any modification.

1.1 Project Goal

The goal of the CuPy project is to provide Python users GPU acceleration capabilities, without the in-depth knowledge
of underlying GPU technologies. The CuPy team focuses on providing:

• A complete NumPy and SciPy API coverage to become a full drop-in replacement, as well as advanced CUDA
features to maximize the performance.

• Mature and quality library as a fundamental package for all projects needing acceleration, from a lab environment
to a large-scale cluster.

2 Chapter 1. Overview

https://github.com/dmlc/dlpack
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
https://numpy.org/neps/nep-0013-ufunc-overrides.html
https://numpy.org/neps/nep-0018-array-function-protocol.html
https://data-apis.org/array-api/latest/

CHAPTER

TWO

INSTALLATION

2.1 Requirements

• NVIDIA CUDA GPU with the Compute Capability 3.0 or larger.

• CUDA Toolkit: v11.2 / v11.3 / v11.4 / v11.5 / v11.6 / v11.7 / v11.8 / v12.0 / v12.1 / v12.2

– If you have multiple versions of CUDA Toolkit installed, CuPy will automatically choose one of the CUDA
installations. See Working with Custom CUDA Installation for details.

– This requirement is optional if you install CuPy from conda-forge. However, you still need to have a
compatible driver installed for your GPU. See Installing CuPy from Conda-Forge for details.

• Python: v3.9 / v3.10 / v3.11 / v3.12

Note: Currently, CuPy is tested against Ubuntu 20.04 LTS / 22.04 LTS (x86_64), CentOS 7 / 8 (x86_64) and Windows
Server 2016 (x86_64).

2.1.1 Python Dependencies

NumPy/SciPy-compatible API in CuPy v13 is based on NumPy 1.26 and SciPy 1.11, and has been tested against the
following versions:

• NumPy: v1.22 / v1.23 / v1.24 / v1.25 / v1.26

• SciPy (optional): v1.7 / v1.8 / v1.9 / v1.10 / v1.11

– Required only when coping sparse matrices from GPU to CPU (see Sparse matrices (cupyx.scipy.sparse).)

• Optuna (optional): v3.x

– Required only when using Automatic Kernel Parameters Optimizations (cupyx.optimizing).

Note: SciPy and Optuna are optional dependencies and will not be installed automatically.

Note: Before installing CuPy, we recommend you to upgrade setuptools and pip:

$ python -m pip install -U setuptools pip

3

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-toolkit
https://python.org/
https://www.ubuntu.com/
https://www.centos.org/
https://numpy.org/
https://scipy.org/
https://optuna.org/

CuPy Documentation, Release 13.0.0

2.1.2 Additional CUDA Libraries

Part of the CUDA features in CuPy will be activated only when the corresponding libraries are installed.

• cuTENSOR: v2.0

– The library to accelerate tensor operations. See Environment variables for the details.

• NCCL: v2.16 / v2.17

– The library to perform collective multi-GPU / multi-node computations.

• cuDNN: v8.8

– The library to accelerate deep neural network computations.

• cuSPARSELt: v0.2.0

– The library to accelerate sparse matrix-matrix multiplication.

2.2 Installing CuPy

2.2.1 Installing CuPy from PyPI

Wheels (precompiled binary packages) are available for Linux and Windows. Package names are different depending
on your CUDA Toolkit version.

CUDA Command
v11.2 ~ 11.8 (x86_64 / aarch64) pip install cupy-cuda11x
v12.x (x86_64 / aarch64) pip install cupy-cuda12x

Note: To enable features provided by additional CUDA libraries (cuTENSOR / NCCL / cuDNN), you need to install
them manually. If you installed CuPy via wheels, you can use the installer command below to setup these libraries in
case you don’t have a previous installation:

$ python -m cupyx.tools.install_library --cuda 11.x --library cutensor

Note: Append --pre -U -f https://pip.cupy.dev/pre options to install pre-releases (e.g., pip install
cupy-cuda11x --pre -U -f https://pip.cupy.dev/pre).

When using wheels, please be careful not to install multiple CuPy packages at the same time. Any of these packages
and cupy package (source installation) conflict with each other. Please make sure that only one CuPy package (cupy
or cupy-cudaXX where XX is a CUDA version) is installed:

$ pip freeze | grep cupy

4 Chapter 2. Installation

https://developer.nvidia.com/cutensor
https://developer.nvidia.com/nccl
https://developer.nvidia.com/cudnn
https://docs.nvidia.com/cuda/cusparselt/

CuPy Documentation, Release 13.0.0

2.2.2 Installing CuPy from Conda-Forge

Conda/Anaconda is a cross-platform package management solution widely used in scientific computing and other fields.
The above pip install instruction is compatible with conda environments. Alternatively, for both Linux (x86_64,
ppc64le, aarch64-sbsa) and Windows once the CUDA driver is correctly set up, you can also install CuPy from the
conda-forge channel:

$ conda install -c conda-forge cupy

and condawill install a pre-built CuPy binary package for you, along with the CUDA runtime libraries (cudatoolkit).
It is not necessary to install CUDA Toolkit in advance.

Conda has a built-in mechanism to determine and install the latest version of cudatoolkit supported by your driver.
However, if for any reason you need to force-install a particular CUDA version (say 11.8), you can do:

$ conda install -c conda-forge cupy cuda-version=11.8

Note: cuDNN, cuTENSOR, and NCCL are available on conda-forge as optional dependencies. The following
command can install them all at once:

$ conda install -c conda-forge cupy cudnn cutensor nccl

Each of them can also be installed separately as needed.

Note: If you encounter any problem with CuPy installed from conda-forge, please feel free to report to cupy-
feedstock, and we will help investigate if it is just a packaging issue in conda-forge’s recipe or a real issue in CuPy.

Note: If you did not install CUDA Toolkit by yourself, the nvcc compiler might not be available, as the cudatoolkit
package from conda-forge does not include the nvcc compiler toolchain. If you would like to use it from a lo-
cal CUDA installation, you need to make sure the version of CUDA Toolkit matches that of cudatoolkit to avoid
surprises.

2.2.3 Installing CuPy from Source

Use of wheel packages is recommended whenever possible. However, if wheels cannot meet your requirements (e.g.,
you are running non-Linux environment or want to use a version of CUDA / cuDNN / NCCL not supported by wheels),
you can also build CuPy from source.

Note: CuPy source build requires g++-6 or later. For Ubuntu 18.04, run apt-get install g++. For Ubuntu 16.04,
CentOS 6 or 7, follow the instructions here.

Note: When installing CuPy from source, features provided by additional CUDA libraries will be disabled if these
libraries are not available at the build time. See Installing cuDNN and NCCL for the instructions.

2.2. Installing CuPy 5

https://github.com/conda-forge/cupy-feedstock/issues
https://github.com/conda-forge/cupy-feedstock/issues

CuPy Documentation, Release 13.0.0

Note: If you upgrade or downgrade the version of CUDA Toolkit, cuDNN, NCCL or cuTENSOR, you may need to
reinstall CuPy. See Reinstalling CuPy for details.

You can install the latest stable release version of the CuPy source package via pip.

$ pip install cupy

If you want to install the latest development version of CuPy from a cloned Git repository:

$ git clone --recursive https://github.com/cupy/cupy.git
$ cd cupy
$ pip install .

Note: Cython 0.29.22 or later is required to build CuPy from source. It will be automatically installed during the build
process if not available.

2.3 Uninstalling CuPy

Use pip to uninstall CuPy:

$ pip uninstall cupy

Note: If you are using a wheel, cupy shall be replaced with cupy-cudaXX (where XX is a CUDA version number).

Note: If CuPy is installed via conda, please do conda uninstall cupy instead.

2.4 Upgrading CuPy

Just use pip install with -U option:

$ pip install -U cupy

Note: If you are using a wheel, cupy shall be replaced with cupy-cudaXX (where XX is a CUDA version number).

6 Chapter 2. Installation

https://pypi.python.org/pypi/cupy

CuPy Documentation, Release 13.0.0

2.5 Reinstalling CuPy

To reinstall CuPy, please uninstall CuPy and then install it. When reinstalling CuPy, we recommend using
--no-cache-dir option as pip caches the previously built binaries:

$ pip uninstall cupy
$ pip install cupy --no-cache-dir

Note: If you are using a wheel, cupy shall be replaced with cupy-cudaXX (where XX is a CUDA version number).

2.6 Using CuPy inside Docker

We are providing the official Docker images. Use NVIDIA Container Toolkit to run CuPy image with GPU. You can
login to the environment with bash, and run the Python interpreter:

$ docker run --gpus all -it cupy/cupy /bin/bash

Or run the interpreter directly:

$ docker run --gpus all -it cupy/cupy /usr/bin/python3

2.7 FAQ

2.7.1 pip fails to install CuPy

Please make sure that you are using the latest setuptools and pip:

$ pip install -U setuptools pip

Use -vvvv option with pip command. This will display all logs of installation:

$ pip install cupy -vvvv

If you are using sudo to install CuPy, note that sudo command does not propagate environment variables. If you need
to pass environment variable (e.g., CUDA_PATH), you need to specify them inside sudo like this:

$ sudo CUDA_PATH=/opt/nvidia/cuda pip install cupy

If you are using certain versions of conda, it may fail to build CuPy with error g++: error: unrecognized
command line option ‘-R’. This is due to a bug in conda (see conda/conda#6030 for details). If you encounter
this problem, please upgrade your conda.

2.5. Reinstalling CuPy 7

https://hub.docker.com/r/cupy/cupy/
https://github.com/NVIDIA/nvidia-docker
https://github.com/conda/conda/issues/6030

CuPy Documentation, Release 13.0.0

2.7.2 Installing cuDNN and NCCL

We recommend installing cuDNN and NCCL using binary packages (i.e., using apt or yum) provided by NVIDIA.

If you want to install tar-gz version of cuDNN and NCCL, we recommend installing it under the CUDA_PATH directory.
For example, if you are using Ubuntu, copy *.h files to include directory and *.so* files to lib64 directory:

$ cp /path/to/cudnn.h $CUDA_PATH/include
$ cp /path/to/libcudnn.so* $CUDA_PATH/lib64

The destination directories depend on your environment.

If you want to use cuDNN or NCCL installed in another directory, please use CFLAGS, LDFLAGS and LD_LIBRARY_PATH
environment variables before installing CuPy:

$ export CFLAGS=-I/path/to/cudnn/include
$ export LDFLAGS=-L/path/to/cudnn/lib
$ export LD_LIBRARY_PATH=/path/to/cudnn/lib:$LD_LIBRARY_PATH

2.7.3 Working with Custom CUDA Installation

If you have installed CUDA on the non-default directory or multiple CUDA versions on the same host, you may need
to manually specify the CUDA installation directory to be used by CuPy.

CuPy uses the first CUDA installation directory found by the following order.

1. CUDA_PATH environment variable.

2. The parent directory of nvcc command. CuPy looks for nvcc command from PATH environment variable.

3. /usr/local/cuda

For example, you can build CuPy using non-default CUDA directory by CUDA_PATH environment variable:

$ CUDA_PATH=/opt/nvidia/cuda pip install cupy

Note: CUDA installation discovery is also performed at runtime using the rule above. Depending on your system
configuration, you may also need to set LD_LIBRARY_PATH environment variable to $CUDA_PATH/lib64 at runtime.

2.7.4 CuPy always raises cupy.cuda.compiler.CompileException

If CuPy raises a CompileException for almost everything, it is possible that CuPy cannot detect CUDA installed on
your system correctly. The followings are error messages commonly observed in such cases.

• nvrtc: error: failed to load builtins

• catastrophic error: cannot open source file "cuda_fp16.h"

• error: cannot overload functions distinguished by return type alone

• error: identifier "__half_raw" is undefined

Please try setting LD_LIBRARY_PATH and CUDA_PATH environment variable. For example, if you have CUDA installed
at /usr/local/cuda-9.2:

8 Chapter 2. Installation

CuPy Documentation, Release 13.0.0

$ export CUDA_PATH=/usr/local/cuda-9.2
$ export LD_LIBRARY_PATH=$CUDA_PATH/lib64:$LD_LIBRARY_PATH

Also see Working with Custom CUDA Installation.

2.7.5 Build fails on Ubuntu 16.04, CentOS 6 or 7

In order to build CuPy from source on systems with legacy GCC (g++-5 or earlier), you need to manually set up g++-6
or later and configure NVCC environment variable.

On Ubuntu 16.04:

$ sudo add-apt-repository ppa:ubuntu-toolchain-r/test
$ sudo apt update
$ sudo apt install g++-6
$ export NVCC="nvcc --compiler-bindir gcc-6"

On CentOS 6 / 7:

$ sudo yum install centos-release-scl
$ sudo yum install devtoolset-7-gcc-c++
$ source /opt/rh/devtoolset-7/enable
$ export NVCC="nvcc --compiler-bindir gcc"

2.7. FAQ 9

CuPy Documentation, Release 13.0.0

10 Chapter 2. Installation

CHAPTER

THREE

USING CUPY ON AMD GPU (EXPERIMENTAL)

CuPy has an experimental support for AMD GPU (ROCm).

3.1 Requirements

• AMD GPU supported by ROCm

• ROCm: v4.3 / v5.0
– See the ROCm Installation Guide for details.

The following ROCm libraries are required:

$ sudo apt install hipblas hipsparse rocsparse rocrand rocthrust rocsolver rocfft hipcub␣
→˓rocprim rccl

3.2 Environment Variables

When building or running CuPy for ROCm, the following environment variables are effective.

• ROCM_HOME: directory containing the ROCm software (e.g., /opt/rocm).

3.3 Docker

You can try running CuPy for ROCm using Docker.

$ docker run -it --device=/dev/kfd --device=/dev/dri --group-add video cupy/cupy-rocm

3.4 Installing Binary Packages

Wheels (precompiled binary packages) are available for Linux (x86_64). Package names are different depending on
your ROCm version.

ROCm Command
v4.3 $ pip install cupy-rocm-4-3
v5.0 $ pip install cupy-rocm-5-0

11

https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support
https://rocmdocs.amd.com/en/latest/index.html
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

CuPy Documentation, Release 13.0.0

3.5 Building CuPy for ROCm From Source

To build CuPy from source, set the CUPY_INSTALL_USE_HIP, ROCM_HOME, and HCC_AMDGPU_TARGET environment
variables. (HCC_AMDGPU_TARGET is the ISA name supported by your GPU. Run rocminfo and use the value displayed
in Name: line (e.g., gfx900). You can specify a comma-separated list of ISAs if you have multiple GPUs of different
architectures.)

$ export CUPY_INSTALL_USE_HIP=1
$ export ROCM_HOME=/opt/rocm
$ export HCC_AMDGPU_TARGET=gfx906
$ pip install cupy

Note: If you don’t specify the HCC_AMDGPU_TARGET environment variable, CuPy will be built for the GPU architec-
tures available on the build host. This behavior is specific to ROCm builds; when building CuPy for NVIDIA CUDA,
the build result is not affected by the host configuration.

3.6 Limitations

The following features are not available due to the limitation of ROCm or because that they are specific to CUDA:

• CUDA Array Interface

• cuTENSOR

• Handling extremely large arrays whose size is around 32-bit boundary (HIP is known to fail with sizes 2**32-
1024)

• Atomic addition in FP16 (cupy.ndarray.scatter_add and cupyx.scatter_add)

• Multi-GPU FFT and FFT callback

• Some random number generation algorithms

• Several options in RawKernel/RawModule APIs: Jitify, dynamic parallelism

• Per-thread default stream

The following features are not yet supported:

• Sparse matrices (cupyx.scipy.sparse)

• cuDNN (hipDNN)

• Hermitian/symmetric eigenvalue solver (cupy.linalg.eigh)

• Polynomial roots (uses Hermitian/symmetric eigenvalue solver)

• Splines in cupyx.scipy.interpolate (make_interp_spline, spline modes of
RegularGridInterpolator/interpn), as they depend on sparse matrices.

The following features may not work in edge cases (e.g., some combinations of dtype):

Note: We are investigating the root causes of the issues. They are not necessarily CuPy’s issues, but ROCm may have
some potential bugs.

• cupy.ndarray.__getitem__ (#4653)

12 Chapter 3. Using CuPy on AMD GPU (experimental)

https://github.com/cupy/cupy/pull/4653

CuPy Documentation, Release 13.0.0

• cupy.ix_ (#4654)

• Some polynomial routines (#4758, #4759)

• cupy.broadcast (#4662)

• cupy.convolve (#4668)

• cupy.correlate (#4781)

• Some random sampling routines (cupy.random, #4770)

• cupy.linalg.einsum

• cupyx.scipy.ndimage and cupyx.scipy.signal (#4878, #4879, #4880)

3.6. Limitations 13

https://github.com/cupy/cupy/pull/4654
https://github.com/cupy/cupy/pull/4758
https://github.com/cupy/cupy/pull/4759
https://github.com/cupy/cupy/pull/4662
https://github.com/cupy/cupy/pull/4668
https://github.com/cupy/cupy/pull/4781
https://github.com/cupy/cupy/pull/4770
https://github.com/cupy/cupy/pull/4878
https://github.com/cupy/cupy/pull/4879
https://github.com/cupy/cupy/pull/4880

CuPy Documentation, Release 13.0.0

14 Chapter 3. Using CuPy on AMD GPU (experimental)

CHAPTER

FOUR

USER GUIDE

This user guide provides an overview of CuPy and explains its important features; details are found in CuPy API
Reference.

4.1 Basics of CuPy

In this section, you will learn about the following things:

• Basics of cupy.ndarray

• The concept of current device

• host-device and device-device array transfer

4.1.1 Basics of cupy.ndarray

CuPy is a GPU array backend that implements a subset of NumPy interface. In the following code, cp is an abbreviation
of cupy, following the standard convention of abbreviating numpy as np:

>>> import numpy as np
>>> import cupy as cp

The cupy.ndarray class is at the core of CuPy and is a replacement class for NumPy’s numpy.ndarray.

>>> x_gpu = cp.array([1, 2, 3])

x_gpu above is an instance of cupy.ndarray. As one can see, CuPy’s syntax here is identical to that of NumPy.
The main difference between cupy.ndarray and numpy.ndarray is that the CuPy arrays are allocated on the current
device, which we will talk about later.

Most of the array manipulations are also done in the way similar to NumPy. Take the Euclidean norm (a.k.a L2 norm),
for example. NumPy has numpy.linalg.norm() function that calculates it on CPU.

>>> x_cpu = np.array([1, 2, 3])
>>> l2_cpu = np.linalg.norm(x_cpu)

Using CuPy, we can perform the same calculations on GPU in a similar way:

>>> x_gpu = cp.array([1, 2, 3])
>>> l2_gpu = cp.linalg.norm(x_gpu)

15

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html#numpy.linalg.norm

CuPy Documentation, Release 13.0.0

CuPy implements many functions on cupy.ndarray objects. See the reference for the supported subset of NumPy
API. Knowledge of NumPy will help you utilize most of the CuPy features. We, therefore, recommend you familiarize
yourself with the NumPy documentation.

4.1.2 Current Device

CuPy has a concept of a current device, which is the default GPU device on which the allocation, manipulation, calcu-
lation, etc., of arrays take place. Suppose ID of the current device is 0. In such a case, the following code would create
an array x_on_gpu0 on GPU 0.

>>> x_on_gpu0 = cp.array([1, 2, 3, 4, 5])

To switch to another GPU device, use the Device context manager:

>>> with cp.cuda.Device(1):
... x_on_gpu1 = cp.array([1, 2, 3, 4, 5])
>>> x_on_gpu0 = cp.array([1, 2, 3, 4, 5])

All CuPy operations (except for multi-GPU features and device-to-device copy) are performed on the currently active
device.

In general, CuPy functions expect that the array is on the same device as the current one. Passing an array stored on a
non-current device may work depending on the hardware configuration but is generally discouraged as it may not be
performant.

Note: If the array’s device and the current device mismatch, CuPy functions try to establish peer-to-peer memory
access (P2P) between them so that the current device can directly read the array from another device. Note that P2P is
available only when the topology permits it. If P2P is unavailable, such an attempt will fail with ValueError.

cupy.ndarray.device attribute indicates the device on which the array is allocated.

>>> with cp.cuda.Device(1):
... x = cp.array([1, 2, 3, 4, 5])
>>> x.device
<CUDA Device 1>

Note: When only one device is available, explicit device switching is not needed.

4.1.3 Current Stream

Associated with the concept of current devices are current streams, which help avoid explicitly passing streams in every
single operation so as to keep the APIs pythonic and user-friendly. In CuPy, all CUDA operations such as data transfer
(see the Data Transfer section) and kernel launches are enqueued onto the current stream, and the queued tasks on the
same stream will be executed in serial (but asynchronously with respect to the host).

The default current stream in CuPy is CUDA’s null stream (i.e., stream 0). It is also known as the legacy default stream,
which is unique per device. However, it is possible to change the current stream using the cupy.cuda.Stream API,
please see Accessing CUDA Functionalities for example. The current stream in CuPy can be retrieved using cupy.
cuda.get_current_stream().

It is worth noting that CuPy’s current stream is managed on a per thread, per device basis, meaning that on different
Python threads or different devices the current stream (if not the null stream) can be different.

16 Chapter 4. User Guide

https://numpy.org/doc/stable/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-access
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-access

CuPy Documentation, Release 13.0.0

4.1.4 Data Transfer

Move arrays to a device

cupy.asarray() can be used to move a numpy.ndarray, a list, or any object that can be passed to numpy.array()
to the current device:

>>> x_cpu = np.array([1, 2, 3])
>>> x_gpu = cp.asarray(x_cpu) # move the data to the current device.

cupy.asarray() can accept cupy.ndarray, which means we can transfer the array between devices with this func-
tion.

>>> with cp.cuda.Device(0):
... x_gpu_0 = cp.ndarray([1, 2, 3]) # create an array in GPU 0
>>> with cp.cuda.Device(1):
... x_gpu_1 = cp.asarray(x_gpu_0) # move the array to GPU 1

Note: cupy.asarray() does not copy the input array if possible. So, if you put an array of the current device, it
returns the input object itself.

If we do copy the array in this situation, you can use cupy.array() with copy=True. Actually cupy.asarray() is
equivalent to cupy.array(arr, dtype, copy=False).

Move array from a device to the host

Moving a device array to the host can be done by cupy.asnumpy() as follows:

>>> x_gpu = cp.array([1, 2, 3]) # create an array in the current device
>>> x_cpu = cp.asnumpy(x_gpu) # move the array to the host.

We can also use cupy.ndarray.get():

>>> x_cpu = x_gpu.get()

4.1.5 Memory management

Check Memory Management for a detailed description of how memory is managed in CuPy using memory pools.

4.1.6 How to write CPU/GPU agnostic code

CuPy’s compatibility with NumPy makes it possible to write CPU/GPU agnostic code. For this purpose, CuPy imple-
ments the cupy.get_array_module() function that returns a reference to cupy if any of its arguments resides on a
GPU and numpy otherwise. Here is an example of a CPU/GPU agnostic function that computes log1p:

>>> # Stable implementation of log(1 + exp(x))
>>> def softplus(x):
... xp = cp.get_array_module(x) # 'xp' is a standard usage in the community
... print("Using:", xp.__name__)
... return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

4.1. Basics of CuPy 17

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/index.html#module-numpy

CuPy Documentation, Release 13.0.0

When you need to manipulate CPU and GPU arrays, an explicit data transfer may be required to move them to the same
location – either CPU or GPU. For this purpose, CuPy implements two sister methods called cupy.asnumpy() and
cupy.asarray(). Here is an example that demonstrates the use of both methods:

>>> x_cpu = np.array([1, 2, 3])
>>> y_cpu = np.array([4, 5, 6])
>>> x_cpu + y_cpu
array([5, 7, 9])
>>> x_gpu = cp.asarray(x_cpu)
>>> x_gpu + y_cpu
Traceback (most recent call last):
...
TypeError: Unsupported type <class 'numpy.ndarray'>
>>> cp.asnumpy(x_gpu) + y_cpu
array([5, 7, 9])
>>> cp.asnumpy(x_gpu) + cp.asnumpy(y_cpu)
array([5, 7, 9])
>>> x_gpu + cp.asarray(y_cpu)
array([5, 7, 9])
>>> cp.asarray(x_gpu) + cp.asarray(y_cpu)
array([5, 7, 9])

The cupy.asnumpy() method returns a NumPy array (array on the host), whereas cupy.asarray() method returns
a CuPy array (array on the current device). Both methods can accept arbitrary input, meaning that they can be applied
to any data that is located on either the host or device and can be converted to an array.

4.2 User-Defined Kernels

CuPy provides easy ways to define three types of CUDA kernels: elementwise kernels, reduction kernels and raw
kernels. In this documentation, we describe how to define and call each kernels.

4.2.1 Basics of elementwise kernels

An elementwise kernel can be defined by the ElementwiseKernel class. The instance of this class defines a CUDA
kernel which can be invoked by the __call__ method of this instance.

A definition of an elementwise kernel consists of four parts: an input argument list, an output argument list, a loop body
code, and the kernel name. For example, a kernel that computes a squared difference 𝑓(𝑥, 𝑦) = (𝑥− 𝑦)2 is defined as
follows:

>>> squared_diff = cp.ElementwiseKernel(
... 'float32 x, float32 y',
... 'float32 z',
... 'z = (x - y) * (x - y)',
... 'squared_diff')

The argument lists consist of comma-separated argument definitions. Each argument definition consists of a type
specifier and an argument name. Names of NumPy data types can be used as type specifiers.

Note: n, i, and names starting with an underscore _ are reserved for the internal use.

18 Chapter 4. User Guide

CuPy Documentation, Release 13.0.0

The above kernel can be called on either scalars or arrays with broadcasting:

>>> x = cp.arange(10, dtype=np.float32).reshape(2, 5)
>>> y = cp.arange(5, dtype=np.float32)
>>> squared_diff(x, y)
array([[0., 0., 0., 0., 0.],

[25., 25., 25., 25., 25.]], dtype=float32)
>>> squared_diff(x, 5)
array([[25., 16., 9., 4., 1.],

[0., 1., 4., 9., 16.]], dtype=float32)

Output arguments can be explicitly specified (next to the input arguments):

>>> z = cp.empty((2, 5), dtype=np.float32)
>>> squared_diff(x, y, z)
array([[0., 0., 0., 0., 0.],

[25., 25., 25., 25., 25.]], dtype=float32)

4.2.2 Type-generic kernels

If a type specifier is one character, then it is treated as a type placeholder. It can be used to define a type-generic
kernels. For example, the above squared_diff kernel can be made type-generic as follows:

>>> squared_diff_generic = cp.ElementwiseKernel(
... 'T x, T y',
... 'T z',
... 'z = (x - y) * (x - y)',
... 'squared_diff_generic')

Type placeholders of a same character in the kernel definition indicate the same type. The actual type of these place-
holders is determined by the actual argument type. The ElementwiseKernel class first checks the output arguments and
then the input arguments to determine the actual type. If no output arguments are given on the kernel invocation, then
only the input arguments are used to determine the type.

The type placeholder can be used in the loop body code:

>>> squared_diff_generic = cp.ElementwiseKernel(
... 'T x, T y',
... 'T z',
... '''
... T diff = x - y;
... z = diff * diff;
... ''',
... 'squared_diff_generic')

More than one type placeholder can be used in a kernel definition. For example, the above kernel can be further made
generic over multiple arguments:

>>> squared_diff_super_generic = cp.ElementwiseKernel(
... 'X x, Y y',
... 'Z z',
... 'z = (x - y) * (x - y)',
... 'squared_diff_super_generic')

4.2. User-Defined Kernels 19

CuPy Documentation, Release 13.0.0

Note that this kernel requires the output argument explicitly specified, because the type Z cannot be automatically
determined from the input arguments.

4.2.3 Raw argument specifiers

The ElementwiseKernel class does the indexing with broadcasting automatically, which is useful to define most el-
ementwise computations. On the other hand, we sometimes want to write a kernel with manual indexing for some
arguments. We can tell the ElementwiseKernel class to use manual indexing by adding the raw keyword preceding the
type specifier.

We can use the special variable i and method _ind.size() for the manual indexing. i indicates the index within the
loop. _ind.size() indicates total number of elements to apply the elementwise operation. Note that it represents the
size after broadcast operation.

For example, a kernel that adds two vectors with reversing one of them can be written as follows:

>>> add_reverse = cp.ElementwiseKernel(
... 'T x, raw T y', 'T z',
... 'z = x + y[_ind.size() - i - 1]',
... 'add_reverse')

(Note that this is an artificial example and you can write such operation just by z = x + y[::-1] without defining a
new kernel). A raw argument can be used like an array. The indexing operator y[_ind.size() - i - 1] involves
an indexing computation on y, so y can be arbitrarily shaped and strode.

Note that raw arguments are not involved in the broadcasting. If you want to mark all arguments as raw, you must
specify the size argument on invocation, which defines the value of _ind.size().

4.2.4 Texture memory

Texture objects (TextureObject) can be passed to ElementwiseKernel with their type marked by a unique type
placeholder distinct from any other types used in the same kernel, as its actual datatype is determined when populating
the texture memory. The texture coordinates can be computed in the kernel by the per-thread loop index i.

4.2.5 Reduction kernels

Reduction kernels can be defined by the ReductionKernel class. We can use it by defining four parts of the kernel
code:

1. Identity value: This value is used for the initial value of reduction.

2. Mapping expression: It is used for the pre-processing of each element to be reduced.

3. Reduction expression: It is an operator to reduce the multiple mapped values. The special variables a and b are
used for its operands.

4. Post mapping expression: It is used to transform the resulting reduced values. The special variable a is used as
its input. Output should be written to the output parameter.

ReductionKernel class automatically inserts other code fragments that are required for an efficient and flexible reduction
implementation.

For example, L2 norm along specified axes can be written as follows:

20 Chapter 4. User Guide

CuPy Documentation, Release 13.0.0

>>> l2norm_kernel = cp.ReductionKernel(
... 'T x', # input params
... 'T y', # output params
... 'x * x', # map
... 'a + b', # reduce
... 'y = sqrt(a)', # post-reduction map
... '0', # identity value
... 'l2norm' # kernel name
...)
>>> x = cp.arange(10, dtype=np.float32).reshape(2, 5)
>>> l2norm_kernel(x, axis=1)
array([5.477226 , 15.9687195], dtype=float32)

Note: raw specifier is restricted for usages that the axes to be reduced are put at the head of the shape. It means, if you
want to use raw specifier for at least one argument, the axis argument must be 0 or a contiguous increasing sequence
of integers starting from 0, like (0, 1), (0, 1, 2), etc.

Note: Texture memory is not yet supported in ReductionKernel.

4.2.6 Raw kernels

Raw kernels can be defined by the RawKernel class. By using raw kernels, you can define kernels from raw CUDA
source.

RawKernel object allows you to call the kernel with CUDA’s cuLaunchKernel interface. In other words, you have
control over grid size, block size, shared memory size and stream.

>>> add_kernel = cp.RawKernel(r'''
... extern "C" __global__
... void my_add(const float* x1, const float* x2, float* y) {
... int tid = blockDim.x * blockIdx.x + threadIdx.x;
... y[tid] = x1[tid] + x2[tid];
... }
... ''', 'my_add')
>>> x1 = cp.arange(25, dtype=cp.float32).reshape(5, 5)
>>> x2 = cp.arange(25, dtype=cp.float32).reshape(5, 5)
>>> y = cp.zeros((5, 5), dtype=cp.float32)
>>> add_kernel((5,), (5,), (x1, x2, y)) # grid, block and arguments
>>> y
array([[0., 2., 4., 6., 8.],

[10., 12., 14., 16., 18.],
[20., 22., 24., 26., 28.],
[30., 32., 34., 36., 38.],
[40., 42., 44., 46., 48.]], dtype=float32)

Raw kernels operating on complex-valued arrays can be created as well:

>>> complex_kernel = cp.RawKernel(r'''
... #include <cupy/complex.cuh>

(continues on next page)

4.2. User-Defined Kernels 21

CuPy Documentation, Release 13.0.0

(continued from previous page)

... extern "C" __global__

... void my_func(const complex<float>* x1, const complex<float>* x2,

... complex<float>* y, float a) {

... int tid = blockDim.x * blockIdx.x + threadIdx.x;

... y[tid] = x1[tid] + a * x2[tid];

... }

... ''', 'my_func')
>>> x1 = cupy.arange(25, dtype=cupy.complex64).reshape(5, 5)
>>> x2 = 1j*cupy.arange(25, dtype=cupy.complex64).reshape(5, 5)
>>> y = cupy.zeros((5, 5), dtype=cupy.complex64)
>>> complex_kernel((5,), (5,), (x1, x2, y, cupy.float32(2.0))) # grid, block and␣
→˓arguments
>>> y
array([[0. +0.j, 1. +2.j, 2. +4.j, 3. +6.j, 4. +8.j],

[5.+10.j, 6.+12.j, 7.+14.j, 8.+16.j, 9.+18.j],
[10.+20.j, 11.+22.j, 12.+24.j, 13.+26.j, 14.+28.j],
[15.+30.j, 16.+32.j, 17.+34.j, 18.+36.j, 19.+38.j],
[20.+40.j, 21.+42.j, 22.+44.j, 23.+46.j, 24.+48.j]],

dtype=complex64)

Note that while we encourage the usage of complex<T> types for complex numbers (available by including <cupy/
complex.cuh> as shown above), for CUDA codes already written using functions from cuComplex.h there is no
need to make the conversion yourself: just set the option translate_cucomplex=True when creating a RawKernel
instance.

The CUDA kernel attributes can be retrieved by either accessing the attributes dictionary, or by accessing the
RawKernel object’s attributes directly; the latter can also be used to set certain attributes:

>>> add_kernel = cp.RawKernel(r'''
... extern "C" __global__
... void my_add(const float* x1, const float* x2, float* y) {
... int tid = blockDim.x * blockIdx.x + threadIdx.x;
... y[tid] = x1[tid] + x2[tid];
... }
... ''', 'my_add')
>>> add_kernel.attributes
{'max_threads_per_block': 1024, 'shared_size_bytes': 0, 'const_size_bytes': 0, 'local_
→˓size_bytes': 0, 'num_regs': 10, 'ptx_version': 70, 'binary_version': 70, 'cache_mode_ca
→˓': 0, 'max_dynamic_shared_size_bytes': 49152, 'preferred_shared_memory_carveout': -1}
>>> add_kernel.max_dynamic_shared_size_bytes
49152
>>> add_kernel.max_dynamic_shared_size_bytes = 50000 # set a new value for the␣
→˓attribute
>>> add_kernel.max_dynamic_shared_size_bytes
50000

Dynamical parallelism is supported by RawKernel. You just need to provide the linking flag (such as -dc) to
RawKernel’s options argument. The static CUDA device runtime library (cudadevrt) is automatically discovered
by CuPy. For further detail, see CUDA Toolkit’s documentation.

Accessing texture (surface) memory in RawKernel is supported via CUDA Runtime’s Texture (Surface) Object API,
see the documentation for TextureObject (SurfaceObject) as well as CUDA C Programming Guide. For using the
Texture Reference API, which is marked as deprecated as of CUDA Toolkit 10.1, see the introduction to RawModule
below.

22 Chapter 4. User Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compiling-and-linking

CuPy Documentation, Release 13.0.0

If your kernel relies on the C++ std library headers such as <type_traits>, it is likely you will encounter compilation
errors. In this case, try enabling CuPy’s Jitify support by setting jitify=Truewhen creating the RawKernel instance.
It provides basic C++ std support to remedy common errors.

Note: The kernel does not have return values. You need to pass both input arrays and output arrays as arguments.

Note: When using printf() in your CUDA kernel, you may need to synchronize the stream to see the output. You
can use cupy.cuda.Stream.null.synchronize() if you are using the default stream.

Note: In all of the examples above, we declare the kernels in an extern "C" block, indicating that the C linkage is
used. This is to ensure the kernel names are not mangled so that they can be retrived by name.

4.2.7 Kernel arguments

Python primitive types and NumPy scalars are passed to the kernel by value. Array arguments (pointer arguments)
have to be passed as CuPy ndarrays. No validation is performed by CuPy for arguments passed to the kernel, including
types and number of arguments.

Especially note that when passing a CuPy ndarray, its dtype should match with the type of the argument declared in
the function signature of the CUDA source code (unless you are casting arrays intentionally).

As an example, cupy.float32 and cupy.uint64 arrays must be passed to the argument typed as float* and
unsigned long long*, respectively. CuPy does not directly support arrays of non-primitive types such as float3,
but nothing prevents you from casting a float* or void* to a float3* in a kernel.

Python primitive types, int, float, complex and bool map to long long, double, cuDoubleComplex and bool,
respectively.

NumPy scalars (numpy.generic) and NumPy arrays (numpy.ndarray) of size one are passed to the kernel by value.
This means that you can pass by value any base NumPy types such as numpy.int8 or numpy.float64, provided the
kernel arguments match in size. You can refer to this table to match CuPy/NumPy dtype and CUDA types:

CuPy/NumPy type Corresponding kernel types itemsize (bytes)
bool bool 1
int8 char, signed char 1
int16 short, signed short 2
int32 int, signed int 4
int64 long long, signed long long 8
uint8 unsigned char 1
uint16 unsigned short 2
uint32 unsigned int 4
uint64 unsigned long long 8
float16 half 2
float32 float 4
float64 double 8
complex64 float2, cuFloatComplex, complex<float> 8
complex128 double2, cuDoubleComplex, complex<double> 16

The CUDA standard guarantees that the size of fundamental types on the host and device always match. The itemsize
of size_t, ptrdiff_t, intptr_t, uintptr_t, long, signed long and unsigned long are however platform

4.2. User-Defined Kernels 23

https://github.com/NVIDIA/jitify

CuPy Documentation, Release 13.0.0

dependent. To pass any CUDA vector builtins such as float3 or any other user defined structure as kernel arguments
(provided it matches the device-side kernel parameter type), see Custom user types below.

4.2.8 Custom user types

It is possible to use custom types (composite types such as structures and structures of structures) as kernel arguments by
defining a custom NumPy dtype. When doing this, it is your responsibility to match host and device structure memory
layout. The CUDA standard guarantees that the size of fundamental types on the host and device always match. It may
however impose device alignment requirements on composite types. This means that for composite types the struct
member offsets may be different from what you might expect.

When a kernel argument is passed by value, the CUDA driver will copy exactly sizeof(param_type) bytes starting
from the beginning of the NumPy object data pointer, where param_type is the parameter type in your kernel. You have
to match param_type’s memory layout (ex: size, alignment and struct padding/packing) by defining a corresponding
NumPy dtype.

For builtin CUDA vector types such as int2 and double4 and other packed structures with named members you can
directly define such NumPy dtypes as the following:

>>> import numpy as np
>>> names = ['x', 'y', 'z']
>>> types = [np.float32]*3
>>> float3 = np.dtype({'names': names, 'formats': types})
>>> arg = np.random.rand(3).astype(np.float32).view(float3)
>>> print(arg)
[(0.9940819, 0.62873816, 0.8953669)]
>>> arg['x'] = 42.0
>>> print(arg)
[(42., 0.62873816, 0.8953669)]

Here arg can be used directly as a kernel argument. When there is no need to name fields you may prefer this syntax
to define packed structures such as vectors or matrices:

>>> import numpy as np
>>> float5x5 = np.dtype({'names': ['dummy'], 'formats': [(np.float32,(5,5))]})
>>> arg = np.random.rand(25).astype(np.float32).view(float5x5)
>>> print(arg.itemsize)
100

Here arg represents a 100-byte scalar (i.e. a NumPy array of size 1) that can be passed by value to any kernel. Kernel
parameters are passed by value in a dedicated 4kB memory bank which has its own cache with broadcast. Upper bound
for total kernel parameters size is thus 4kB (see this link). It may be important to note that this dedicated memory bank
is not shared with the device __constant__ memory space.

For now, CuPy offers no helper routines to create user defined composite types. Such composite types can however be
built recursively using NumPy dtype offsets and itemsize capabilities, see cupy/examples/custum_struct for examples
of advanced usage.

Warning: You cannot directly pass static arrays as kernel arguments with the type arg[N] syntax where N is
a compile time constant. The signature of __global__ void kernel(float arg[5]) is seen as __global__
void kernel(float* arg) by the compiler. If you want to pass five floats to the kernel by value you need to de-
fine a custom structure struct float5 { float val[5]; }; and modify the kernel signature to __global__
void kernel(float5 arg).

24 Chapter 4. User Guide

https://numpy.org/doc/stable/reference/arrays.dtypes.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#function-parameters
https://github.com/cupy/cupy/tree/main/examples/custom_struct

CuPy Documentation, Release 13.0.0

4.2.9 Raw modules

For dealing a large raw CUDA source or loading an existing CUDA binary, the RawModule class can be more handy.
It can be initialized either by a CUDA source code, or by a path to the CUDA binary. It accepts most of the arguments
as in RawKernel. The needed kernels can then be retrieved by calling the get_function() method, which returns a
RawKernel instance that can be invoked as discussed above.

>>> loaded_from_source = r'''
... extern "C"{
...
... __global__ void test_sum(const float* x1, const float* x2, float* y, \
... unsigned int N)
... {
... unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x;
... if (tid < N)
... {
... y[tid] = x1[tid] + x2[tid];
... }
... }
...
... __global__ void test_multiply(const float* x1, const float* x2, float* y, \
... unsigned int N)
... {
... unsigned int tid = blockDim.x * blockIdx.x + threadIdx.x;
... if (tid < N)
... {
... y[tid] = x1[tid] * x2[tid];
... }
... }
...
... }'''
>>> module = cp.RawModule(code=loaded_from_source)
>>> ker_sum = module.get_function('test_sum')
>>> ker_times = module.get_function('test_multiply')
>>> N = 10
>>> x1 = cp.arange(N**2, dtype=cp.float32).reshape(N, N)
>>> x2 = cp.ones((N, N), dtype=cp.float32)
>>> y = cp.zeros((N, N), dtype=cp.float32)
>>> ker_sum((N,), (N,), (x1, x2, y, N**2)) # y = x1 + x2
>>> assert cp.allclose(y, x1 + x2)
>>> ker_times((N,), (N,), (x1, x2, y, N**2)) # y = x1 * x2
>>> assert cp.allclose(y, x1 * x2)

The instruction above for using complex numbers in RawKernel also applies to RawModule.

For CUDA kernels that need to access global symbols, such as constant memory, the get_global() method can be
used, see its documentation for further detail.

Note that the deprecated API cupy.RawModule.get_texref() has been removed since CuPy vX.X due to the re-
moval of texture reference support from CUDA.

To support C++ template kernels, RawModule additionally provide a name_expressions argument. A list of template
specializations should be provided, so that the corresponding kernels can be generated and retrieved by type:

4.2. User-Defined Kernels 25

CuPy Documentation, Release 13.0.0

>>> code = r'''
... template<typename T>
... __global__ void fx3(T* arr, int N) {
... unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;
... if (tid < N) {
... arr[tid] = arr[tid] * 3;
... }
... }
... '''
>>>
>>> name_exp = ['fx3<float>', 'fx3<double>']
>>> mod = cp.RawModule(code=code, options=('-std=c++11',),
... name_expressions=name_exp)
>>> ker_float = mod.get_function(name_exp[0]) # compilation happens here
>>> N=10
>>> a = cp.arange(N, dtype=cp.float32)
>>> ker_float((1,), (N,), (a, N))
>>> a
array([0., 3., 6., 9., 12., 15., 18., 21., 24., 27.], dtype=float32)
>>> ker_double = mod.get_function(name_exp[1])
>>> a = cp.arange(N, dtype=cp.float64)
>>> ker_double((1,), (N,), (a, N))
>>> a
array([0., 3., 6., 9., 12., 15., 18., 21., 24., 27.])

Note: The name expressions used to both initialize a RawModule instance and retrieve the kernels are the original (un-
mangled) kernel names with all template parameters unambiguously specified. The name mangling and demangling
are handled under the hood so that users do not need to worry about it.

4.2.10 Kernel fusion

cupy.fuse() is a decorator that fuses functions. This decorator can be used to define an elementwise or reduction
kernel more easily than ElementwiseKernel or ReductionKernel.

By using this decorator, we can define the squared_diff kernel as follows:

>>> @cp.fuse()
... def squared_diff(x, y):
... return (x - y) * (x - y)

The above kernel can be called on either scalars, NumPy arrays or CuPy arrays likes the original function.

>>> x_cp = cp.arange(10)
>>> y_cp = cp.arange(10)[::-1]
>>> squared_diff(x_cp, y_cp)
array([81, 49, 25, 9, 1, 1, 9, 25, 49, 81])
>>> x_np = np.arange(10)
>>> y_np = np.arange(10)[::-1]
>>> squared_diff(x_np, y_np)
array([81, 49, 25, 9, 1, 1, 9, 25, 49, 81])

26 Chapter 4. User Guide

CuPy Documentation, Release 13.0.0

At the first function call, the fused function analyzes the original function based on the abstracted information of
arguments (e.g. their dtypes and ndims) and creates and caches an actual CUDA kernel. From the second function call
with the same input types, the fused function calls the previously cached kernel, so it is highly recommended to reuse
the same decorated functions instead of decorating local functions that are defined multiple times.

cupy.fuse() also supports simple reduction kernel.

>>> @cp.fuse()
... def sum_of_products(x, y):
... return cp.sum(x * y, axis = -1)

You can specify the kernel name by using the kernel_name keyword argument as follows:

>>> @cp.fuse(kernel_name='squared_diff')
... def squared_diff(x, y):
... return (x - y) * (x - y)

Note: Currently, cupy.fuse() can fuse only simple elementwise and reduction operations. Most other routines (e.g.
cupy.matmul(), cupy.reshape()) are not supported.

4.2.11 JIT kernel definition

The cupyx.jit.rawkernel decorator can create raw CUDA kernels from Python functions.

In this section, a Python function wrapped with the decorator is called a target function.

A target function consists of elementary scalar operations, and users have to manage how to parallelize them. CuPy’s
array operations which automatically parallelize operations (e.g., add(), sum()) are not supported. If a custom kernel
based on such array functions is desired, please refer to the Kernel fusion section.

Basic Usage

Here is a short example for how to write a cupyx.jit.rawkernel to copy the values from x to y using a grid-stride
loop:

>>> from cupyx import jit
>>>
>>> @jit.rawkernel()
... def elementwise_copy(x, y, size):
... tid = jit.blockIdx.x * jit.blockDim.x + jit.threadIdx.x
... ntid = jit.gridDim.x * jit.blockDim.x
... for i in range(tid, size, ntid):
... y[i] = x[i]

>>> size = cupy.uint32(2 ** 22)
>>> x = cupy.random.normal(size=(size,), dtype=cupy.float32)
>>> y = cupy.empty((size,), dtype=cupy.float32)

>>> elementwise_copy((128,), (1024,), (x, y, size)) # RawKernel style
>>> assert (x == y).all()

(continues on next page)

4.2. User-Defined Kernels 27

CuPy Documentation, Release 13.0.0

(continued from previous page)

>>> elementwise_copy[128, 1024](x, y, size) # Numba style
>>> assert (x == y).all()

Both styles to launch the kernel, as shown above, are supported. The first two entries are the grid and block sizes,
respectively. grid (RawKernel style (128,) or Numba style [128]) is the sizes of the grid, i.e., the numbers of
blocks in each dimension; block ((1024,) or [1024]) is the dimensions of each thread block, please refer to cupyx.
jit._interface._JitRawKernel for details. Launching a CUDA kernel on a GPU with pre-determined grid/block
sizes requires basic understanding in the CUDA Programming Model.

The compilation will be deferred until the first function call. CuPy’s JIT compiler infers the types of arguments at the
call time, and will cache the compiled kernels for speeding up any subsequent calls.

See Custom kernels for a full list of API.

Basic Design

CuPy’s JIT compiler generates CUDA code via Python AST. We decided not to use Python bytecode to analyze the
target function to avoid perforamance degradation. The CUDA source code generated from the Python bytecode will
not effectively optimized by CUDA compiler, because for-loops and other control statements of the target function are
fully transformed to jump instruction when converting the target function to bytecode.

Typing rule

The types of local variables are inferred at the first assignment in the function. The first assignment must be done at
the top-level of the function; in other words, it must not be in if/else bodies or for-loops.

Limitations

JIT does not work inside Python’s interactive interpreter (REPL) as the compiler needs to get the source code of the
target function.

4.3 Accessing CUDA Functionalities

4.3.1 Streams and Events

In this section we discuss basic usages for CUDA streams and events. For the API reference please see Streams and
events. For their roles in the CUDA programming model, please refer to CUDA Programming Guide.

CuPy provides high-level Python APIs Stream and Event for creating streams and events, respectively. Data copies
and kernel launches are enqueued onto the Current Stream, which can be queried via get_current_stream() and
changed either by setting up a context manager:

>>> import numpy as np
>>>
>>> a_np = np.arange(10)
>>> s = cp.cuda.Stream()
>>> with s:
... a_cp = cp.asarray(a_np) # H2D transfer on stream s
... b_cp = cp.sum(a_cp) # kernel launched on stream s
... assert s == cp.cuda.get_current_stream()

(continues on next page)

28 Chapter 4. User Guide

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CuPy Documentation, Release 13.0.0

(continued from previous page)

...
>>> # fall back to the previous stream in use (here the default stream)
>>> # when going out of the scope of s

or by using the use() method:

>>> s = cp.cuda.Stream()
>>> s.use() # any subsequent operations are done on steam s
<Stream ... (device ...)>
>>> b_np = cp.asnumpy(b_cp)
>>> assert s == cp.cuda.get_current_stream()
>>> cp.cuda.Stream.null.use() # fall back to the default (null) stream
<Stream 0 (device -1)>
>>> assert cp.cuda.Stream.null == cp.cuda.get_current_stream()

Events can be created either manually or through the record() method. Event objects can be used for timing GPU
activities (via get_elapsed_time()) or setting up inter-stream dependencies:

>>> e1 = cp.cuda.Event()
>>> e1.record()
>>> a_cp = b_cp * a_cp + 8
>>> e2 = cp.cuda.get_current_stream().record()
>>>
>>> # set up a stream order
>>> s2 = cp.cuda.Stream()
>>> s2.wait_event(e2)
>>> with s2:
... # the a_cp is guaranteed updated when this copy (on s2) starts
... a_np = cp.asnumpy(a_cp)
>>>
>>> # timing
>>> e2.synchronize()
>>> t = cp.cuda.get_elapsed_time(e1, e2) # only include the compute time, not the copy␣
→˓time

Just like the Device objects, Stream and Event objects can also be used for synchronization.

Note: In CuPy, the Stream objects are managed on the per thread, per device basis.

Note: On NVIDIA GPUs, there are two stream singleton objects null and ptds, referred to as the legacy default
stream and the per-thread default stream, respectively. CuPy uses the former as default when no user-defined stream
is in use. To change this behavior, set the environment variable CUPY_CUDA_PER_THREAD_DEFAULT_STREAM to 1, see
Environment variables. This is not applicable to AMD GPUs.

To interoperate with streams created in other Python libraries, CuPy provides the ExternalStream API to wrap an
existing stream pointer (given as a Python int). See Interoperability for details.

4.3. Accessing CUDA Functionalities 29

CuPy Documentation, Release 13.0.0

4.3.2 CUDA Driver and Runtime API

Under construction. Please see Runtime API for the API reference.

4.4 Fast Fourier Transform with CuPy

CuPy covers the full Fast Fourier Transform (FFT) functionalities provided in NumPy (cupy.fft) and a subset in
SciPy (cupyx.scipy.fft). In addition to those high-level APIs that can be used as is, CuPy provides additional
features to

1. access advanced routines that cuFFT offers for NVIDIA GPUs,

2. control better the performance and behavior of the FFT routines.

Some of these features are experimental (subject to change, deprecation, or removal, see API Compatibility Policy) or
may be absent in hipFFT/rocFFT targeting AMD GPUs.

4.4.1 SciPy FFT backend

Since SciPy v1.4 a backend mechanism is provided so that users can register different FFT backends and use SciPy’s
API to perform the actual transform with the target backend, such as CuPy’s cupyx.scipy.fft module. For a one-
time only usage, a context manager scipy.fft.set_backend() can be used:

import cupy as cp
import cupyx.scipy.fft as cufft
import scipy.fft

a = cp.random.random(100).astype(cp.complex64)
with scipy.fft.set_backend(cufft):

b = scipy.fft.fft(a) # equivalent to cufft.fft(a)

However, such usage can be tedious. Alternatively, users can register a backend through scipy.fft.
register_backend() or scipy.fft.set_global_backend() to avoid using context managers:

import cupy as cp
import cupyx.scipy.fft as cufft
import scipy.fft
scipy.fft.set_global_backend(cufft)

a = cp.random.random(100).astype(cp.complex64)
b = scipy.fft.fft(a) # equivalent to cufft.fft(a)

Note: Please refer to SciPy FFT documentation for further information.

Note: To use the backend together with an explicit plan argument requires SciPy version 1.5.0 or higher. See below
for how to create FFT plans.

30 Chapter 4. User Guide

https://docs.nvidia.com/cuda/cufft/index.html
https://hipfft.readthedocs.io/en/latest/
https://rocfft.readthedocs.io/en/latest/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_backend.html#scipy.fft.set_backend
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.register_backend.html#scipy.fft.register_backend
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.register_backend.html#scipy.fft.register_backend
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_global_backend.html#scipy.fft.set_global_backend
https://docs.scipy.org/doc/scipy/reference/fft.html#backend-control

CuPy Documentation, Release 13.0.0

4.4.2 User-managed FFT plans

For performance reasons, users may wish to create, reuse, and manage the FFT plans themselves. CuPy provides a
high-level experimental API get_fft_plan() for this need. Users specify the transform to be performed as they
would with most of the high-level FFT APIs, and a plan will be generated based on the input.

import cupy as cp
from cupyx.scipy.fft import get_fft_plan

a = cp.random.random((4, 64, 64)).astype(cp.complex64)
plan = get_fft_plan(a, axes=(1, 2), value_type='C2C') # for batched, C2C, 2D transform

The returned plan can be used either explicitly as an argument with the cupyx.scipy.fft APIs:

import cupyx.scipy.fft

the rest of the arguments must match those used when generating the plan
out = cupyx.scipy.fft.fft2(a, axes=(1, 2), plan=plan)

or as a context manager for the cupy.fft APIs:

with plan:
the arguments must match those used when generating the plan
out = cp.fft.fft2(a, axes=(1, 2))

4.4.3 FFT plan cache

However, there are occasions when users may not want to manage the FFT plans by themselves. Moreover, plans could
also be reused internally in CuPy’s routines, to which user-managed plans would not be applicable. Therefore, starting
CuPy v8 we provide a built-in plan cache, enabled by default. The plan cache is done on a per device, per thread basis,
and can be retrieved by the get_plan_cache() API.

>>> import cupy as cp
>>>
>>> cache = cp.fft.config.get_plan_cache()
>>> cache.show_info()
------------------- cuFFT plan cache (device 0) -------------------
cache enabled? True
current / max size : 0 / 16 (counts)
current / max memsize: 0 / (unlimited) (bytes)
hits / misses: 0 / 0 (counts)

cached plans (most recently used first):

>>> # perform a transform, which would generate a plan and cache it
>>> a = cp.random.random((4, 64, 64))
>>> out = cp.fft.fftn(a, axes=(1, 2))
>>> cache.show_info() # hit = 0
------------------- cuFFT plan cache (device 0) -------------------
cache enabled? True
current / max size : 1 / 16 (counts)
current / max memsize: 262144 / (unlimited) (bytes)
hits / misses: 0 / 1 (counts)

(continues on next page)

4.4. Fast Fourier Transform with CuPy 31

CuPy Documentation, Release 13.0.0

(continued from previous page)

cached plans (most recently used first):
key: ((64, 64), (64, 64), 1, 4096, (64, 64), 1, 4096, 105, 4, 'C', 2, None), plan type:␣
→˓PlanNd, memory usage: 262144

>>> # perform the same transform again, the plan is looked up from cache and reused
>>> out = cp.fft.fftn(a, axes=(1, 2))
>>> cache.show_info() # hit = 1
------------------- cuFFT plan cache (device 0) -------------------
cache enabled? True
current / max size : 1 / 16 (counts)
current / max memsize: 262144 / (unlimited) (bytes)
hits / misses: 1 / 1 (counts)

cached plans (most recently used first):
key: ((64, 64), (64, 64), 1, 4096, (64, 64), 1, 4096, 105, 4, 'C', 2, None), plan type:␣
→˓PlanNd, memory usage: 262144

>>> # clear the cache
>>> cache.clear()
>>> cp.fft.config.show_plan_cache_info() # = cache.show_info(), for all devices
=============== cuFFT plan cache info (all devices) ===============
------------------- cuFFT plan cache (device 0) -------------------
cache enabled? True
current / max size : 0 / 16 (counts)
current / max memsize: 0 / (unlimited) (bytes)
hits / misses: 0 / 0 (counts)

cached plans (most recently used first):

The returned PlanCache object has other methods for finer control, such as setting the cache size (either by counts or
by memory usage). If the size is set to 0, the cache is disabled. Please refer to its documentation for more detail.

Note: As shown above each FFT plan has an associated working area allocated. If an out-of-memory error happens,
one may want to inspect, clear, or limit the plan cache.

Note: The plans returned by get_fft_plan() are not cached.

4.4.4 FFT callbacks

cuFFT provides FFT callbacks for merging pre- and/or post- processing kernels with the FFT routines so as to reduce
the access to global memory. This capability is supported experimentally by CuPy. Users need to supply custom load
and/or store kernels as strings, and set up a context manager via set_cufft_callbacks(). Note that the load (store)
kernel pointer has to be named as d_loadCallbackPtr (d_storeCallbackPtr).

import cupy as cp

a load callback that overwrites the input array to 1
(continues on next page)

32 Chapter 4. User Guide

https://docs.nvidia.com/cuda/cufft/index.html

CuPy Documentation, Release 13.0.0

(continued from previous page)

code = r'''
__device__ cufftComplex CB_ConvertInputC(

void *dataIn,
size_t offset,
void *callerInfo,
void *sharedPtr)

{
cufftComplex x;
x.x = 1.;
x.y = 0.;
return x;

}
__device__ cufftCallbackLoadC d_loadCallbackPtr = CB_ConvertInputC;
'''

a = cp.random.random((64, 128, 128)).astype(cp.complex64)

this fftn call uses callback
with cp.fft.config.set_cufft_callbacks(cb_load=code):

b = cp.fft.fftn(a, axes=(1,2))

this does not use
c = cp.fft.fftn(cp.ones(shape=a.shape, dtype=cp.complex64), axes=(1,2))

result agrees
assert cp.allclose(b, c)

"static" plans are also cached, but are distinct from their no-callback counterparts
cp.fft.config.get_plan_cache().show_info()

Note: Internally, this feature requires recompiling a Python module for each distinct pair of load and store ker-
nels. Therefore, the first invocation will be very slow, and this cost is amortized if the callbacks can be reused
in the subsequent calculations. The compiled modules are cached on disk, with a default position $HOME/.cupy/
callback_cache that can be changed by the environment variable CUPY_CACHE_DIR.

4.4.5 Multi-GPU FFT

CuPy currently provides two kinds of experimental support for multi-GPU FFT.

Warning: Using multiple GPUs to perform FFT is not guaranteed to be more performant. The rule of thumb is if
the transform fits in 1 GPU, you should avoid using multiple.

The first kind of support is with the high-level fft() and ifft() APIs, which requires the input array to reside on
one of the participating GPUs. The multi-GPU calculation is done under the hood, and by the end of the calculation
the result again resides on the device where it started. Currently only 1D complex-to-complex (C2C) transform is
supported; complex-to-real (C2R) or real-to-complex (R2C) transforms (such as rfft() and friends) are not. The
transform can be either batched (batch size > 1) or not (batch size = 1).

4.4. Fast Fourier Transform with CuPy 33

CuPy Documentation, Release 13.0.0

import cupy as cp

cp.fft.config.use_multi_gpus = True
cp.fft.config.set_cufft_gpus([0, 1]) # use GPU 0 & 1

shape = (64, 64) # batch size = 64
dtype = cp.complex64
a = cp.random.random(shape).astype(dtype) # reside on GPU 0

b = cp.fft.fft(a) # computed on GPU 0 & 1, reside on GPU 0

If you need to perform 2D/3D transforms (ex: fftn()) instead of 1D (ex: fft()), it would likely still work, but in this
particular use case it loops over the transformed axes under the hood (which is exactly what is done in NumPy too),
which could lead to suboptimal performance.

The second kind of usage is to use the low-level, private CuPy APIs. You need to construct a Plan1d object and use
it as if you are programming in C/C++ with cuFFT. Using this approach, your input array can reside on the host as a
numpy.ndarray so that its size can be much larger than what a single GPU can accommodate, which is one of the
main reasons to run multi-GPU FFT.

import numpy as np
import cupy as cp

no need to touch cp.fft.config, as we are using low-level API

shape = (64, 64)
dtype = np.complex64
a = np.random.random(shape).astype(dtype) # reside on CPU

if len(shape) == 1:
batch = 1
nx = shape[0]

elif len(shape) == 2:
batch = shape[0]
nx = shape[1]

compute via cuFFT
cufft_type = cp.cuda.cufft.CUFFT_C2C # single-precision c2c
plan = cp.cuda.cufft.Plan1d(nx, cufft_type, batch, devices=[0,1])
out_cp = np.empty_like(a) # output on CPU
plan.fft(a, out_cp, cufft.CUFFT_FORWARD)

out_np = numpy.fft.fft(a) # use NumPy's fft
np.fft.fft alway returns np.complex128
if dtype is numpy.complex64:

out_np = out_np.astype(dtype)

check result
assert np.allclose(out_cp, out_np, rtol=1e-4, atol=1e-7)

For this use case, please consult the cuFFT documentation on multi-GPU transform for further detail.

Note: The multi-GPU plans are cached if auto-generated via the high-level APIs, but not if manually generated via

34 Chapter 4. User Guide

https://docs.nvidia.com/cuda/cufft/index.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.nvidia.com/cuda/cufft/index.html

CuPy Documentation, Release 13.0.0

the low-level APIs.

4.4.6 Half-precision FFT

cuFFT provides cufftXtMakePlanMany and cufftXtExec routines to support a wide range of FFT needs, including
64-bit indexing and half-precision FFT. CuPy provides an experimental support for this capability via the new (though
private) XtPlanNd API. For half-precision FFT, on supported hardware it can be twice as fast than its single-precision
counterpart. NumPy does not yet provide the necessary infrastructure for half-precision complex numbers (i.e., numpy.
complex32), though, so the steps for this feature is currently a bit more involved than common cases.

import cupy as cp
import numpy as np

shape = (1024, 256, 256) # input array shape
idtype = odtype = edtype = 'E' # = numpy.complex32 in the future

store the input/output arrays as fp16 arrays twice as long, as complex32 is not yet␣
→˓available
a = cp.random.random((shape[0], shape[1], 2*shape[2])).astype(cp.float16)
out = cp.empty_like(a)

FFT with cuFFT
plan = cp.cuda.cufft.XtPlanNd(shape[1:],

shape[1:], 1, shape[1]*shape[2], idtype,
shape[1:], 1, shape[1]*shape[2], odtype,
shape[0], edtype,
order='C', last_axis=-1, last_size=None)

plan.fft(a, out, cp.cuda.cufft.CUFFT_FORWARD)

FFT with NumPy
a_np = cp.asnumpy(a).astype(np.float32) # upcast
a_np = a_np.view(np.complex64)
out_np = np.fft.fftn(a_np, axes=(-2,-1))
out_np = np.ascontiguousarray(out_np).astype(np.complex64) # downcast
out_np = out_np.view(np.float32)
out_np = out_np.astype(np.float16)

don't worry about accruacy for now, as we probably lost a lot during casting
print('ok' if cp.mean(cp.abs(out - cp.asarray(out_np))) < 0.1 else 'not ok')

The 64-bit indexing support for all high-level FFT APIs is planned for a future CuPy release.

4.4. Fast Fourier Transform with CuPy 35

https://docs.nvidia.com/cuda/cufft/index.html

CuPy Documentation, Release 13.0.0

4.5 Memory Management

CuPy uses memory pool for memory allocations by default. The memory pool significantly improves the performance
by mitigating the overhead of memory allocation and CPU/GPU synchronization.

There are two different memory pools in CuPy:

• Device memory pool (GPU device memory), which is used for GPU memory allocations.

• Pinned memory pool (non-swappable CPU memory), which is used during CPU-to-GPU data transfer.

Attention: When you monitor the memory usage (e.g., using nvidia-smi for GPU memory or ps for CPU
memory), you may notice that memory not being freed even after the array instance become out of scope. This is
an expected behavior, as the default memory pool “caches” the allocated memory blocks.

See Low-level CUDA support for the details of memory management APIs.

For using pinned memory more conveniently, we also provide a few high-level APIs in the cupyx names-
pace, including cupyx.empty_pinned(), cupyx.empty_like_pinned(), cupyx.zeros_pinned(), and cupyx.
zeros_like_pinned(). They return NumPy arrays backed by pinned memory. If CuPy’s pinned memory pool is in
use, the pinned memory is allocated from the pool.

Note: CuPy v8 and above provides a FFT plan cache that could use a portion of device memory if FFT and related
functions are used. The memory taken can be released by shrinking or disabling the cache.

4.5.1 Memory Pool Operations

The memory pool instance provides statistics about memory allocation. To access the default memory pool instance,
use cupy.get_default_memory_pool() and cupy.get_default_pinned_memory_pool(). You can also free
all unused memory blocks hold in the memory pool. See the example code below for details:

import cupy
import numpy

mempool = cupy.get_default_memory_pool()
pinned_mempool = cupy.get_default_pinned_memory_pool()

Create an array on CPU.
NumPy allocates 400 bytes in CPU (not managed by CuPy memory pool).
a_cpu = numpy.ndarray(100, dtype=numpy.float32)
print(a_cpu.nbytes) # 400

You can access statistics of these memory pools.
print(mempool.used_bytes()) # 0
print(mempool.total_bytes()) # 0
print(pinned_mempool.n_free_blocks()) # 0

Transfer the array from CPU to GPU.
This allocates 400 bytes from the device memory pool, and another 400
bytes from the pinned memory pool. The allocated pinned memory will be
released just after the transfer is complete. Note that the actual

(continues on next page)

36 Chapter 4. User Guide

CuPy Documentation, Release 13.0.0

(continued from previous page)

allocation size may be rounded to larger value than the requested size
for performance.
a = cupy.array(a_cpu)
print(a.nbytes) # 400
print(mempool.used_bytes()) # 512
print(mempool.total_bytes()) # 512
print(pinned_mempool.n_free_blocks()) # 1

When the array goes out of scope, the allocated device memory is released
and kept in the pool for future reuse.
a = None # (or `del a`)
print(mempool.used_bytes()) # 0
print(mempool.total_bytes()) # 512
print(pinned_mempool.n_free_blocks()) # 1

You can clear the memory pool by calling `free_all_blocks`.
mempool.free_all_blocks()
pinned_mempool.free_all_blocks()
print(mempool.used_bytes()) # 0
print(mempool.total_bytes()) # 0
print(pinned_mempool.n_free_blocks()) # 0

See cupy.cuda.MemoryPool and cupy.cuda.PinnedMemoryPool for details.

4.5.2 Limiting GPU Memory Usage

You can hard-limit the amount of GPU memory that can be allocated by using CUPY_GPU_MEMORY_LIMIT environment
variable (see Environment variables for details).

Set the hard-limit to 1 GiB:
$ export CUPY_GPU_MEMORY_LIMIT="1073741824"

You can also specify the limit in fraction of the total amount of memory
on the GPU. If you have a GPU with 2 GiB memory, the following is
equivalent to the above configuration.
$ export CUPY_GPU_MEMORY_LIMIT="50%"

import cupy
print(cupy.get_default_memory_pool().get_limit()) # 1073741824

You can also set the limit (or override the value specified via the environment variable) using cupy.cuda.
MemoryPool.set_limit(). In this way, you can use a different limit for each GPU device.

import cupy

mempool = cupy.get_default_memory_pool()

with cupy.cuda.Device(0):
mempool.set_limit(size=1024**3) # 1 GiB

with cupy.cuda.Device(1):
mempool.set_limit(size=2*1024**3) # 2 GiB

4.5. Memory Management 37

CuPy Documentation, Release 13.0.0

Note: CUDA allocates some GPU memory outside of the memory pool (such as CUDA context, library handles, etc.).
Depending on the usage, such memory may take one to few hundred MiB. That will not be counted in the limit.

4.5.3 Changing Memory Pool

You can use your own memory allocator instead of the default memory pool by passing the memory allocation func-
tion to cupy.cuda.set_allocator() / cupy.cuda.set_pinned_memory_allocator(). The memory allocator
function should take 1 argument (the requested size in bytes) and return cupy.cuda.MemoryPointer / cupy.cuda.
PinnedMemoryPointer.

CuPy provides two such allocators for using managed memory and stream ordered memory on GPU, see cupy.cuda.
malloc_managed() and cupy.cuda.malloc_async(), respectively, for details. To enable a memory pool backed
by managed memory, you can construct a new MemoryPool instance with its allocator set to malloc_managed() as
follows

import cupy

Use managed memory
cupy.cuda.set_allocator(cupy.cuda.MemoryPool(cupy.cuda.malloc_managed).malloc)

Note that if you pass malloc_managed() directly to set_allocator()without constructing a MemoryPool instance,
when the memory is freed it will be released back to the system immediately, which may or may not be desired.

Stream Ordered Memory Allocator is a new feature added since CUDA 11.2. CuPy provides an experimental inter-
face to it. Similar to CuPy’s memory pool, Stream Ordered Memory Allocator also allocates/deallocates memory
asynchronously from/to a memory pool in a stream-ordered fashion. The key difference is that it is a built-in feature
implemented in the CUDA driver by NVIDIA, so other CUDA applications in the same processs can easily allocate
memory from the same pool.

To enable a memory pool that manages stream ordered memory, you can construct a new MemoryAsyncPool instance:

import cupy

Use asynchronous stream ordered memory
cupy.cuda.set_allocator(cupy.cuda.MemoryAsyncPool().malloc)

Create a custom stream
s = cupy.cuda.Stream()

This would allocate memory asynchronously on stream s
with s:

a = cupy.empty((100,), dtype=cupy.float64)

Note that in this case we do not use the MemoryPool class. The MemoryAsyncPool takes a different input argument
from that of MemoryPool to indicate which pool to use. Please refer to MemoryAsyncPool’s documentation for further
detail.

Note that if you pass malloc_async() directly to set_allocator() without constructing a MemoryAsyncPool
instance, the device’s current memory pool will be used.

When using stream ordered memory, it is important that you maintain a correct stream semantics yourselves using, for
example, the Stream and Event APIs (see Streams and Events for details); CuPy does not attempt to act smartly for
you. Upon deallocation, the memory is freed asynchronously either on the stream it was allocated (first attempt), or

38 Chapter 4. User Guide

CuPy Documentation, Release 13.0.0

on any current CuPy stream (second attempt). It is permitted that the stream on which the memory was allocated gets
destroyed before all memory allocated on it is freed.

In addition, applications/libraries internally use cudaMalloc (CUDA’s default, synchronous allocator) could have un-
expected interplay with Stream Ordered Memory Allocator. Specifically, memory freed to the memory pool might not
be immediately visible to cudaMalloc, leading to potential out-of-memory errors. In this case, you can either call
free_all_blocks() or just manually perform a (event/stream/device) synchronization, and retry.

Currently the MemoryAsyncPool interface is experimental. In particular, while its API is largely identical to that of
MemoryPool, several of the pool’s methods require a sufficiently new driver (and of course, a supported hardware,
CUDA version, and platform) due to CUDA’s limitation.

You can even disable the default memory pool by the code below. Be sure to do this before any other CuPy operations.

import cupy

Disable memory pool for device memory (GPU)
cupy.cuda.set_allocator(None)

Disable memory pool for pinned memory (CPU).
cupy.cuda.set_pinned_memory_allocator(None)

4.6 Performance Best Practices

Here we gather a few tricks and advices for improving CuPy’s performance.

4.6.1 Benchmarking

It is utterly important to first identify the performance bottleneck before making any attempt to optimize your code.
To help set up a baseline benchmark, CuPy provides a useful utility cupyx.profiler.benchmark() for timing the
elapsed time of a Python function on both CPU and GPU:

>>> from cupyx.profiler import benchmark
>>>
>>> def my_func(a):
... return cp.sqrt(cp.sum(a**2, axis=-1))
...
>>> a = cp.random.random((256, 1024))
>>> print(benchmark(my_func, (a,), n_repeat=20))
my_func : CPU: 44.407 us +/- 2.428 (min: 42.516 / max: 53.098) us␣
→˓ GPU-0: 181.565 us +/- 1.853 (min: 180.288 / max: 188.608) us

Because GPU executions run asynchronously with respect to CPU executions, a common pitfall in GPU program-
ming is to mistakenly measure the elapsed time using CPU timing utilities (such as time.perf_counter() from the
Python Standard Library or the %timeit magic from IPython), which have no knowledge in the GPU runtime. cupyx.
profiler.benchmark() addresses this by setting up CUDA events on the Current Stream right before and after the
function to be measured and synchronizing over the end event (see Streams and Events for detail). Below we sketch
what is done internally in cupyx.profiler.benchmark():

>>> import time
>>> start_gpu = cp.cuda.Event()
>>> end_gpu = cp.cuda.Event()

(continues on next page)

4.6. Performance Best Practices 39

https://docs.python.org/3/library/time.html#time.perf_counter

CuPy Documentation, Release 13.0.0

(continued from previous page)

>>>
>>> start_gpu.record()
>>> start_cpu = time.perf_counter()
>>> out = my_func(a)
>>> end_cpu = time.perf_counter()
>>> end_gpu.record()
>>> end_gpu.synchronize()
>>> t_gpu = cp.cuda.get_elapsed_time(start_gpu, end_gpu)
>>> t_cpu = end_cpu - start_cpu

Additionally, cupyx.profiler.benchmark() runs a few warm-up runs to reduce timing fluctuation and exclude the
overhead in first invocations.

One-Time Overheads

Be aware of these overheads when benchmarking CuPy code.

Context Initialization

It may take several seconds when calling a CuPy function for the first time in a process. This is because the CUDA
driver creates a CUDA context during the first CUDA API call in CUDA applications.

Kernel Compilation

CuPy uses on-the-fly kernel synthesis. When a kernel call is required, it compiles a kernel code optimized for the
dimensions and dtypes of the given arguments, sends them to the GPU device, and executes the kernel.

CuPy caches the kernel code sent to GPU device within the process, which reduces the kernel compilation time on
further calls.

The compiled code is also cached in the directory ${HOME}/.cupy/kernel_cache (the path can be overwritten by
setting the CUPY_CACHE_DIR environment variable). This allows reusing the compiled kernel binary across the process.

4.6.2 In-depth profiling

Under construction. To mark with NVTX/rocTX ranges, you can use the cupyx.profiler.time_range() API. To
start/stop the profiler, you can use the cupyx.profiler.profile() API.

4.6.3 Use CUB/cuTENSOR backends for reduction and other routines

For reduction operations (such as sum(), prod(), amin(), amax(), argmin(), argmax()) and many more routines
built upon them, CuPy ships with our own implementations so that things just work out of the box. However, there are
dedicated efforts to further accelerate these routines, such as CUB and cuTENSOR.

In order to support more performant backends wherever applicable, starting v8 CuPy introduces an environment vari-
able CUPY_ACCELERATORS to allow users to specify the desired backends (and in what order they are tried). For
example, consider summing over a 256-cubic array:

40 Chapter 4. User Guide

https://github.com/NVIDIA/cub
https://developer.nvidia.com/cutensor

CuPy Documentation, Release 13.0.0

>>> from cupyx.profiler import benchmark
>>> a = cp.random.random((256, 256, 256), dtype=cp.float32)
>>> print(benchmark(a.sum, (), n_repeat=100))
sum : CPU: 12.101 us +/- 0.694 (min: 11.081 / max: 17.649) us␣
→˓ GPU-0:10174.898 us +/-180.551 (min:10084.576 / max:10595.936) us

We can see that it takes about 10 ms to run (on this GPU). However, if we launch the Python session using
CUPY_ACCELERATORS=cub python, we get a ~100x speedup for free (only ~0.1 ms):

>>> print(benchmark(a.sum, (), n_repeat=100))
sum : CPU: 20.569 us +/- 5.418 (min: 13.400 / max: 28.439) us␣
→˓ GPU-0: 114.740 us +/- 4.130 (min: 108.832 / max: 122.752) us

CUB is a backend shipped together with CuPy. It also accelerates other routines, such as inclusive scans (ex:
cumsum()), histograms, sparse matrix-vector multiplications (not applicable in CUDA 11), and ReductionKernel.
cuTENSOR offers optimized performance for binary elementwise ufuncs, reduction and tensor contraction. If cuTEN-
SOR is installed, setting CUPY_ACCELERATORS=cub,cutensor, for example, would try CUB first and fall back to
cuTENSOR if CUB does not provide the needed support. In the case that both backends are not applicable, it falls back
to CuPy’s default implementation.

Note that while in general the accelerated reductions are faster, there could be exceptions depending on the data layout.
In particular, the CUB reduction only supports reduction over contiguous axes. In any case, we recommend to perform
some benchmarks to determine whether CUB/cuTENSOR offers better performance or not.

Note: CuPy v11 and above uses CUB by default. To turn it off, you need to explicitly specify the environment variable
CUPY_ACCELERATORS="".

4.6.4 Overlapping work using streams

Under construction.

4.6.5 Use JIT compiler

Under construction. For now please refer to JIT kernel definition for a quick introduction.

4.6.6 Prefer float32 over float64

Under construction.

4.7 Interoperability

CuPy can be used in conjunction with other libraries.

4.7. Interoperability 41

CuPy Documentation, Release 13.0.0

4.7.1 NumPy

cupy.ndarray implements __array_ufunc__ interface (see NEP 13 — A Mechanism for Overriding Ufuncs for
details). This enables NumPy ufuncs to be directly operated on CuPy arrays. __array_ufunc__ feature requires
NumPy 1.13 or later.

import cupy
import numpy

arr = cupy.random.randn(1, 2, 3, 4).astype(cupy.float32)
result = numpy.sum(arr)
print(type(result)) # => <class 'cupy._core.core.ndarray'>

cupy.ndarray also implements __array_function__ interface (see NEP 18 — A dispatch mechanism for NumPy’s
high level array functions for details). This enables code using NumPy to be directly operated on CuPy arrays.
__array_function__ feature requires NumPy 1.16 or later; As of NumPy 1.17, __array_function__ is enabled
by default.

4.7.2 Numba

Numba is a Python JIT compiler with NumPy support.

cupy.ndarray implements __cuda_array_interface__, which is the CUDA array interchange interface compati-
ble with Numba v0.39.0 or later (see CUDA Array Interface for details). It means you can pass CuPy arrays to kernels
JITed with Numba. The following is a simple example code borrowed from numba/numba#2860:

import cupy
from numba import cuda

@cuda.jit
def add(x, y, out):

start = cuda.grid(1)
stride = cuda.gridsize(1)
for i in range(start, x.shape[0], stride):

out[i] = x[i] + y[i]

a = cupy.arange(10)
b = a * 2
out = cupy.zeros_like(a)

print(out) # => [0 0 0 0 0 0 0 0 0 0]

add[1, 32](a, b, out)

print(out) # => [0 3 6 9 12 15 18 21 24 27]

In addition, cupy.asarray() supports zero-copy conversion from Numba CUDA array to CuPy array.

import numpy
import numba
import cupy

x = numpy.arange(10) # type: numpy.ndarray
(continues on next page)

42 Chapter 4. User Guide

http://www.numpy.org/neps/nep-0013-ufunc-overrides.html
http://www.numpy.org/neps/nep-0018-array-function-protocol.html
http://www.numpy.org/neps/nep-0018-array-function-protocol.html
https://numba.pydata.org/
https://numba.readthedocs.io/en/stable/cuda/cuda_array_interface.html
https://github.com/numba/numba/pull/2860

CuPy Documentation, Release 13.0.0

(continued from previous page)

x_numba = numba.cuda.to_device(x) # type: numba.cuda.cudadrv.devicearray.DeviceNDArray
x_cupy = cupy.asarray(x_numba) # type: cupy.ndarray

Warning: __cuda_array_interface__ specifies that the object lifetime must be managed by the user, so it is
an undefined behavior if the exported object is destroyed while still in use by the consumer library.

Note: CuPy uses two environment variables controlling the exchange behavior:
CUPY_CUDA_ARRAY_INTERFACE_SYNC and CUPY_CUDA_ARRAY_INTERFACE_EXPORT_VERSION.

4.7.3 mpi4py

MPI for Python (mpi4py) is a Python wrapper for the Message Passing Interface (MPI) libraries.

MPI is the most widely used standard for high-performance inter-process communications. Recently several MPI
vendors, including MPICH, Open MPI and MVAPICH, have extended their support beyond the MPI-3.1 standard to
enable “CUDA-awareness”; that is, passing CUDA device pointers directly to MPI calls to avoid explicit data movement
between the host and the device.

With the __cuda_array_interface__ (as mentioned above) and DLPack data exchange protocols (see DLPack be-
low) implemented in CuPy, mpi4py now provides (experimental) support for passing CuPy arrays to MPI calls, provided
that mpi4py is built against a CUDA-aware MPI implementation. The following is a simple example code borrowed
from mpi4py Tutorial:

To run this script with N MPI processes, do
mpiexec -n N python this_script.py

import cupy
from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()

Allreduce
sendbuf = cupy.arange(10, dtype='i')
recvbuf = cupy.empty_like(sendbuf)
comm.Allreduce(sendbuf, recvbuf)
assert cupy.allclose(recvbuf, sendbuf*size)

This new feature is added since mpi4py 3.1.0. See the mpi4py website for more information.

4.7. Interoperability 43

https://mpi4py.readthedocs.io/en/latest/
https://mpi4py.readthedocs.io/en/latest/tutorial.html
https://mpi4py.readthedocs.io/en/latest/

CuPy Documentation, Release 13.0.0

4.7.4 PyTorch

PyTorch is a machine learning framefork that provides high-performance, differentiable tensor operations.

PyTorch also supports __cuda_array_interface__, so zero-copy data exchange between CuPy and PyTorch
can be achieved at no cost. The only caveat is PyTorch by default creates CPU tensors, which do not have the
__cuda_array_interface__ property defined, and users need to ensure the tensor is already on GPU before ex-
changing.

>>> import cupy as cp
>>> import torch
>>>
>>> # convert a torch tensor to a cupy array
>>> a = torch.rand((4, 4), device='cuda')
>>> b = cp.asarray(a)
>>> b *= b
>>> b
array([[0.8215962 , 0.82399917, 0.65607935, 0.30354425],

[0.422695 , 0.8367199 , 0.00208597, 0.18545236],
[0.00226746, 0.46201342, 0.6833052 , 0.47549972],
[0.5208748 , 0.6059282 , 0.1909013 , 0.5148635]], dtype=float32)

>>> a
tensor([[0.8216, 0.8240, 0.6561, 0.3035],

[0.4227, 0.8367, 0.0021, 0.1855],
[0.0023, 0.4620, 0.6833, 0.4755],
[0.5209, 0.6059, 0.1909, 0.5149]], device='cuda:0')

>>> # check the underlying memory pointer is the same
>>> assert a.__cuda_array_interface__['data'][0] == b.__cuda_array_interface__['data'][0]
>>>
>>> # convert a cupy array to a torch tensor
>>> a = cp.arange(10)
>>> b = torch.as_tensor(a, device='cuda')
>>> b += 3
>>> b
tensor([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], device='cuda:0')
>>> a
array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
>>> assert a.__cuda_array_interface__['data'][0] == b.__cuda_array_interface__['data'][0]

PyTorch also supports zero-copy data exchange through DLPack (see DLPack below):

import cupy
import torch

Create a PyTorch tensor.
tx1 = torch.randn(1, 2, 3, 4).cuda()

Convert it into a CuPy array.
cx = cupy.from_dlpack(tx1)

Convert it back to a PyTorch tensor.
tx2 = torch.from_dlpack(cx)

pytorch-pfn-extras library provides additional integration features with PyTorch, including memory pool sharing and
stream sharing:

44 Chapter 4. User Guide

https://pytorch.org/
https://github.com/pfnet/pytorch-pfn-extras/

CuPy Documentation, Release 13.0.0

>>> import cupy
>>> import torch
>>> import pytorch_pfn_extras as ppe
>>>
>>> # Perform CuPy memory allocation using the PyTorch memory pool.
>>> ppe.cuda.use_torch_mempool_in_cupy()
>>> torch.cuda.memory_allocated()
0
>>> arr = cupy.arange(10)
>>> torch.cuda.memory_allocated()
512
>>>
>>> # Change the default stream in PyTorch and CuPy:
>>> stream = torch.cuda.Stream()
>>> with ppe.cuda.stream(stream):
... ...

Using custom kernels in PyTorch

With the DLPack protocol, it becomes very simple to implement functions in PyTorch using CuPy user-defined kernels.
Below is the example of a PyTorch autograd function that computes the forward and backward pass of the logarithm
using cupy.RawKernel s.

import cupy
import torch

cupy_custom_kernel_fwd = cupy.RawKernel(
r"""

extern "C" __global__
void cupy_custom_kernel_fwd(const float* x, float* y, int size) {

int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid < size)

y[tid] = log(x[tid]);
}
""",

"cupy_custom_kernel_fwd",
)

cupy_custom_kernel_bwd = cupy.RawKernel(
r"""

extern "C" __global__
void cupy_custom_kernel_bwd(const float* x, float* gy, float* gx, int size) {

int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid < size)

gx[tid] = gy[tid] / x[tid];
}
""",

"cupy_custom_kernel_bwd",
)

(continues on next page)

4.7. Interoperability 45

CuPy Documentation, Release 13.0.0

(continued from previous page)

class CuPyLog(torch.autograd.Function):
@staticmethod
def forward(ctx, x):

ctx.input = x
Enforce contiguous arrays to simplify RawKernel indexing.
cupy_x = cupy.ascontiguousarray(cupy.from_dlpack(x.detach()))
cupy_y = cupy.empty(cupy_x.shape, dtype=cupy_x.dtype)
x_size = cupy_x.size
bs = 128
cupy_custom_kernel_fwd(

(bs,), ((x_size + bs - 1) // bs,), (cupy_x, cupy_y, x_size)
)
the ownership of the device memory backing cupy_y is implicitly
transferred to torch_y, so this operation is safe even after
going out of scope of this function.
torch_y = torch.from_dlpack(cupy_y)
return torch_y

@staticmethod
def backward(ctx, grad_y):

Enforce contiguous arrays to simplify RawKernel indexing.
cupy_input = cupy.from_dlpack(ctx.input.detach()).ravel()
cupy_grad_y = cupy.from_dlpack(grad_y.detach()).ravel()
cupy_grad_x = cupy.zeros(cupy_grad_y.shape, dtype=cupy_grad_y.dtype)
gy_size = cupy_grad_y.size
bs = 128
cupy_custom_kernel_bwd(

(bs,),
((gy_size + bs - 1) // bs,),
(cupy_input, cupy_grad_y, cupy_grad_x, gy_size),

)
the ownership of the device memory backing cupy_grad_x is implicitly
transferred to torch_y, so this operation is safe even after
going out of scope of this function.
torch_grad_x = torch.from_dlpack(cupy_grad_x)
return torch_grad_x

Note: Directly feeding a torch.Tensor to cupy.from_dlpack() is only supported in the (new) DLPack data
exchange protocol added in CuPy v10+ and PyTorch 1.10+. For earlier versions, you will need to wrap the Tensor
with torch.utils.dlpack.to_dlpack() as shown in the above examples.

46 Chapter 4. User Guide

CuPy Documentation, Release 13.0.0

4.7.5 RMM

RMM (RAPIDS Memory Manager) provides highly configurable memory allocators.

RMM provides an interface to allow CuPy to allocate memory from the RMM memory pool instead of from CuPy’s
own pool. It can be set up as simple as:

import cupy
import rmm
cupy.cuda.set_allocator(rmm.rmm_cupy_allocator)

Sometimes, a more performant allocator may be desirable. RMM provides an option to switch the allocator:

import cupy
import rmm
rmm.reinitialize(pool_allocator=True) # can also set init pool size etc here
cupy.cuda.set_allocator(rmm.rmm_cupy_allocator)

For more information on CuPy’s memory management, see Memory Management.

4.7.6 DLPack

DLPack is a specification of tensor structure to share tensors among frameworks.

CuPy supports importing from and exporting to DLPack data structure (cupy.from_dlpack() and cupy.ndarray.
toDlpack()).

Here is a simple example:

import cupy

Create a CuPy array.
cx1 = cupy.random.randn(1, 2, 3, 4).astype(cupy.float32)

Convert it into a DLPack tensor.
dx = cx1.toDlpack()

Convert it back to a CuPy array.
cx2 = cupy.from_dlpack(dx)

TensorFlow also supports DLpack, so zero-copy data exchange between CuPy and TensorFlow through DLPack is
possible:

>>> import tensorflow as tf
>>> import cupy as cp
>>>
>>> # convert a TF tensor to a cupy array
>>> with tf.device('/GPU:0'):
... a = tf.random.uniform((10,))
...
>>> a
<tf.Tensor: shape=(10,), dtype=float32, numpy=
array([0.9672388 , 0.57568085, 0.53163004, 0.6536236 , 0.20479882,

0.84908986, 0.5852566 , 0.30355775, 0.1733712 , 0.9177849],
dtype=float32)>

(continues on next page)

4.7. Interoperability 47

https://docs.rapids.ai/api/rmm/stable/index.html
https://github.com/dmlc/dlpack
https://www.tensorflow.org

CuPy Documentation, Release 13.0.0

(continued from previous page)

>>> a.device
'/job:localhost/replica:0/task:0/device:GPU:0'
>>> cap = tf.experimental.dlpack.to_dlpack(a)
>>> b = cp.from_dlpack(cap)
>>> b *= 3
>>> b
array([1.4949363 , 0.60699713, 1.3276931 , 1.5781245 , 1.1914308 ,

2.3180873 , 1.9560868 , 1.3932796 , 1.9299742 , 2.5352407],
dtype=float32)

>>> a
<tf.Tensor: shape=(10,), dtype=float32, numpy=
array([1.4949363 , 0.60699713, 1.3276931 , 1.5781245 , 1.1914308 ,

2.3180873 , 1.9560868 , 1.3932796 , 1.9299742 , 2.5352407],
dtype=float32)>

>>>
>>> # convert a cupy array to a TF tensor
>>> a = cp.arange(10)
>>> cap = a.toDlpack()
>>> b = tf.experimental.dlpack.from_dlpack(cap)
>>> b.device
'/job:localhost/replica:0/task:0/device:GPU:0'
>>> b
<tf.Tensor: shape=(10,), dtype=int64, numpy=array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Be aware that in TensorFlow all tensors are immutable, so in the latter case any changes in b cannot be reflected in the
CuPy array a.

Note that as of DLPack v0.5 for correctness the above approach (implicitly) requires users to ensure that such conversion
(both importing and exporting a CuPy array) must happen on the same CUDA/HIP stream. If in doubt, the current CuPy
stream in use can be fetched by, for example, calling cupy.cuda.get_current_stream(). Please consult the other
framework’s documentation for how to access and control the streams.

DLPack data exchange protocol

To obviate user-managed streams and DLPack tensor objects, the DLPack data exchange protocol provides a mechanism
to shift the responsibility from users to libraries. Any compliant objects (such as cupy.ndarray) must implement a
pair of methods __dlpack__ and __dlpack_device__. The function cupy.from_dlpack() accepts such object
and returns a cupy.ndarray that is safely accessible on CuPy’s current stream. Likewise, cupy.ndarray can be
exported via any compliant library’s from_dlpack() function.

Note: CuPy uses CUPY_DLPACK_EXPORT_VERSION to control how to handle tensors backed by CUDA managed
memory.

48 Chapter 4. User Guide

https://data-apis.org/array-api/latest/design_topics/data_interchange.html

CuPy Documentation, Release 13.0.0

4.7.7 Device Memory Pointers

Import

CuPy provides UnownedMemory API that allows interoperating with GPU device memory allocated in other libraries.

Create a memory chunk from raw pointer and its size.
mem = cupy.cuda.UnownedMemory(140359025819648, 1024, owner=None)

Wrap it as a MemoryPointer.
memptr = cupy.cuda.MemoryPointer(mem, offset=0)

Create an ndarray view backed by the memory pointer.
arr = cupy.ndarray((16, 16), dtype=cupy.float32, memptr=memptr)
assert arr.nbytes <= arr.data.mem.size

Be aware that you are responsible for specifying a correct shape, dtype, strides, and order such that it fits in the chunk
when creating an ndarray view.

The UnownedMemory API does not manage the lifetime of the memory allocation. You must ensure that the pointer is
alive while in use by CuPy. In case the pointer lifetime is managed by a Python object, you can pass it to the owner
argument of the UnownedMemory to keep the reference to the object.

Export

You can pass memory pointers allocated in CuPy to other libraries.

arr = cupy.arange(10)
print(arr.data.ptr, arr.nbytes) # => (140359025819648, 80)

The memory allocated by CuPy will be freed when the ndarray (arr) gets destructed. You must keep ndarray
instance alive while the pointer is in use by other libraries.

4.7.8 CUDA Stream Pointers

Import

CuPy provides ExternalStream API that allows interoperating with CUDA streams created in other libraries.

import torch

Create a stream on PyTorch.
s = torch.cuda.Stream()

Switch the current stream in PyTorch.
with torch.cuda.stream(s):

Switch the current stream in CuPy, using the pointer of the stream created in␣
→˓PyTorch.
with cupy.cuda.ExternalStream(s.cuda_stream):

This block runs on the same CUDA stream.
torch.arange(10, device='cuda')
cupy.arange(10)

4.7. Interoperability 49

CuPy Documentation, Release 13.0.0

The ExternalStream API does not manage the lifetime of the stream. You must ensure that the stream pointer is
alive while in use by CuPy.

You also need to make sure that the ExternalStream object is used on the device where the stream was created. CuPy
can validate that for you if you pass device_id argument when creating ExternalStream .

Export

You can pass streams created in CuPy to other libraries.

s = cupy.cuda.Stream()
print(s.ptr, s.device_id) # => (93997451352336, 0)

The CUDA stream will be destroyed when the Stream (s) gets destructed. You must keep the Stream instance alive
while the pointer is in use by other libraries.

4.8 Differences between CuPy and NumPy

The interface of CuPy is designed to obey that of NumPy. However, there are some differences.

4.8.1 Cast behavior from float to integer

Some casting behaviors from float to integer are not defined in C++ specification. The casting from a negative float
to unsigned integer and infinity to integer is one of such examples. The behavior of NumPy depends on your CPU
architecture. This is the result on an Intel CPU:

>>> np.array([-1], dtype=np.float32).astype(np.uint32)
array([4294967295], dtype=uint32)
>>> cupy.array([-1], dtype=np.float32).astype(np.uint32)
array([0], dtype=uint32)

>>> np.array([float('inf')], dtype=np.float32).astype(np.int32)
array([-2147483648], dtype=int32)
>>> cupy.array([float('inf')], dtype=np.float32).astype(np.int32)
array([2147483647], dtype=int32)

4.8.2 Random methods support dtype argument

NumPy’s random value generator does not support a dtype argument and instead always returns a float64 value. We
support the option in CuPy because cuRAND, which is used in CuPy, supports both float32 and float64.

>>> np.random.randn(dtype=np.float32)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: randn() got an unexpected keyword argument 'dtype'
>>> cupy.random.randn(dtype=np.float32)
array(0.10689262300729752, dtype=float32)

50 Chapter 4. User Guide

CuPy Documentation, Release 13.0.0

4.8.3 Out-of-bounds indices

CuPy handles out-of-bounds indices differently by default from NumPy when using integer array indexing. NumPy
handles them by raising an error, but CuPy wraps around them.

>>> x = np.array([0, 1, 2])
>>> x[[1, 3]] = 10
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: index 3 is out of bounds for axis 1 with size 3
>>> x = cupy.array([0, 1, 2])
>>> x[[1, 3]] = 10
>>> x
array([10, 10, 2])

4.8.4 Duplicate values in indices

CuPy’s __setitem__ behaves differently from NumPy when integer arrays reference the same location multiple times.
In that case, the value that is actually stored is undefined. Here is an example of CuPy.

>>> a = cupy.zeros((2,))
>>> i = cupy.arange(10000) % 2
>>> v = cupy.arange(10000).astype(np.float32)
>>> a[i] = v
>>> a
array([9150., 9151.])

NumPy stores the value corresponding to the last element among elements referencing duplicate locations.

>>> a_cpu = np.zeros((2,))
>>> i_cpu = np.arange(10000) % 2
>>> v_cpu = np.arange(10000).astype(np.float32)
>>> a_cpu[i_cpu] = v_cpu
>>> a_cpu
array([9998., 9999.])

4.8.5 Zero-dimensional array

Reduction methods

NumPy’s reduction functions (e.g. numpy.sum()) return scalar values (e.g. numpy.float32). However CuPy coun-
terparts return zero-dimensional cupy.ndarray s. That is because CuPy scalar values (e.g. cupy.float32) are
aliases of NumPy scalar values and are allocated in CPU memory. If these types were returned, it would be required
to synchronize between GPU and CPU. If you want to use scalar values, cast the returned arrays explicitly.

>>> type(np.sum(np.arange(3))) == np.int64
True
>>> type(cupy.sum(cupy.arange(3))) == cupy.ndarray
True

4.8. Differences between CuPy and NumPy 51

https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum

CuPy Documentation, Release 13.0.0

Type promotion

CuPy automatically promotes dtypes of cupy.ndarray s in a function with two or more operands, the result dtype is
determined by the dtypes of the inputs. This is different from NumPy’s rule on type promotion, when operands contain
zero-dimensional arrays. Zero-dimensional numpy.ndarray s are treated as if they were scalar values if they appear in
operands of NumPy’s function, This may affect the dtype of its output, depending on the values of the “scalar” inputs.

>>> (np.array(3, dtype=np.int32) * np.array([1., 2.], dtype=np.float32)).dtype
dtype('float32')
>>> (np.array(300000, dtype=np.int32) * np.array([1., 2.], dtype=np.float32)).dtype
dtype('float64')
>>> (cupy.array(3, dtype=np.int32) * cupy.array([1., 2.], dtype=np.float32)).dtype
dtype('float64')

4.8.6 Matrix type (numpy.matrix)

SciPy returns numpy.matrix (a subclass of numpy.ndarray) when dense matrices are computed from sparse matrices
(e.g., coo_matrix + ndarray). However, CuPy returns cupy.ndarray for such operations.

There is no plan to provide numpy.matrix equivalent in CuPy. This is because the use of numpy.matrix is no longer
recommended since NumPy 1.15.

4.8.7 Data types

Data type of CuPy arrays cannot be non-numeric like strings or objects. See Overview for details.

4.8.8 Universal Functions only work with CuPy array or scalar

Unlike NumPy, Universal Functions in CuPy only work with CuPy array or scalar. They do not accept other objects
(e.g., lists or numpy.ndarray).

>>> np.power([np.arange(5)], 2)
array([[0, 1, 4, 9, 16]])

>>> cupy.power([cupy.arange(5)], 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: Unsupported type <class 'list'>

4.8.9 Random seed arrays are hashed to scalars

Like Numpy, CuPy’s RandomState objects accept seeds either as numbers or as full numpy arrays.

>>> seed = np.array([1, 2, 3, 4, 5])
>>> rs = cupy.random.RandomState(seed=seed)

However, unlike Numpy, array seeds will be hashed down to a single number and so may not communicate as much
entropy to the underlying random number generator.

52 Chapter 4. User Guide

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

CuPy Documentation, Release 13.0.0

4.8.10 NaN (not-a-number) handling

By default CuPy’s reduction functions (e.g., cupy.sum()) handle NaNs in complex numbers differently from NumPy’s
counterparts:

>>> a = [0.5 + 3.7j, complex(0.7, np.nan), complex(np.nan, -3.9), complex(np.nan, np.
→˓nan)]
>>>
>>> a_np = np.asarray(a)
>>> print(a_np.max(), a_np.min())
(0.7+nanj) (0.7+nanj)
>>>
>>> a_cp = cp.asarray(a_np)
>>> print(a_cp.max(), a_cp.min())
(nan-3.9j) (nan-3.9j)

The reason is that internally the reduction is performed in a strided fashion, thus it does not ensure a proper comparison
order and cannot follow NumPy’s rule to always propagate the first-encountered NaN. Note that this difference does
not apply when CUB is enabled (which is the default for CuPy v11 or later.)

4.8.11 Contiguity / Strides

To provide the best performance, the contiguity of a resulting ndarray is not guaranteed to match with that of NumPy’s
output.

>>> a = np.array([[1, 2], [3, 4]], order='F')
>>> print((a + a).flags.f_contiguous)
True

>>> a = cp.array([[1, 2], [3, 4]], order='F')
>>> print((a + a).flags.f_contiguous)
False

4.9 API Compatibility Policy

This document expresses the design policy on compatibilities of CuPy APIs. Development team should obey this policy
on deciding to add, extend, and change APIs and their behaviors.

This document is written for both users and developers. Users can decide the level of dependencies on CuPy’s im-
plementations in their codes based on this document. Developers should read through this document before creating
pull requests that contain changes on the interface. Note that this document may contain ambiguities on the level of
supported compatibilities.

4.9. API Compatibility Policy 53

CuPy Documentation, Release 13.0.0

4.9.1 Versioning and Backward Compatibilities

The updates of CuPy are classified into three levels: major, minor, and revision. These types have distinct levels of
backward compatibilities.

• Major update contains disruptive changes that break the backward compatibility.

• Minor update contains additions and extensions to the APIs that keep the backward compatibility supported.

• Revision update contains improvements on the API implementations without changing any API specifications.

Note that we do not support full backward compatibility, which is almost infeasible for Python-based APIs, since there
is no way to completely hide the implementation details.

4.9.2 Processes to Break Backward Compatibilities

Deprecation, Dropping, and Its Preparation

Any APIs may be deprecated at some minor updates. In such a case, the deprecation note is added to the API docu-
mentation, and the API implementation is changed to fire a deprecation warning (if possible). There should be another
way to reimplement the same functionality previously written using the deprecated APIs.

Any APIs may be marked as to be dropped in the future. In such a case, the dropping is stated in the documentation
with the major version number on which the API is planned to be dropped, and the API implementation is changed to
fire a future warning (if possible).

The actual dropping should be done through the following steps:

• Make the API deprecated. At this point, users should not use the deprecated API in their new application codes.

• After that, mark the API as to be dropped in the future. It must be done in the minor update different from that
of the deprecation.

• At the major version announced in the above update, drop the API.

Consequently, it takes at least two minor versions to drop any APIs after the first deprecation.

API Changes and Its Preparation

Any APIs may be marked as to be changed in the future for changes without backward compatibility. In such a case,
the change is stated in the documentation with the version number on which the API is planned to be changed, and the
API implementation is changed to fire the future warning on the certain usages.

The actual change should be done in the following steps:

• Announce that the API will be changed in the future. At this point, the actual version of change need not be
accurate.

• After the announcement, mark the API as to be changed in the future with version number of planned changes.
At this point, users should not use the marked API in their new application codes.

• At the major update announced in the above update, change the API.

54 Chapter 4. User Guide

CuPy Documentation, Release 13.0.0

4.9.3 Supported Backward Compatibility

This section defines backward compatibilities that minor updates must maintain.

Documented Interface

CuPy has an official API documentation. Many applications can be written based on the documented features. We
support backward compatibilities of documented features. In other words, codes only based on the documented features
run correctly with minor-/revision- updated versions.

Developers are encouraged to use apparent names for objects of implementation details. For example, attributes outside
of the documented APIs should have one or more underscores at the prefix of their names.

Undocumented behaviors

Behaviors of CuPy implementation not stated in the documentation are undefined. Undocumented behaviors are not
guaranteed to be stable between different minor/revision versions.

Minor update may contain changes to undocumented behaviors. For example, suppose an API X is added at the minor
update. In the previous version, attempts to use X cause AttributeError. This behavior is not stated in the documentation,
so this is undefined. Thus, adding the API X in minor version is permissible.

Revision update may also contain changes to undefined behaviors. Typical example is a bug fix. Another example is
an improvement on implementation, which may change the internal object structures not shown in the documentation.
As a consequence, even revision updates do not support compatibility of pickling, unless the full layout of pickled
objects is clearly documented.

Documentation Error

Compatibility is basically determined based on the documentation, though it sometimes contains errors. It may make
the APIs confusing to assume the documentation always stronger than the implementations. We therefore may fix the
documentation errors in any updates that may break the compatibility in regard to the documentation.

Note: Developers MUST NOT fix the documentation and implementation of the same functionality at the same time
in revision updates as “bug fix”. Such a change completely breaks the backward compatibility. If you want to fix the
bugs in both sides, first fix the documentation to fit it into the implementation, and start the API changing procedure
described above.

Object Attributes and Properties

Object attributes and properties are sometimes replaced by each other at minor updates. It does not break the user
codes, except for the codes depending on how the attributes and properties are implemented.

4.9. API Compatibility Policy 55

CuPy Documentation, Release 13.0.0

Functions and Methods

Methods may be replaced by callable attributes keeping the compatibility of parameters and return values in minor
updates. It does not break the user codes, except for the codes depending on how the methods and callable attributes
are implemented.

Exceptions and Warnings

The specifications of raising exceptions are considered as a part of standard backward compatibilities. No exception
is raised in the future versions with correct usages that the documentation allows, unless the API changing process is
completed.

On the other hand, warnings may be added at any minor updates for any APIs. It means minor updates do not keep
backward compatibility of warnings.

4.9.4 Installation Compatibility

The installation process is another concern of compatibilities. We support environmental compatibilities in the follow-
ing ways.

• Any changes of dependent libraries that force modifications on the existing environments must be done in major
updates. Such changes include following cases:

– dropping supported versions of dependent libraries (e.g. dropping cuDNN v2)

– adding new mandatory dependencies (e.g. adding h5py to setup_requires)

• Supporting optional packages/libraries may be done in minor updates (e.g. supporting h5py in optional features).

Note: The installation compatibility does not guarantee that all the features of CuPy correctly run on supported
environments. It may contain bugs that only occurs in certain environments. Such bugs should be fixed in some
updates.

56 Chapter 4. User Guide

CHAPTER

FIVE

API REFERENCE

• genindex

• modindex

5.1 The N-dimensional array (ndarray)

cupy.ndarray is the CuPy counterpart of NumPy numpy.ndarray. It provides an intuitive interface for a fixed-size
multidimensional array which resides in a CUDA device.

For the basic concept of ndarrays, please refer to the NumPy documentation.

cupy.ndarray(self, shape[, dtype, memptr, ...]) Multi-dimensional array on a CUDA device.

5.1.1 cupy.ndarray

class cupy.ndarray(self, shape, dtype=float, memptr=None, strides=None, order='C')
Multi-dimensional array on a CUDA device.

This class implements a subset of methods of numpy.ndarray. The difference is that this class allocates the
array content on the current GPU device.

Parameters
• shape (tuple of ints) – Length of axes.

• dtype – Data type. It must be an argument of numpy.dtype.

• memptr (cupy.cuda.MemoryPointer) – Pointer to the array content head.

• strides (tuple of ints or None) – Strides of data in memory.

• order ({'C', 'F'}) – Row-major (C-style) or column-major (Fortran-style) order.

Variables
• base (None or cupy.ndarray) – Base array from which this array is created as a view.

• data (cupy.cuda.MemoryPointer) – Pointer to the array content head.

• ~ndarray.dtype (numpy.dtype) – Dtype object of element type.

See also:
Data type objects (dtype)

57

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/arrays.ndarray.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/arrays.dtypes.html

CuPy Documentation, Release 13.0.0

• ~ndarray.size (int) – Number of elements this array holds.

This is equivalent to product over the shape tuple.

See also:
numpy.ndarray.size

Methods

__getitem__()

x.__getitem__(y) <==> x[y]

Supports both basic and advanced indexing.

Note: Currently, it does not support slices that consists of more than one boolean arrays

Note: CuPy handles out-of-bounds indices differently from NumPy. NumPy handles them by raising an
error, but CuPy wraps around them.

Example

>>> a = cupy.arange(3)
>>> a[[1, 3]]
array([1, 0])

__setitem__()

x.__setitem__(slices, y) <==> x[slices] = y

Supports both basic and advanced indexing.

Note: Currently, it does not support slices that consists of more than one boolean arrays

Note: CuPy handles out-of-bounds indices differently from NumPy when using integer array indexing.
NumPy handles them by raising an error, but CuPy wraps around them.

>>> import cupy
>>> x = cupy.arange(3)
>>> x[[1, 3]] = 10
>>> x
array([10, 10, 2])

Note: The behavior differs from NumPy when integer arrays in slices reference the same location
multiple times. In that case, the value that is actually stored is undefined.

58 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size

CuPy Documentation, Release 13.0.0

>>> import cupy
>>> a = cupy.zeros((2,))
>>> i = cupy.arange(10000) % 2
>>> v = cupy.arange(10000).astype(cupy.float_)
>>> a[i] = v
>>> a
array([9150., 9151.])

On the other hand, NumPy stores the value corresponding to the last index among the indices referencing
duplicate locations.

>>> import numpy
>>> a_cpu = numpy.zeros((2,))
>>> i_cpu = numpy.arange(10000) % 2
>>> v_cpu = numpy.arange(10000).astype(numpy.float_)
>>> a_cpu[i_cpu] = v_cpu
>>> a_cpu
array([9998., 9999.])

__len__()

Return len(self).

__iter__()

Implement iter(self).

__copy__(self)

all(self, axis=None, out=None, keepdims=False)→ ndarray

any(self, axis=None, out=None, keepdims=False)→ ndarray

argmax(self, axis=None, out=None, dtype=None, keepdims=False)→ ndarray
Returns the indices of the maximum along a given axis.

Note: dtype and keepdim arguments are specific to CuPy. They are not in NumPy.

Note: axis argument accepts a tuple of ints, but this is specific to CuPy. NumPy does not support it.

See also:
cupy.argmax() for full documentation, numpy.ndarray.argmax()

argmin(self, axis=None, out=None, dtype=None, keepdims=False)→ ndarray
Returns the indices of the minimum along a given axis.

Note: dtype and keepdim arguments are specific to CuPy. They are not in NumPy.

Note: axis argument accepts a tuple of ints, but this is specific to CuPy. NumPy does not support it.

5.1. The N-dimensional array (ndarray) 59

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmax.html#numpy.ndarray.argmax

CuPy Documentation, Release 13.0.0

See also:
cupy.argmin() for full documentation, numpy.ndarray.argmin()

argpartition(self, kth, axis=-1)→ ndarray
Returns the indices that would partially sort an array.

Parameters
• kth (int or sequence of ints) – Element index to partition by. If supplied with a

sequence of k-th it will partition all elements indexed by k-th of them into their sorted
position at once.

• axis (int or None) – Axis along which to sort. Default is -1, which means sort along
the last axis. If None is supplied, the array is flattened before sorting.

Returns
Array of the same type and shape as a.

Return type
cupy.ndarray

See also:
cupy.argpartition() for full documentation, numpy.ndarray.argpartition()

argsort(self, axis=-1)→ ndarray
Returns the indices that would sort an array with stable sorting

Parameters
axis (int or None) – Axis along which to sort. Default is -1, which means sort along the
last axis. If None is supplied, the array is flattened before sorting.

Returns
Array of indices that sort the array.

Return type
cupy.ndarray

See also:
cupy.argsort() for full documentation, numpy.ndarray.argsort()

astype(self, dtype, order='K', casting=None, subok=None, copy=True)→ ndarray
Casts the array to given data type.

Parameters
• dtype – Type specifier.

• order ({'C', 'F', 'A', 'K'}) – Row-major (C-style) or column-major (Fortran-style) order.
When order is ‘A’, it uses ‘F’ if a is column-major and uses ‘C’ otherwise. And when
order is ‘K’, it keeps strides as closely as possible.

• copy (bool) – If it is False and no cast happens, then this method returns the array itself.
Otherwise, a copy is returned.

Returns
If copy is False and no cast is required, then the array itself is returned. Otherwise, it returns
a (possibly casted) copy of the array.

Note: This method currently does not support casting, and subok arguments.

60 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmin.html#numpy.ndarray.argmin
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argpartition.html#numpy.ndarray.argpartition
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argsort.html#numpy.ndarray.argsort
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

See also:
numpy.ndarray.astype()

choose(self, choices, out=None, mode='raise')

clip(self, min=None, max=None, out=None)→ ndarray
Returns an array with values limited to [min, max].

See also:
cupy.clip() for full documentation, numpy.ndarray.clip()

compress(self, condition, axis=None, out=None)→ ndarray
Returns selected slices of this array along given axis.

Warning: This function may synchronize the device.

See also:
cupy.compress() for full documentation, numpy.ndarray.compress()

conj(self)→ ndarray

conjugate(self)→ ndarray

copy(self, order='C')→ ndarray
Returns a copy of the array.

This method makes a copy of a given array in the current device. Even when a given array is located in
another device, you can copy it to the current device.

Parameters
order ({'C', 'F', 'A', 'K'}) – Row-major (C-style) or column-major (Fortran-style) order.
When order is ‘A’, it uses ‘F’ if a is column-major and uses ‘C’ otherwise. And when order
is ‘K’, it keeps strides as closely as possible.

See also:
cupy.copy() for full documentation, numpy.ndarray.copy()

cumprod(self, axis=None, dtype=None, out=None)→ ndarray
Returns the cumulative product of an array along a given axis.

See also:
cupy.cumprod() for full documentation, numpy.ndarray.cumprod()

cumsum(self, axis=None, dtype=None, out=None)→ ndarray
Returns the cumulative sum of an array along a given axis.

See also:
cupy.cumsum() for full documentation, numpy.ndarray.cumsum()

diagonal(self, offset=0, axis1=0, axis2=1)→ ndarray
Returns a view of the specified diagonals.

See also:
cupy.diagonal() for full documentation, numpy.ndarray.diagonal()

5.1. The N-dimensional array (ndarray) 61

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.clip.html#numpy.ndarray.clip
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.compress.html#numpy.ndarray.compress
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumprod.html#numpy.ndarray.cumprod
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumsum.html#numpy.ndarray.cumsum
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.diagonal.html#numpy.ndarray.diagonal

CuPy Documentation, Release 13.0.0

dot(self, ndarray b, ndarray out=None)
Returns the dot product with given array.

See also:
cupy.dot() for full documentation, numpy.ndarray.dot()

dump(self, file)
Dumps a pickle of the array to a file.

Dumped file can be read back to cupy.ndarray by cupy.load().

dumps(self)→ bytes
Dumps a pickle of the array to a string.

fill(self, value)
Fills the array with a scalar value.

Parameters
value – A scalar value to fill the array content.

See also:
numpy.ndarray.fill()

flatten(self, order='C')→ ndarray
Returns a copy of the array flatten into one dimension.

Parameters
order ({'C', 'F', 'A', 'K'}) – ‘C’ means to flatten in row-major (C-style) order. ‘F’ means
to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-major order
if self is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to flatten self
in the order the elements occur in memory. The default is ‘C’.

Returns
A copy of the array with one dimension.

Return type
cupy.ndarray

See also:
numpy.ndarray.flatten()

get(self, stream=None, order='C', out=None, blocking=True)
Returns a copy of the array on host memory.

Parameters
• stream (cupy.cuda.Stream) – CUDA stream object. If given, the stream is used to

perform the copy. Otherwise, the current stream is used.

• order ({'C', 'F', 'A'}) – The desired memory layout of the host array. When order is ‘A’,
it uses ‘F’ if the array is fortran-contiguous and ‘C’ otherwise. The order will be ignored
if out is specified.

• out (numpy.ndarray) – Output array. In order to enable asynchronous copy, the under-
lying memory should be a pinned memory.

• blocking (bool) – If set to False, the copy runs asynchronously on the given (if given)
or current stream, and users are responsible for ensuring the stream order. Default is True,
so the copy is synchronous (with respect to the host).

62 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dot.html#numpy.ndarray.dot
https://docs.python.org/3/library/stdtypes.html#bytes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.fill.html#numpy.ndarray.fill
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Returns
Copy of the array on host memory.

Return type
numpy.ndarray

item(self)
Converts the array with one element to a Python scalar

Returns
The element of the array.

Return type
int or float or complex

See also:
numpy.ndarray.item()

max(self, axis=None, out=None, keepdims=False)→ ndarray
Returns the maximum along a given axis.

See also:
cupy.amax() for full documentation, numpy.ndarray.max()

mean(self, axis=None, dtype=None, out=None, keepdims=False)→ ndarray
Returns the mean along a given axis.

See also:
cupy.mean() for full documentation, numpy.ndarray.mean()

min(self, axis=None, out=None, keepdims=False)→ ndarray
Returns the minimum along a given axis.

See also:
cupy.amin() for full documentation, numpy.ndarray.min()

nonzero(self)→ tuple
Return the indices of the elements that are non-zero.

Returned Array is containing the indices of the non-zero elements in that dimension.

Returns
Indices of elements that are non-zero.

Return type
tuple of arrays

Warning: This function may synchronize the device.

See also:
numpy.nonzero()

partition(self, kth, int axis=-1)
Partitions an array.

Parameters

5.1. The N-dimensional array (ndarray) 63

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.item.html#numpy.ndarray.item
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.nonzero.html#numpy.nonzero

CuPy Documentation, Release 13.0.0

• kth (int or sequence of ints) – Element index to partition by. If supplied with a
sequence of k-th it will partition all elements indexed by k-th of them into their sorted
position at once.

• axis (int) – Axis along which to sort. Default is -1, which means sort along the last axis.

See also:
cupy.partition() for full documentation, numpy.ndarray.partition()

prod(self, axis=None, dtype=None, out=None, keepdims=None)→ ndarray
Returns the product along a given axis.

See also:
cupy.prod() for full documentation, numpy.ndarray.prod()

ptp(self, axis=None, out=None, keepdims=False)→ ndarray
Returns (maximum - minimum) along a given axis.

See also:
cupy.ptp() for full documentation, numpy.ndarray.ptp()

put(self, indices, values, mode='wrap')
Replaces specified elements of an array with given values.

See also:
cupy.put() for full documentation, numpy.ndarray.put()

ravel(self, order='C')→ ndarray
Returns an array flattened into one dimension.

See also:
cupy.ravel() for full documentation, numpy.ndarray.ravel()

reduced_view(self, dtype=None)→ ndarray
Returns a view of the array with minimum number of dimensions.

Parameters
dtype – (Deprecated) Data type specifier. If it is given, then the memory sequence is rein-
terpreted as the new type.

Returns
A view of the array with reduced dimensions.

Return type
cupy.ndarray

repeat(self, repeats, axis=None)
Returns an array with repeated arrays along an axis.

See also:
cupy.repeat() for full documentation, numpy.ndarray.repeat()

reshape(self, *shape, order='C')
Returns an array of a different shape and the same content.

See also:
cupy.reshape() for full documentation, numpy.ndarray.reshape()

64 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.partition.html#numpy.ndarray.partition
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.prod.html#numpy.ndarray.prod
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ptp.html#numpy.ndarray.ptp
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.put.html#numpy.ndarray.put
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.repeat.html#numpy.ndarray.repeat
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape

CuPy Documentation, Release 13.0.0

round(self, decimals=0, out=None)→ ndarray
Returns an array with values rounded to the given number of decimals.

See also:
cupy.around() for full documentation, numpy.ndarray.round()

scatter_add(self, slices, value)
Adds given values to specified elements of an array.

See also:
cupyx.scatter_add() for full documentation.

scatter_max(self, slices, value)
Stores a maximum value of elements specified by indices to an array.

See also:
cupyx.scatter_max() for full documentation.

scatter_min(self, slices, value)
Stores a minimum value of elements specified by indices to an array.

See also:
cupyx.scatter_min() for full documentation.

searchsorted(self, v, side='left', sorter=None)
Finds indices where elements of v should be inserted to maintain order.

For full documentation, see cupy.searchsorted()

Returns:

See also:
numpy.searchsorted()

set(self, arr, stream=None)
Copies an array on the host memory to cupy.ndarray.

Parameters
• arr (numpy.ndarray) – The source array on the host memory.

• stream (cupy.cuda.Stream) – CUDA stream object. If given, the stream is used to
perform the copy. Otherwise, the current stream is used.

sort(self, int axis=-1)
Sort an array, in-place with a stable sorting algorithm.

Parameters
axis (int) – Axis along which to sort. Default is -1, which means sort along the last axis.

Note: For its implementation reason, ndarray.sort currently supports only arrays with their own data,
and does not support kind and order parameters that numpy.ndarray.sort does support.

See also:
cupy.sort() for full documentation, numpy.ndarray.sort()

5.1. The N-dimensional array (ndarray) 65

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.round.html#numpy.ndarray.round
https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html#numpy.searchsorted
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sort.html#numpy.ndarray.sort

CuPy Documentation, Release 13.0.0

squeeze(self, axis=None)→ ndarray
Returns a view with size-one axes removed.

See also:
cupy.squeeze() for full documentation, numpy.ndarray.squeeze()

std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False)→ ndarray
Returns the standard deviation along a given axis.

See also:
cupy.std() for full documentation, numpy.ndarray.std()

sum(self, axis=None, dtype=None, out=None, keepdims=False)→ ndarray
Returns the sum along a given axis.

See also:
cupy.sum() for full documentation, numpy.ndarray.sum()

swapaxes(self, Py_ssize_t axis1, Py_ssize_t axis2)→ ndarray
Returns a view of the array with two axes swapped.

See also:
cupy.swapaxes() for full documentation, numpy.ndarray.swapaxes()

take(self, indices, axis=None, out=None)→ ndarray
Returns an array of elements at given indices along the axis.

See also:
cupy.take() for full documentation, numpy.ndarray.take()

toDlpack(self)
Zero-copy conversion to a DLPack tensor.

DLPack is a open in memory tensor structure proposed in this repository: dmlc/dlpack.

This function returns a PyCapsule object which contains a pointer to a DLPack tensor converted from the
own ndarray. This function does not copy the own data to the output DLpack tensor but it shares the pointer
which is pointing to the same memory region for the data.

Returns
Output DLPack tensor which is encapsulated in a PyCapsule object.

Return type
dltensor (PyCapsule)

See also:
fromDlpack() is a method for zero-copy conversion from a DLPack tensor (which is encapsulated in a
PyCapsule object) to a ndarray

Warning: As of the DLPack v0.3 specification, it is (implicitly) assumed that the user is responsible
to ensure the Producer and the Consumer are operating on the same stream. This requirement might be
relaxed/changed in a future DLPack version.

Example

66 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.squeeze.html#numpy.ndarray.squeeze
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.std.html#numpy.ndarray.std
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sum.html#numpy.ndarray.sum
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.swapaxes.html#numpy.ndarray.swapaxes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.take.html#numpy.ndarray.take
https://github.com/dmlc/dlpack

CuPy Documentation, Release 13.0.0

>>> import cupy
>>> array1 = cupy.array([0, 1, 2], dtype=cupy.float32)
>>> dltensor = array1.toDlpack()
>>> array2 = cupy.fromDlpack(dltensor)
>>> cupy.testing.assert_array_equal(array1, array2)

tobytes(self, order='C')→ bytes
Turns the array into a Python bytes object.

tofile(self, fid, sep='', format='%s')
Writes the array to a file.

See also:
numpy.ndarray.tofile()

tolist(self)
Converts the array to a (possibly nested) Python list.

Returns
The possibly nested Python list of array elements.

Return type
list

See also:
numpy.ndarray.tolist()

trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None)→ ndarray
Returns the sum along diagonals of the array.

See also:
cupy.trace() for full documentation, numpy.ndarray.trace()

transpose(self, *axes)
Returns a view of the array with axes permuted.

See also:
cupy.transpose() for full documentation, numpy.ndarray.reshape()

var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False)→ ndarray
Returns the variance along a given axis.

See also:
cupy.var() for full documentation, numpy.ndarray.var()

view(self, dtype=None, type=None)
Returns a view of the array.

Parameters
dtype – If this is different from the data type of the array, the returned view reinterpret the
memory sequence as an array of this type.

Returns
A view of the array. A reference to the original array is stored at the base attribute.

5.1. The N-dimensional array (ndarray) 67

https://docs.python.org/3/library/stdtypes.html#bytes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html#numpy.ndarray.tofile
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.trace.html#numpy.ndarray.trace
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.var.html#numpy.ndarray.var

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
numpy.ndarray.view()

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

__bool__()

True if self else False

Attributes

T

Shape-reversed view of the array.

If ndim < 2, then this is just a reference to the array itself.

base

cstruct

C representation of the array.

This property is used for sending an array to CUDA kernels. The type of returned C structure is different
for different dtypes and ndims. The definition of C type is written in cupy/carray.cuh.

data

device

CUDA device on which this array resides.

dtype

flags

Object containing memory-layout information.

It only contains c_contiguous, f_contiguous, and owndata attributes. All of these are read-only. Ac-
cessing by indexes is also supported.

See also:
numpy.ndarray.flags

68 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.view.html#numpy.ndarray.view
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags

CuPy Documentation, Release 13.0.0

flat

imag

itemsize

Size of each element in bytes.

See also:
numpy.ndarray.itemsize

nbytes

Total size of all elements in bytes.

It does not count skips between elements.

See also:
numpy.ndarray.nbytes

ndim

Number of dimensions.

a.ndim is equivalent to len(a.shape).

See also:
numpy.ndarray.ndim

real

shape

Lengths of axes.

Setter of this property involves reshaping without copy. If the array cannot be reshaped without copy, it
raises an exception.

size

strides

Strides of axes in bytes.

See also:
numpy.ndarray.strides

5.1.2 Conversion to/from NumPy arrays

cupy.ndarray and numpy.ndarray are not implicitly convertible to each other. That means, NumPy functions cannot
take cupy.ndarrays as inputs, and vice versa.

• To convert numpy.ndarray to cupy.ndarray, use cupy.array() or cupy.asarray().

• To convert cupy.ndarray to numpy.ndarray, use cupy.asnumpy() or cupy.ndarray.get().

Note that converting between cupy.ndarray and numpy.ndarray incurs data transfer between the host (CPU) device
and the GPU device, which is costly in terms of performance.

cupy.array(obj[, dtype, copy, order, subok, ...]) Creates an array on the current device.
cupy.asarray(a[, dtype, order, blocking]) Converts an object to array.
cupy.asnumpy(a[, stream, order, out, blocking]) Returns an array on the host memory from an arbitrary

source array.

5.1. The N-dimensional array (ndarray) 69

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemsize.html#numpy.ndarray.itemsize
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

CuPy Documentation, Release 13.0.0

cupy.array

cupy.array(obj, dtype=None, copy=True, order='K', subok=False, ndmin=0, *, blocking=False)
Creates an array on the current device.

This function currently does not support the subok option.

Parameters
• obj – cupy.ndarray object or any other object that can be passed to numpy.array().

• dtype – Data type specifier.

• copy (bool) – If False, this function returns obj if possible. Otherwise this function always
returns a new array.

• order ({'C', 'F', 'A', 'K'}) – Row-major (C-style) or column-major (Fortran-style) order.
When order is 'A', it uses 'F' if a is column-major and uses 'C' otherwise. And when
order is 'K', it keeps strides as closely as possible. If obj is numpy.ndarray, the function
returns 'C' or 'F' order array.

• subok (bool) – If True, then sub-classes will be passed-through, otherwise the returned
array will be forced to be a base-class array (default).

• ndmin (int) – Minimum number of dimensions. Ones are inserted to the head of the shape
if needed.

• blocking (bool) – Default is False, meaning if a H2D copy is needed it would run asyn-
chronously on the current stream, and users are responsible for ensuring the stream order.
For example, writing to the source obj without proper ordering while copying would result
in a race condition. If set to True, the copy is synchronous (with respect to the host).

Returns
An array on the current device.

Return type
cupy.ndarray

Note: This method currently does not support subok argument.

Note: If obj is an numpy.ndarray instance that contains big-endian data, this function automatically swaps its
byte order to little-endian, which is the NVIDIA and AMD GPU architecture’s native use.

See also:
numpy.array()

70 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array

CuPy Documentation, Release 13.0.0

cupy.asarray

cupy.asarray(a, dtype=None, order=None, *, blocking=False)
Converts an object to array.

This is equivalent to array(a, dtype, copy=False, order=order).

Parameters
• a – The source object.

• dtype – Data type specifier. It is inferred from the input by default.

• order ({'C', 'F', 'A', 'K'}) – Whether to use row-major (C-style) or column-major
(Fortran-style) memory representation. Defaults to 'K'. order is ignored for objects that
are not cupy.ndarray, but have the __cuda_array_interface__ attribute.

• blocking (bool) – Default is False, meaning if a H2D copy is needed it would run asyn-
chronously on the current stream, and users are responsible for ensuring the stream order.
For example, writing to the source a without proper ordering while copying would result in
a race condition. If set to True, the copy is synchronous (with respect to the host).

Returns
An array on the current device. If a is already on the device, no copy is performed.

Return type
cupy.ndarray

Note: If a is an numpy.ndarray instance that contains big-endian data, this function automatically swaps its
byte order to little-endian, which is the NVIDIA and AMD GPU architecture’s native use.

See also:
numpy.asarray()

cupy.asnumpy

cupy.asnumpy(a, stream=None, order='C', out=None, *, blocking=True)
Returns an array on the host memory from an arbitrary source array.

Parameters
• a – Arbitrary object that can be converted to numpy.ndarray.

• stream (cupy.cuda.Stream) – CUDA stream object. If given, the stream is used to per-
form the copy. Otherwise, the current stream is used. Note that if a is not a cupy.ndarray
object, then this argument has no effect.

• order ({'C', 'F', 'A'}) – The desired memory layout of the host array. When order is ‘A’,
it uses ‘F’ if the array is fortran-contiguous and ‘C’ otherwise. The order will be ignored
if out is specified.

• out (numpy.ndarray) – The output array to be written to. It must have compatible shape
and dtype with those of a’s.

• blocking (bool) – If set to False, the copy runs asynchronously on the given (if given) or
current stream, and users are responsible for ensuring the stream order. Default is True, so
the copy is synchronous (with respect to the host).

5.1. The N-dimensional array (ndarray) 71

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Returns
Converted array on the host memory.

Return type
numpy.ndarray

5.1.3 Code compatibility features

cupy.ndarray is designed to be interchangeable with numpy.ndarray in terms of code compatibility as much as
possible. But occasionally, you will need to know whether the arrays you’re handling are cupy.ndarray or numpy.
ndarray. One example is when invoking module-level functions such as cupy.sum() or numpy.sum(). In such
situations, cupy.get_array_module() can be used.

cupy.get_array_module(*args) Returns the array module for arguments.

cupy.get_array_module

cupy.get_array_module(*args)
Returns the array module for arguments.

This function is used to implement CPU/GPU generic code. If at least one of the arguments is a cupy.ndarray
object, the cupy module is returned.

Parameters
args – Values to determine whether NumPy or CuPy should be used.

Returns
cupy or numpy is returned based on the types of the arguments.

Return type
module

Example
A NumPy/CuPy generic function can be written as follows

>>> def softplus(x):
... xp = cupy.get_array_module(x)
... return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

cupyx.scipy.get_array_module(*args) Returns the array module for arguments.

cupyx.scipy.get_array_module

cupyx.scipy.get_array_module(*args)
Returns the array module for arguments.

This function is used to implement CPU/GPU generic code. If at least one of the arguments is a cupy.ndarray
object, the cupyx.scipy module is returned.

Parameters
args – Values to determine whether NumPy or CuPy should be used.

72 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum
https://numpy.org/doc/stable/reference/index.html#module-numpy

CuPy Documentation, Release 13.0.0

Returns
cupyx.scipy or scipy is returned based on the types of the arguments.

Return type
module

5.2 Universal functions (cupy.ufunc)

Hint: NumPy API Reference: Universal functions (numpy.ufunc)

CuPy provides universal functions (a.k.a. ufuncs) to support various elementwise operations. CuPy’s ufunc supports
following features of NumPy’s one:

• Broadcasting

• Output type determination

• Casting rules

5.2.1 ufunc

ufunc(name, nin, nout, _Ops ops[, preamble, ...]) Universal function.

cupy.ufunc

class cupy.ufunc(name, nin, nout, _Ops ops, preamble=u'', loop_prep=u'', doc=u'', default_casting=None, _Ops
out_ops=None, *, cutensor_op=None, scatter_op=None)

Universal function.

Variables
• ~ufunc.name (str) – The name of the universal function.

• ~ufunc.nin (int) – Number of input arguments.

• ~ufunc.nout (int) – Number of output arguments.

• ~ufunc.nargs (int) – Number of all arguments.

Methods

__call__()

Applies the universal function to arguments elementwise.

Parameters
• args – Input arguments. Each of them can be a cupy.ndarray object or a scalar. The

output arguments can be omitted or be specified by the out argument.

• out (cupy.ndarray) – Output array. It outputs to new arrays default.

• dtype – Data type specifier.

5.2. Universal functions (cupy.ufunc) 73

https://docs.scipy.org/doc/scipy/index.html#module-scipy
https://numpy.org/doc/stable/reference/ufuncs.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Returns
Output array or a tuple of output arrays.

accumulate(self, array, axis=0, dtype=None, out=None)
Accumulate array applying ufunc.

See also:
numpy.ufunc.accumulate()

at(self, a, indices, b=None)
Apply in place operation on the operand a for elements specified by indices.

See also:
numpy.ufunc.at()

outer(self, A, B, **kwargs)
Apply the ufunc operation to all pairs of elements in A and B.

See also:
numpy.ufunc.outer()

reduce(self, array, axis=0, dtype=None, out=None, keepdims=False)
Reduce array applying ufunc.

See also:
numpy.ufunc.reduce()

reduceat(self, array, indices, axis=0, dtype=None, out=None)
Reduce array applying ufunc with indices.

See also:
numpy.ufunc.reduceat()

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

74 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ufunc.accumulate.html#numpy.ufunc.accumulate
https://numpy.org/doc/stable/reference/generated/numpy.ufunc.at.html#numpy.ufunc.at
https://numpy.org/doc/stable/reference/generated/numpy.ufunc.outer.html#numpy.ufunc.outer
https://numpy.org/doc/stable/reference/generated/numpy.ufunc.reduce.html#numpy.ufunc.reduce
https://numpy.org/doc/stable/reference/generated/numpy.ufunc.reduceat.html#numpy.ufunc.reduceat

CuPy Documentation, Release 13.0.0

Attributes

name

nargs

nin

nout

types

A list of type signatures.

Each type signature is represented by type character codes of inputs and outputs separated by ‘->’.

Methods

These methods are only available for selected ufuncs.

• ufunc.reduce: add(), multiply()

• ufunc.accumulate: add(), multiply()

• ufunc.reduceat: add()

• ufunc.outer: All ufuncs

• ufunc.at: add(), subtract(), maximum(), minimum(), bitwise_and(), bitwise_or(),
bitwise_xor()

Hint: In case you need support for other ufuncs, submit a feature request along with your use-case in the tracker issue.

5.2.2 Available ufuncs

Math operations

add(x1, x2, /[, out, casting, dtype]) Adds two arrays elementwise.
subtract(x1, x2, /[, out, casting, dtype]) Subtracts arguments elementwise.
multiply(x1, x2, /[, out, casting, dtype]) Multiplies two arrays elementwise.
matmul matmul(x1, x2, /, out=None, **kwargs)
divide true_divide(x1, x2, /, out=None, *, casting='same_kind',

dtype=None)
logaddexp(x1, x2, /[, out, casting, dtype]) Computes log(exp(x1) + exp(x2)) elementwise.
logaddexp2(x1, x2, /[, out, casting, dtype]) Computes log2(exp2(x1) + exp2(x2)) element-

wise.
true_divide(x1, x2, /[, out, casting, dtype]) Elementwise true division (i.e.
floor_divide(x1, x2, /[, out, casting, dtype]) Elementwise floor division (i.e.
negative(x, /[, out, casting, dtype]) Takes numerical negative elementwise.
positive(x, /[, out, casting, dtype]) Takes numerical positive elementwise.
power(x1, x2, /[, out, casting, dtype]) Computes x1 ** x2 elementwise.
float_power(x1, x2, /[, out, casting, dtype]) First array elements raised to powers from second array,

element-wise.
continues on next page

5.2. Universal functions (cupy.ufunc) 75

https://github.com/cupy/cupy/issues/7082

CuPy Documentation, Release 13.0.0

Table 1 – continued from previous page
remainder mod(x1, x2, /, out=None, *, casting='same_kind',

dtype=None)
mod(x1, x2, /[, out, casting, dtype]) Computes the remainder of Python division element-

wise.
fmod(x1, x2, /[, out, casting, dtype]) Computes the remainder of C division elementwise.
divmod(x1, x2[, out1, out2], / [[, out, ...])

absolute(x, /[, out, casting, dtype]) Elementwise absolute value function.
fabs(x, /[, out, casting, dtype]) Calculates absolute values element-wise.
rint(x, /[, out, casting, dtype]) Rounds each element of an array to the nearest integer.
sign(x, /[, out, casting, dtype]) Elementwise sign function.
heaviside(x1, x2, /[, out, casting, dtype]) Compute the Heaviside step function.
conj conjugate(x, /, out=None, *, casting='same_kind',

dtype=None)
conjugate(x, /[, out, casting, dtype]) Returns the complex conjugate, element-wise.
exp(x, /[, out, casting, dtype]) Elementwise exponential function.
exp2(x, /[, out, casting, dtype]) Elementwise exponentiation with base 2.
log(x, /[, out, casting, dtype]) Elementwise natural logarithm function.
log2(x, /[, out, casting, dtype]) Elementwise binary logarithm function.
log10(x, /[, out, casting, dtype]) Elementwise common logarithm function.
expm1(x, /[, out, casting, dtype]) Computes exp(x) - 1 elementwise.
log1p(x, /[, out, casting, dtype]) Computes log(1 + x) elementwise.
sqrt(x, /[, out, casting, dtype]) Elementwise square root function.
square(x, /[, out, casting, dtype]) Elementwise square function.
cbrt(x, /[, out, casting, dtype]) Elementwise cube root function.
reciprocal(x, /[, out, casting, dtype]) Computes 1 / x elementwise.
gcd(x1, x2, /[, out, casting, dtype]) Computes gcd of x1 and x2 elementwise.
lcm(x1, x2, /[, out, casting, dtype]) Computes lcm of x1 and x2 elementwise.

cupy.add

cupy.add(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Adds two arrays elementwise.

See also:
numpy.add

cupy.subtract

cupy.subtract(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Subtracts arguments elementwise.

See also:
numpy.subtract

76 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.add.html#numpy.add
https://numpy.org/doc/stable/reference/generated/numpy.subtract.html#numpy.subtract

CuPy Documentation, Release 13.0.0

cupy.multiply

cupy.multiply(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Multiplies two arrays elementwise.

See also:
numpy.multiply

cupy.matmul

cupy.matmul = <cupy._core._gufuncs._GUFunc object>

matmul(x1, x2, /, out=None, **kwargs)

Matrix product of two arrays.

Returns the matrix product of two arrays and is the implementation of the @ operator introduced in Python 3.5
following PEP465.

The main difference against cupy.dot are the handling of arrays with more than 2 dimensions. For more infor-
mation see numpy.matmul().

Parameters
• x1 (cupy.ndarray) – The left argument.

• x2 (cupy.ndarray) – The right argument.

• out (cupy.ndarray, optional) – Output array.

• **kwargs – ufunc keyword arguments.

Returns
Output array.

Return type
cupy.ndarray

See also:
numpy.matmul()

cupy.divide

cupy.divide()

true_divide(x1, x2, /, out=None, *, casting=’same_kind’, dtype=None)

Elementwise true division (i.e. division as floating values).

See also:
numpy.true_divide

5.2. Universal functions (cupy.ufunc) 77

https://numpy.org/doc/stable/reference/generated/numpy.multiply.html#numpy.multiply
https://numpy.org/doc/stable/reference/generated/numpy.true_divide.html#numpy.true_divide

CuPy Documentation, Release 13.0.0

cupy.logaddexp

cupy.logaddexp(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes log(exp(x1) + exp(x2)) elementwise.

See also:
numpy.logaddexp

cupy.logaddexp2

cupy.logaddexp2(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes log2(exp2(x1) + exp2(x2)) elementwise.

See also:
numpy.logaddexp2

cupy.true_divide

cupy.true_divide(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Elementwise true division (i.e. division as floating values).

See also:
numpy.true_divide

cupy.floor_divide

cupy.floor_divide(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Elementwise floor division (i.e. integer quotient).

See also:
numpy.floor_divide

cupy.negative

cupy.negative(x, /, out=None, *, casting='same_kind', dtype=None)
Takes numerical negative elementwise.

See also:
numpy.negative

78 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.logaddexp.html#numpy.logaddexp
https://numpy.org/doc/stable/reference/generated/numpy.logaddexp2.html#numpy.logaddexp2
https://numpy.org/doc/stable/reference/generated/numpy.true_divide.html#numpy.true_divide
https://numpy.org/doc/stable/reference/generated/numpy.floor_divide.html#numpy.floor_divide
https://numpy.org/doc/stable/reference/generated/numpy.negative.html#numpy.negative

CuPy Documentation, Release 13.0.0

cupy.positive

cupy.positive(x, /, out=None, *, casting='same_kind', dtype=None)
Takes numerical positive elementwise.

See also:
numpy.positive

cupy.power

cupy.power(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes x1 ** x2 elementwise.

See also:
numpy.power

cupy.float_power

cupy.float_power(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
First array elements raised to powers from second array, element-wise.

See also:
numpy.float_power

cupy.remainder

cupy.remainder()

mod(x1, x2, /, out=None, *, casting=’same_kind’, dtype=None)

Computes the remainder of Python division elementwise.

See also:
numpy.remainder

cupy.mod

cupy.mod(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes the remainder of Python division elementwise.

See also:
numpy.remainder

5.2. Universal functions (cupy.ufunc) 79

https://numpy.org/doc/stable/reference/generated/numpy.positive.html#numpy.positive
https://numpy.org/doc/stable/reference/generated/numpy.power.html#numpy.power
https://numpy.org/doc/stable/reference/generated/numpy.float_power.html#numpy.float_power
https://numpy.org/doc/stable/reference/generated/numpy.remainder.html#numpy.remainder
https://numpy.org/doc/stable/reference/generated/numpy.remainder.html#numpy.remainder

CuPy Documentation, Release 13.0.0

cupy.fmod

cupy.fmod(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes the remainder of C division elementwise.

See also:
numpy.fmod

cupy.divmod

cupy.divmod(x1, x2[, out1, out2], /[, out=(None, None)], *, casting='same_kind', dtype=None)

cupy.absolute

cupy.absolute(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise absolute value function.

See also:
numpy.absolute

cupy.fabs

cupy.fabs(x, /, out=None, *, casting='same_kind', dtype=None)

Calculates absolute values element-wise.
Only real values are handled.

See also:
numpy.fabs

cupy.rint

cupy.rint(x, /, out=None, *, casting='same_kind', dtype=None)
Rounds each element of an array to the nearest integer.

See also:
numpy.rint

cupy.sign

cupy.sign(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise sign function.

It returns -1, 0, or 1 depending on the sign of the input.

See also:
numpy.sign

80 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.fmod.html#numpy.fmod
https://numpy.org/doc/stable/reference/generated/numpy.absolute.html#numpy.absolute
https://numpy.org/doc/stable/reference/generated/numpy.fabs.html#numpy.fabs
https://numpy.org/doc/stable/reference/generated/numpy.rint.html#numpy.rint
https://numpy.org/doc/stable/reference/generated/numpy.sign.html#numpy.sign

CuPy Documentation, Release 13.0.0

cupy.heaviside

cupy.heaviside(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Compute the Heaviside step function.

See also:
numpy.heaviside

cupy.conj

cupy.conj()

conjugate(x, /, out=None, *, casting=’same_kind’, dtype=None)

Returns the complex conjugate, element-wise.

See also:
numpy.conjugate

cupy.conjugate

cupy.conjugate(x, /, out=None, *, casting='same_kind', dtype=None)
Returns the complex conjugate, element-wise.

See also:
numpy.conjugate

cupy.exp

cupy.exp(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise exponential function.

See also:
numpy.exp

cupy.exp2

cupy.exp2(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise exponentiation with base 2.

See also:
numpy.exp2

5.2. Universal functions (cupy.ufunc) 81

https://numpy.org/doc/stable/reference/generated/numpy.heaviside.html#numpy.heaviside
https://numpy.org/doc/stable/reference/generated/numpy.conjugate.html#numpy.conjugate
https://numpy.org/doc/stable/reference/generated/numpy.conjugate.html#numpy.conjugate
https://numpy.org/doc/stable/reference/generated/numpy.exp.html#numpy.exp
https://numpy.org/doc/stable/reference/generated/numpy.exp2.html#numpy.exp2

CuPy Documentation, Release 13.0.0

cupy.log

cupy.log(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise natural logarithm function.

See also:
numpy.log

cupy.log2

cupy.log2(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise binary logarithm function.

See also:
numpy.log2

cupy.log10

cupy.log10(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise common logarithm function.

See also:
numpy.log10

cupy.expm1

cupy.expm1(x, /, out=None, *, casting='same_kind', dtype=None)
Computes exp(x) - 1 elementwise.

See also:
numpy.expm1

cupy.log1p

cupy.log1p(x, /, out=None, *, casting='same_kind', dtype=None)
Computes log(1 + x) elementwise.

See also:
numpy.log1p

82 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.log.html#numpy.log
https://numpy.org/doc/stable/reference/generated/numpy.log2.html#numpy.log2
https://numpy.org/doc/stable/reference/generated/numpy.log10.html#numpy.log10
https://numpy.org/doc/stable/reference/generated/numpy.expm1.html#numpy.expm1
https://numpy.org/doc/stable/reference/generated/numpy.log1p.html#numpy.log1p

CuPy Documentation, Release 13.0.0

cupy.sqrt

cupy.sqrt(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise square root function.

See also:
numpy.sqrt

cupy.square

cupy.square(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise square function.

See also:
numpy.square

cupy.cbrt

cupy.cbrt(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise cube root function.

See also:
numpy.cbrt

cupy.reciprocal

cupy.reciprocal(x, /, out=None, *, casting='same_kind', dtype=None)
Computes 1 / x elementwise.

See also:
numpy.reciprocal

cupy.gcd

cupy.gcd(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes gcd of x1 and x2 elementwise.

See also:
numpy.gcd

5.2. Universal functions (cupy.ufunc) 83

https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html#numpy.sqrt
https://numpy.org/doc/stable/reference/generated/numpy.square.html#numpy.square
https://numpy.org/doc/stable/reference/generated/numpy.cbrt.html#numpy.cbrt
https://numpy.org/doc/stable/reference/generated/numpy.reciprocal.html#numpy.reciprocal
https://numpy.org/doc/stable/reference/generated/numpy.gcd.html#numpy.gcd

CuPy Documentation, Release 13.0.0

cupy.lcm

cupy.lcm(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes lcm of x1 and x2 elementwise.

See also:
numpy.lcm

Trigonometric functions

sin(x, /[, out, casting, dtype]) Elementwise sine function.
cos(x, /[, out, casting, dtype]) Elementwise cosine function.
tan(x, /[, out, casting, dtype]) Elementwise tangent function.
arcsin(x, /[, out, casting, dtype]) Elementwise inverse-sine function (a.k.a.
arccos(x, /[, out, casting, dtype]) Elementwise inverse-cosine function (a.k.a.
arctan(x, /[, out, casting, dtype]) Elementwise inverse-tangent function (a.k.a.
arctan2(x1, x2, /[, out, casting, dtype]) Elementwise inverse-tangent of the ratio of two arrays.
hypot(x1, x2, /[, out, casting, dtype]) Computes the hypoteneous of orthogonal vectors of

given length.
sinh (x, /[, out, casting, dtype]) Elementwise hyperbolic sine function.
cosh (x, /[, out, casting, dtype]) Elementwise hyperbolic cosine function.
tanh (x, /[, out, casting, dtype]) Elementwise hyperbolic tangent function.
arcsinh (x, /[, out, casting, dtype]) Elementwise inverse of hyperbolic sine function.
arccosh (x, /[, out, casting, dtype]) Elementwise inverse of hyperbolic cosine function.
arctanh (x, /[, out, casting, dtype]) Elementwise inverse of hyperbolic tangent function.
degrees rad2deg(x, /, out=None, *, casting='same_kind',

dtype=None)
radians(x, /[, out, casting, dtype]) Converts angles from degrees to radians elementwise.
deg2rad radians(x, /, out=None, *, casting='same_kind',

dtype=None)
rad2deg(x, /[, out, casting, dtype]) Converts angles from radians to degrees elementwise.

cupy.sin

cupy.sin(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise sine function.

See also:
numpy.sin

84 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.lcm.html#numpy.lcm
https://numpy.org/doc/stable/reference/generated/numpy.sin.html#numpy.sin

CuPy Documentation, Release 13.0.0

cupy.cos

cupy.cos(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise cosine function.

See also:
numpy.cos

cupy.tan

cupy.tan(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise tangent function.

See also:
numpy.tan

cupy.arcsin

cupy.arcsin(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise inverse-sine function (a.k.a. arcsine function).

See also:
numpy.arcsin

cupy.arccos

cupy.arccos(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise inverse-cosine function (a.k.a. arccosine function).

See also:
numpy.arccos

cupy.arctan

cupy.arctan(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise inverse-tangent function (a.k.a. arctangent function).

See also:
numpy.arctan

5.2. Universal functions (cupy.ufunc) 85

https://numpy.org/doc/stable/reference/generated/numpy.cos.html#numpy.cos
https://numpy.org/doc/stable/reference/generated/numpy.tan.html#numpy.tan
https://numpy.org/doc/stable/reference/generated/numpy.arcsin.html#numpy.arcsin
https://numpy.org/doc/stable/reference/generated/numpy.arccos.html#numpy.arccos
https://numpy.org/doc/stable/reference/generated/numpy.arctan.html#numpy.arctan

CuPy Documentation, Release 13.0.0

cupy.arctan2

cupy.arctan2(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Elementwise inverse-tangent of the ratio of two arrays.

See also:
numpy.arctan2

cupy.hypot

cupy.hypot(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes the hypoteneous of orthogonal vectors of given length.

This is equivalent to sqrt(x1 **2 + x2 ** 2), while this function is more efficient.

See also:
numpy.hypot

cupy.sinh

cupy.sinh(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise hyperbolic sine function.

See also:
numpy.sinh

cupy.cosh

cupy.cosh(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise hyperbolic cosine function.

See also:
numpy.cosh

cupy.tanh

cupy.tanh(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise hyperbolic tangent function.

See also:
numpy.tanh

86 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html#numpy.arctan2
https://numpy.org/doc/stable/reference/generated/numpy.hypot.html#numpy.hypot
https://numpy.org/doc/stable/reference/generated/numpy.sinh.html#numpy.sinh
https://numpy.org/doc/stable/reference/generated/numpy.cosh.html#numpy.cosh
https://numpy.org/doc/stable/reference/generated/numpy.tanh.html#numpy.tanh

CuPy Documentation, Release 13.0.0

cupy.arcsinh

cupy.arcsinh(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise inverse of hyperbolic sine function.

See also:
numpy.arcsinh

cupy.arccosh

cupy.arccosh(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise inverse of hyperbolic cosine function.

See also:
numpy.arccosh

cupy.arctanh

cupy.arctanh(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise inverse of hyperbolic tangent function.

See also:
numpy.arctanh

cupy.degrees

cupy.degrees()

rad2deg(x, /, out=None, *, casting=’same_kind’, dtype=None)

Converts angles from radians to degrees elementwise.

See also:
numpy.rad2deg, numpy.degrees

cupy.radians

cupy.radians(x, /, out=None, *, casting='same_kind', dtype=None)
Converts angles from degrees to radians elementwise.

See also:
numpy.deg2rad, numpy.radians

5.2. Universal functions (cupy.ufunc) 87

https://numpy.org/doc/stable/reference/generated/numpy.arcsinh.html#numpy.arcsinh
https://numpy.org/doc/stable/reference/generated/numpy.arccosh.html#numpy.arccosh
https://numpy.org/doc/stable/reference/generated/numpy.arctanh.html#numpy.arctanh
https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html#numpy.rad2deg
https://numpy.org/doc/stable/reference/generated/numpy.degrees.html#numpy.degrees
https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html#numpy.deg2rad
https://numpy.org/doc/stable/reference/generated/numpy.radians.html#numpy.radians

CuPy Documentation, Release 13.0.0

cupy.deg2rad

cupy.deg2rad()

radians(x, /, out=None, *, casting=’same_kind’, dtype=None)

Converts angles from degrees to radians elementwise.

See also:
numpy.deg2rad, numpy.radians

cupy.rad2deg

cupy.rad2deg(x, /, out=None, *, casting='same_kind', dtype=None)
Converts angles from radians to degrees elementwise.

See also:
numpy.rad2deg, numpy.degrees

Bit-twiddling functions

bitwise_and(x1, x2, /[, out, casting, dtype]) Computes the bitwise AND of two arrays elementwise.
bitwise_or(x1, x2, /[, out, casting, dtype]) Computes the bitwise OR of two arrays elementwise.
bitwise_xor(x1, x2, /[, out, casting, dtype]) Computes the bitwise XOR of two arrays elementwise.
invert(x, /[, out, casting, dtype]) Computes the bitwise NOT of an array elementwise.
left_shift(x1, x2, /[, out, casting, dtype]) Shifts the bits of each integer element to the left.
right_shift(x1, x2, /[, out, casting, dtype]) Shifts the bits of each integer element to the right.

cupy.bitwise_and

cupy.bitwise_and(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes the bitwise AND of two arrays elementwise.

Only integer and boolean arrays are handled.

See also:
numpy.bitwise_and

cupy.bitwise_or

cupy.bitwise_or(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes the bitwise OR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also:
numpy.bitwise_or

88 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html#numpy.deg2rad
https://numpy.org/doc/stable/reference/generated/numpy.radians.html#numpy.radians
https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html#numpy.rad2deg
https://numpy.org/doc/stable/reference/generated/numpy.degrees.html#numpy.degrees
https://numpy.org/doc/stable/reference/generated/numpy.bitwise_and.html#numpy.bitwise_and
https://numpy.org/doc/stable/reference/generated/numpy.bitwise_or.html#numpy.bitwise_or

CuPy Documentation, Release 13.0.0

cupy.bitwise_xor

cupy.bitwise_xor(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes the bitwise XOR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also:
numpy.bitwise_xor

cupy.invert

cupy.invert(x, /, out=None, *, casting='same_kind', dtype=None)
Computes the bitwise NOT of an array elementwise.

Only integer and boolean arrays are handled.

Note: cupy.bitwise_not() is an alias for cupy.invert().

See also:
numpy.invert

cupy.left_shift

cupy.left_shift(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Shifts the bits of each integer element to the left.

Only integer arrays are handled.

See also:
numpy.left_shift

cupy.right_shift

cupy.right_shift(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Shifts the bits of each integer element to the right.

Only integer arrays are handled

See also:
numpy.right_shift

5.2. Universal functions (cupy.ufunc) 89

https://numpy.org/doc/stable/reference/generated/numpy.bitwise_xor.html#numpy.bitwise_xor
https://numpy.org/doc/stable/reference/generated/numpy.invert.html#numpy.invert
https://numpy.org/doc/stable/reference/generated/numpy.left_shift.html#numpy.left_shift
https://numpy.org/doc/stable/reference/generated/numpy.right_shift.html#numpy.right_shift

CuPy Documentation, Release 13.0.0

Comparison functions

greater(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 > x2.
greater_equal(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 >= x2.
less(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 < x2.
less_equal(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 <= x2.
not_equal(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 != x2.
equal(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 == x2.
logical_and(x1, x2, /[, out, casting, dtype]) Computes the logical AND of two arrays.
logical_or(x1, x2, /[, out, casting, dtype]) Computes the logical OR of two arrays.
logical_xor(x1, x2, /[, out, casting, dtype]) Computes the logical XOR of two arrays.
logical_not(x, /[, out, casting, dtype]) Computes the logical NOT of an array.
maximum(x1, x2, /[, out, casting, dtype]) Takes the maximum of two arrays elementwise.
minimum(x1, x2, /[, out, casting, dtype]) Takes the minimum of two arrays elementwise.
fmax(x1, x2, /[, out, casting, dtype]) Takes the maximum of two arrays elementwise.
fmin(x1, x2, /[, out, casting, dtype]) Takes the minimum of two arrays elementwise.

cupy.greater

cupy.greater(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Tests elementwise if x1 > x2.

See also:
numpy.greater

cupy.greater_equal

cupy.greater_equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Tests elementwise if x1 >= x2.

See also:
numpy.greater_equal

cupy.less

cupy.less(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Tests elementwise if x1 < x2.

See also:
numpy.less

90 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.greater.html#numpy.greater
https://numpy.org/doc/stable/reference/generated/numpy.greater_equal.html#numpy.greater_equal
https://numpy.org/doc/stable/reference/generated/numpy.less.html#numpy.less

CuPy Documentation, Release 13.0.0

cupy.less_equal

cupy.less_equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Tests elementwise if x1 <= x2.

See also:
numpy.less_equal

cupy.not_equal

cupy.not_equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Tests elementwise if x1 != x2.

See also:
numpy.equal

cupy.equal

cupy.equal(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Tests elementwise if x1 == x2.

See also:
numpy.equal

cupy.logical_and

cupy.logical_and(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes the logical AND of two arrays.

See also:
numpy.logical_and

cupy.logical_or

cupy.logical_or(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes the logical OR of two arrays.

See also:
numpy.logical_or

5.2. Universal functions (cupy.ufunc) 91

https://numpy.org/doc/stable/reference/generated/numpy.less_equal.html#numpy.less_equal
https://numpy.org/doc/stable/reference/generated/numpy.equal.html#numpy.equal
https://numpy.org/doc/stable/reference/generated/numpy.equal.html#numpy.equal
https://numpy.org/doc/stable/reference/generated/numpy.logical_and.html#numpy.logical_and
https://numpy.org/doc/stable/reference/generated/numpy.logical_or.html#numpy.logical_or

CuPy Documentation, Release 13.0.0

cupy.logical_xor

cupy.logical_xor(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes the logical XOR of two arrays.

See also:
numpy.logical_xor

cupy.logical_not

cupy.logical_not(x, /, out=None, *, casting='same_kind', dtype=None)
Computes the logical NOT of an array.

See also:
numpy.logical_not

cupy.maximum

cupy.maximum(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Takes the maximum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also:
numpy.maximum

cupy.minimum

cupy.minimum(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Takes the minimum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also:
numpy.minimum

cupy.fmax

cupy.fmax(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Takes the maximum of two arrays elementwise.

If NaN appears, it returns the other operand.

See also:
numpy.fmax

92 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.logical_xor.html#numpy.logical_xor
https://numpy.org/doc/stable/reference/generated/numpy.logical_not.html#numpy.logical_not
https://numpy.org/doc/stable/reference/generated/numpy.maximum.html#numpy.maximum
https://numpy.org/doc/stable/reference/generated/numpy.minimum.html#numpy.minimum
https://numpy.org/doc/stable/reference/generated/numpy.fmax.html#numpy.fmax

CuPy Documentation, Release 13.0.0

cupy.fmin

cupy.fmin(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Takes the minimum of two arrays elementwise.

If NaN appears, it returns the other operand.

See also:
numpy.fmin

Floating functions

isfinite(x, /[, out, casting, dtype]) Tests finiteness elementwise.
isinf (x, /[, out, casting, dtype]) Tests if each element is the positive or negative infinity.
isnan(x, /[, out, casting, dtype]) Tests if each element is a NaN.
fabs(x, /[, out, casting, dtype]) Calculates absolute values element-wise.
signbit(x, /[, out, casting, dtype]) Tests elementwise if the sign bit is set (i.e.
copysign(x1, x2, /[, out, casting, dtype]) Returns the first argument with the sign bit of the second

elementwise.
nextafter(x1, x2, /[, out, casting, dtype]) Computes the nearest neighbor float values towards the

second argument.
modf (x[, out1, out2], / [[, out, casting, dtype]) Extracts the fractional and integral parts of an array ele-

mentwise.
ldexp(x1, x2, /[, out, casting, dtype]) Computes x1 * 2 ** x2 elementwise.
frexp(x[, out1, out2], / [[, out, casting, ...]) Decomposes each element to mantissa and two's expo-

nent.
fmod(x1, x2, /[, out, casting, dtype]) Computes the remainder of C division elementwise.
floor(x, /[, out, casting, dtype]) Rounds each element of an array to its floor integer.
ceil(x, /[, out, casting, dtype]) Rounds each element of an array to its ceiling integer.
trunc(x, /[, out, casting, dtype]) Rounds each element of an array towards zero.

cupy.isfinite

cupy.isfinite(x, /, out=None, *, casting='same_kind', dtype=None)
Tests finiteness elementwise.

Each element of returned array is True only if the corresponding element of the input is finite (i.e.
not an infinity nor NaN).

See also:
numpy.isfinite

5.2. Universal functions (cupy.ufunc) 93

https://numpy.org/doc/stable/reference/generated/numpy.fmin.html#numpy.fmin
https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html#numpy.isfinite

CuPy Documentation, Release 13.0.0

cupy.isinf

cupy.isinf(x, /, out=None, *, casting='same_kind', dtype=None)
Tests if each element is the positive or negative infinity.

See also:
numpy.isinf

cupy.isnan

cupy.isnan(x, /, out=None, *, casting='same_kind', dtype=None)
Tests if each element is a NaN.

See also:
numpy.isnan

cupy.signbit

cupy.signbit(x, /, out=None, *, casting='same_kind', dtype=None)
Tests elementwise if the sign bit is set (i.e. less than zero).

See also:
numpy.signbit

cupy.copysign

cupy.copysign(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Returns the first argument with the sign bit of the second elementwise.

See also:
numpy.copysign

cupy.nextafter

cupy.nextafter(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes the nearest neighbor float values towards the second argument.

Note: For values that are close to zero (or denormal numbers), results of cupy.nextafter() may
be different from those of numpy.nextafter(), because CuPy sets -ftz=true.

See also:
numpy.nextafter

94 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.isinf.html#numpy.isinf
https://numpy.org/doc/stable/reference/generated/numpy.isnan.html#numpy.isnan
https://numpy.org/doc/stable/reference/generated/numpy.signbit.html#numpy.signbit
https://numpy.org/doc/stable/reference/generated/numpy.copysign.html#numpy.copysign
https://numpy.org/doc/stable/reference/generated/numpy.nextafter.html#numpy.nextafter

CuPy Documentation, Release 13.0.0

cupy.modf

cupy.modf(x[, out1, out2], /[, out=(None, None)], *, casting='same_kind', dtype=None)
Extracts the fractional and integral parts of an array elementwise.

This ufunc returns two arrays.

See also:
numpy.modf

cupy.ldexp

cupy.ldexp(x1, x2, /, out=None, *, casting='same_kind', dtype=None)
Computes x1 * 2 ** x2 elementwise.

See also:
numpy.ldexp

cupy.frexp

cupy.frexp(x[, out1, out2], /[, out=(None, None)], *, casting='same_kind', dtype=None)
Decomposes each element to mantissa and two’s exponent.

This ufunc outputs two arrays of the input dtype and the int dtype.

See also:
numpy.frexp

cupy.floor

cupy.floor(x, /, out=None, *, casting='same_kind', dtype=None)
Rounds each element of an array to its floor integer.

See also:
numpy.floor

cupy.ceil

cupy.ceil(x, /, out=None, *, casting='same_kind', dtype=None)
Rounds each element of an array to its ceiling integer.

See also:
numpy.ceil

5.2. Universal functions (cupy.ufunc) 95

https://numpy.org/doc/stable/reference/generated/numpy.modf.html#numpy.modf
https://numpy.org/doc/stable/reference/generated/numpy.ldexp.html#numpy.ldexp
https://numpy.org/doc/stable/reference/generated/numpy.frexp.html#numpy.frexp
https://numpy.org/doc/stable/reference/generated/numpy.floor.html#numpy.floor
https://numpy.org/doc/stable/reference/generated/numpy.ceil.html#numpy.ceil

CuPy Documentation, Release 13.0.0

cupy.trunc

cupy.trunc(x, /, out=None, *, casting='same_kind', dtype=None)
Rounds each element of an array towards zero.

See also:
numpy.trunc

5.2.3 Generalized Universal Functions

In addition to regular ufuncs, CuPy also provides a wrapper class to convert regular cupy functions into Generalized
Universal Functions as in NumPy https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html. This allows
to automatically use keyword arguments such as axes, order, dtype without needing to explicitly implement them in
the wrapped function.

GeneralizedUFunc(func, signature, **kwargs) Creates a Generalized Universal Function by wrapping a
user provided function with the signature.

cupyx.GeneralizedUFunc

class cupyx.GeneralizedUFunc(func, signature, **kwargs)
Creates a Generalized Universal Function by wrapping a user provided function with the signature.

signature determines if the function consumes or produces core dimensions. The remaining dimensions in
given input arrays (*args) are considered loop dimensions and are required to broadcast naturally against each
other.

Parameters
• func (callable) – Function to call like func(*args, **kwargs) on input arrays (*args)

that returns an array or tuple of arrays. If multiple arguments with non-matching dimensions
are supplied, this function is expected to vectorize (broadcast) over axes of positional argu-
ments in the style of NumPy universal functions.

• signature (string) – Specifies what core dimensions are consumed and produced by
func. According to the specification of numpy.gufunc signature.

• supports_batched (bool, optional) – If the wrapped function supports to pass the
complete input array with the loop and the core dimensions. Defaults to False. Dimensions
will be iterated in the GUFunc processing code.

• supports_out (bool, optional) – If the wrapped function supports out as one of its
kwargs. Defaults to False.

• signatures (list of tuple of str) – Contains strings in the form of ‘ii->i’ with i
being the char of a dtype. Each element of the list is a tuple with the string and a alternative
function to func to be executed when the inputs of the function can be casted as described by
this function.

• name (str, optional) – Name for the GUFunc object. If not specified, func’s name is
used.

• doc (str, optional) – Docstring for the GUFunc object. If not specified, func.__doc__
is used.

96 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.trunc.html#numpy.trunc
https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Methods

__call__(*args, **kwargs)
Apply a generalized ufunc.

Parameters
• args – Input arguments. Each of them can be a cupy.ndarray object or a scalar. The

output arguments can be omitted or be specified by the out argument.

• axes (List of tuples of int, optional) – A list of tuples with indices of axes a
generalized ufunc should operate on. For instance, for a signature of '(i,j),(j,k)->(i,
k)' appropriate for matrix multiplication, the base elements are two-dimensional matrices
and these are taken to be stored in the two last axes of each argument. The correspond-
ing axes keyword would be [(-2, -1), (-2, -1), (-2, -1)]. For simplicity, for
generalized ufuncs that operate on 1-dimensional arrays (vectors), a single integer is ac-
cepted instead of a single-element tuple, and for generalized ufuncs for which all outputs
are scalars, the output tuples can be omitted.

• axis (int, optional) – A single axis over which a generalized ufunc should operate.
This is a short-cut for ufuncs that operate over a single, shared core dimension, equivalent
to passing in axes with entries of (axis,) for each single-core-dimension argument and ()
for all others. For instance, for a signature '(i),(i)->()', it is equivalent to passing in
axes=[(axis,), (axis,), ()].

• keepdims (bool, optional) – If this is set to True, axes which are reduced over will be
left in the result as a dimension with size one, so that the result will broadcast correctly
against the inputs. This option can only be used for generalized ufuncs that operate on
inputs that all have the same number of core dimensions and with outputs that have no
core dimensions , i.e., with signatures like '(i),(i)->()' or '(m,m)->()'. If used, the
location of the dimensions in the output can be controlled with axes and axis.

• casting (str, optional) – Provides a policy for what kind of casting is permitted.
Defaults to 'same_kind'

• dtype (dtype, optional) – Overrides the dtype of the calculation and output arrays.
Similar to signature.

• signature (str or tuple of dtype, optional) – Either a data-type, a tuple of
data-types, or a special signature string indicating the input and output types of a ufunc.
This argument allows you to provide a specific signature for the function to be used if reg-
istered in the signatures kwarg of the __init__ method. If the loop specified does not
exist for the ufunc, then a TypeError is raised. Normally, a suitable loop is found automat-
ically by comparing the input types with what is available and searching for a loop with
data-types to which all inputs can be cast safely. This keyword argument lets you bypass
that search and choose a particular loop.

• order (str, optional) – Specifies the memory layout of the output array. Defaults to
'K'.``’C’`` means the output should be C-contiguous, 'F'means F-contiguous, 'A'means
F-contiguous if the inputs are F-contiguous and not also not C-contiguous, C-contiguous
otherwise, and 'K'means to match the element ordering of the inputs as closely as possible.

• out (cupy.ndarray) – Output array. It outputs to new arrays default.

Returns
Output array or a tuple of output arrays.

__eq__(value, /)
Return self==value.

5.2. Universal functions (cupy.ufunc) 97

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

5.3 Routines (NumPy)

The following pages describe NumPy-compatible routines. These functions cover a subset of NumPy routines.

5.3.1 Array creation routines

Hint: NumPy API Reference: Array creation routines

Ones and zeros

empty(shape[, dtype, order]) Returns an array without initializing the elements.
empty_like(prototype[, dtype, order, subok, ...]) Returns a new array with same shape and dtype of a

given array.
eye(N[, M, k, dtype, order]) Returns a 2-D array with ones on the diagonals and zeros

elsewhere.
identity(n[, dtype]) Returns a 2-D identity array.
ones(shape[, dtype, order]) Returns a new array of given shape and dtype, filled with

ones.
ones_like(a[, dtype, order, subok, shape]) Returns an array of ones with same shape and dtype as a

given array.
zeros(shape[, dtype, order]) Returns a new array of given shape and dtype, filled with

zeros.
zeros_like(a[, dtype, order, subok, shape]) Returns an array of zeros with same shape and dtype as

a given array.
full(shape, fill_value[, dtype, order]) Returns a new array of given shape and dtype, filled with

a given value.
full_like(a, fill_value[, dtype, order, ...]) Returns a full array with same shape and dtype as a given

array.

98 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/routines.html
https://numpy.org/doc/stable/reference/routines.array-creation.html

CuPy Documentation, Release 13.0.0

cupy.empty

cupy.empty(shape, dtype=<class 'float'>, order='C')
Returns an array without initializing the elements.

Parameters
• shape (int or tuple of ints) – Dimensionalities of the array.

• dtype (data-type, optional) – Data type specifier.

• order ({'C', 'F'}) – Row-major (C-style) or column-major (Fortran-style) order.

Returns
A new array with elements not initialized.

Return type
cupy.ndarray

See also:
numpy.empty()

cupy.empty_like

cupy.empty_like(prototype, dtype=None, order='K', subok=None, shape=None)
Returns a new array with same shape and dtype of a given array.

This function currently does not support subok option.

Parameters
• a (cupy.ndarray) – Base array.

• dtype (data-type, optional) – Data type specifier. The data type of a is used by default.

• order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the result. 'C' means
C-order, 'F'means F-order, 'A'means 'F' if a is Fortran contiguous, 'C' otherwise. 'K'
means match the layout of a as closely as possible.

• subok (None) – Not supported yet, must be None.

• shape (int or tuple of ints) – Overrides the shape of the result. If order='K' and
the number of dimensions is unchanged, will try to keep order, otherwise, order='C' is
implied.

Returns
A new array with same shape and dtype of a with elements not initialized.

Return type
cupy.ndarray

See also:
numpy.empty_like()

5.3. Routines (NumPy) 99

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like

CuPy Documentation, Release 13.0.0

cupy.eye

cupy.eye(N, M=None, k=0, dtype=<class 'float'>, order='C')
Returns a 2-D array with ones on the diagonals and zeros elsewhere.

Parameters
• N (int) – Number of rows.

• M (int) – Number of columns. M == N by default.

• k (int) – Index of the diagonal. Zero indicates the main diagonal, a positive index an upper
diagonal, and a negative index a lower diagonal.

• dtype (data-type, optional) – Data type specifier.

• order ({'C', 'F'}) – Row-major (C-style) or column-major (Fortran-style) order.

Returns
A 2-D array with given diagonals filled with ones and zeros elsewhere.

Return type
cupy.ndarray

See also:
numpy.eye()

cupy.identity

cupy.identity(n, dtype=<class 'float'>)
Returns a 2-D identity array.

It is equivalent to eye(n, n, dtype).

Parameters
• n (int) – Number of rows and columns.

• dtype (data-type, optional) – Data type specifier.

Returns
A 2-D identity array.

Return type
cupy.ndarray

See also:
numpy.identity()

100 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.eye.html#numpy.eye
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.identity.html#numpy.identity

CuPy Documentation, Release 13.0.0

cupy.ones

cupy.ones(shape, dtype=<class 'float'>, order='C')
Returns a new array of given shape and dtype, filled with ones.

This function currently does not support order option.

Parameters
• shape (int or tuple of ints) – Dimensionalities of the array.

• dtype (data-type, optional) – Data type specifier.

• order ({'C', 'F'}) – Row-major (C-style) or column-major (Fortran-style) order.

Returns
An array filled with ones.

Return type
cupy.ndarray

See also:
numpy.ones()

cupy.ones_like

cupy.ones_like(a, dtype=None, order='K', subok=None, shape=None)
Returns an array of ones with same shape and dtype as a given array.

This function currently does not support subok option.

Parameters
• a (cupy.ndarray) – Base array.

• dtype (data-type, optional) – Data type specifier. The dtype of a is used by default.

• order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the result. 'C' means
C-order, 'F'means F-order, 'A'means 'F' if a is Fortran contiguous, 'C' otherwise. 'K'
means match the layout of a as closely as possible.

• subok (None) – Not supported yet, must be None.

• shape (int or tuple of ints) – Overrides the shape of the result. If order='K' and
the number of dimensions is unchanged, will try to keep order, otherwise, order='C' is
implied.

Returns
An array filled with ones.

Return type
cupy.ndarray

See also:
numpy.ones_like()

5.3. Routines (NumPy) 101

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ones_like.html#numpy.ones_like

CuPy Documentation, Release 13.0.0

cupy.zeros

cupy.zeros(shape, dtype=<class 'float'>, order='C')
Returns a new array of given shape and dtype, filled with zeros.

Parameters
• shape (int or tuple of ints) – Dimensionalities of the array.

• dtype (data-type, optional) – Data type specifier.

• order ({'C', 'F'}) – Row-major (C-style) or column-major (Fortran-style) order.

Returns
An array filled with zeros.

Return type
cupy.ndarray

See also:
numpy.zeros()

cupy.zeros_like

cupy.zeros_like(a, dtype=None, order='K', subok=None, shape=None)
Returns an array of zeros with same shape and dtype as a given array.

This function currently does not support subok option.

Parameters
• a (cupy.ndarray) – Base array.

• dtype (data-type, optional) – Data type specifier. The dtype of a is used by default.

• order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the result. 'C' means
C-order, 'F'means F-order, 'A'means 'F' if a is Fortran contiguous, 'C' otherwise. 'K'
means match the layout of a as closely as possible.

• subok (None) – Not supported yet, must be None.

• shape (int or tuple of ints) – Overrides the shape of the result. If order='K' and
the number of dimensions is unchanged, will try to keep order, otherwise, order='C' is
implied.

Returns
An array filled with zeros.

Return type
cupy.ndarray

See also:
numpy.zeros_like()

102 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html#numpy.zeros_like

CuPy Documentation, Release 13.0.0

cupy.full

cupy.full(shape, fill_value, dtype=None, order='C')
Returns a new array of given shape and dtype, filled with a given value.

This function currently does not support order option.

Parameters
• shape (int or tuple of ints) – Dimensionalities of the array.

• fill_value (Any) – A scalar value to fill a new array.

• dtype (data-type, optional) – Data type specifier.

• order ({'C', 'F'}) – Row-major (C-style) or column-major (Fortran-style) order.

Returns
An array filled with fill_value.

Return type
cupy.ndarray

See also:
numpy.full()

cupy.full_like

cupy.full_like(a, fill_value, dtype=None, order='K', subok=None, shape=None)
Returns a full array with same shape and dtype as a given array.

This function currently does not support subok option.

Parameters
• a (cupy.ndarray) – Base array.

• fill_value (Any) – A scalar value to fill a new array.

• dtype (data-type, optional) – Data type specifier. The dtype of a is used by default.

• order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the result. 'C' means
C-order, 'F'means F-order, 'A'means 'F' if a is Fortran contiguous, 'C' otherwise. 'K'
means match the layout of a as closely as possible.

• subok (None) – Not supported yet, must be None.

• shape (int or tuple of ints) – Overrides the shape of the result. If order='K' and
the number of dimensions is unchanged, will try to keep order, otherwise, order='C' is
implied.

Returns
An array filled with fill_value.

Return type
cupy.ndarray

See also:
numpy.full_like()

5.3. Routines (NumPy) 103

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.full.html#numpy.full
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.full_like.html#numpy.full_like

CuPy Documentation, Release 13.0.0

From existing data

array(obj[, dtype, copy, order, subok, ...]) Creates an array on the current device.
asarray(a[, dtype, order, blocking]) Converts an object to array.
asanyarray(a[, dtype, order, blocking]) Converts an object to array.
ascontiguousarray(a[, dtype]) Returns a C-contiguous array.
copy(a[, order]) Creates a copy of a given array on the current device.
frombuffer(*args, **kwargs) Interpret a buffer as a 1-dimensional array.
fromfile(*args, **kwargs) Reads an array from a file.
fromfunction(*args, **kwargs) Construct an array by executing a function over each co-

ordinate.
fromiter(*args, **kwargs) Create a new 1-dimensional array from an iterable ob-

ject.
fromstring(*args, **kwargs) A new 1-D array initialized from text data in a string.
loadtxt(*args, **kwargs) Load data from a text file.

cupy.asanyarray

cupy.asanyarray(a, dtype=None, order=None, *, blocking=False)
Converts an object to array.

This is currently equivalent to cupy.asarray(), since there is no subclass of cupy.ndarray in CuPy. Note
that the original numpy.asanyarray() returns the input array as is if it is an instance of a subtype of numpy.
ndarray.

See also:
cupy.asarray(), numpy.asanyarray()

cupy.ascontiguousarray

cupy.ascontiguousarray(a, dtype=None)
Returns a C-contiguous array.

Parameters
• a (cupy.ndarray) – Source array.

• dtype – Data type specifier.

Returns
If no copy is required, it returns a. Otherwise, it returns a copy of a.

Return type
cupy.ndarray

See also:
numpy.ascontiguousarray()

104 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.asanyarray.html#numpy.asanyarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.asanyarray.html#numpy.asanyarray
https://numpy.org/doc/stable/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray

CuPy Documentation, Release 13.0.0

cupy.copy

cupy.copy(a, order='K')
Creates a copy of a given array on the current device.

This function allocates the new array on the current device. If the given array is allocated on the different device,
then this function tries to copy the contents over the devices.

Parameters
• a (cupy.ndarray) – The source array.

• order ({'C', 'F', 'A', 'K'}) – Row-major (C-style) or column-major (Fortran-style) order.
When order is 'A', it uses 'F' if a is column-major and uses 'C' otherwise. And when
order is 'K', it keeps strides as closely as possible.

Returns
The copy of a on the current device.

Return type
cupy.ndarray

See also:
numpy.copy(), cupy.ndarray.copy()

cupy.frombuffer

cupy.frombuffer(*args, **kwargs)
Interpret a buffer as a 1-dimensional array.

Note: Uses NumPy’s frombuffer and coerces the result to a CuPy array.

See also:
numpy.frombuffer()

cupy.fromfile

cupy.fromfile(*args, **kwargs)
Reads an array from a file.

Note: Uses NumPy’s fromfile and coerces the result to a CuPy array.

Note: If you let NumPy’s fromfile read the file in big-endian, CuPy automatically swaps its byte order to
little-endian, which is the NVIDIA and AMD GPU architecture’s native use.

See also:
numpy.fromfile()

5.3. Routines (NumPy) 105

https://numpy.org/doc/stable/reference/generated/numpy.copy.html#numpy.copy
https://numpy.org/doc/stable/reference/generated/numpy.frombuffer.html#numpy.frombuffer
https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile

CuPy Documentation, Release 13.0.0

cupy.fromfunction

cupy.fromfunction(*args, **kwargs)
Construct an array by executing a function over each coordinate.

Note: Uses NumPy’s fromfunction and coerces the result to a CuPy array.

See also:
numpy.fromfunction()

cupy.fromiter

cupy.fromiter(*args, **kwargs)
Create a new 1-dimensional array from an iterable object.

Note: Uses NumPy’s fromiter and coerces the result to a CuPy array.

See also:
numpy.fromiter()

cupy.fromstring

cupy.fromstring(*args, **kwargs)
A new 1-D array initialized from text data in a string.

Note: Uses NumPy’s fromstring and coerces the result to a CuPy array.

See also:
numpy.fromstring()

cupy.loadtxt

cupy.loadtxt(*args, **kwargs)
Load data from a text file.

Note: Uses NumPy’s loadtxt and coerces the result to a CuPy array.

See also:
numpy.loadtxt()

106 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.fromfunction.html#numpy.fromfunction
https://numpy.org/doc/stable/reference/generated/numpy.fromiter.html#numpy.fromiter
https://numpy.org/doc/stable/reference/generated/numpy.fromstring.html#numpy.fromstring
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt

CuPy Documentation, Release 13.0.0

Numerical ranges

arange(start[, stop, step, dtype]) Returns an array with evenly spaced values within a
given interval.

linspace(start, stop[, num, endpoint, ...]) Returns an array with evenly-spaced values within a
given interval.

logspace(start, stop[, num, endpoint, base, ...]) Returns an array with evenly-spaced values on a log-
scale.

meshgrid(*xi, **kwargs) Return coordinate matrices from coordinate vectors.
mgrid Construct a multi-dimensional "meshgrid".
ogrid Construct a multi-dimensional "meshgrid".

cupy.arange

cupy.arange(start, stop=None, step=1, dtype=None)
Returns an array with evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop). The first three arguments are mapped like the
range built-in function, i.e. start and step are optional.

Parameters
• start – Start of the interval.

• stop – End of the interval.

• step – Step width between each pair of consecutive values.

• dtype – Data type specifier. It is inferred from other arguments by default.

Returns
The 1-D array of range values.

Return type
cupy.ndarray

See also:
numpy.arange()

cupy.linspace

cupy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)
Returns an array with evenly-spaced values within a given interval.

Instead of specifying the step width like cupy.arange(), this function requires the total number of elements
specified.

Parameters
• start (scalar or array_like) – Starting value(s) of the sequence.

• stop (scalar or array_like) – Ending value(s) of the sequence, unless endpoint is
set to False. In that case, the sequence consists of all but the last of num + 1 evenly spaced
samples, so that stop is excluded. Note that the step size changes when endpoint is False.

• num – Number of elements.

5.3. Routines (NumPy) 107

https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange

CuPy Documentation, Release 13.0.0

• endpoint (bool) – If True, the stop value is included as the last element. Otherwise, the
stop value is omitted.

• retstep (bool) – If True, this function returns (array, step). Otherwise, it returns only the
array.

• dtype – Data type specifier. It is inferred from the start and stop arguments by default.

• axis (int) – The axis in the result to store the samples. Relevant only if start or stop are
array-like. By default 0, the samples will be along a new axis inserted at the beginning. Use
-1 to get an axis at the end.

Returns
The 1-D array of ranged values.

Return type
cupy.ndarray

See also:
numpy.linspace()

cupy.logspace

cupy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)
Returns an array with evenly-spaced values on a log-scale.

Instead of specifying the step width like cupy.arange(), this function requires the total number of elements
specified.

Parameters
• start – Start of the interval.

• stop – End of the interval.

• num – Number of elements.

• endpoint (bool) – If True, the stop value is included as the last element. Otherwise, the
stop value is omitted.

• base (float) – Base of the log space. The step sizes between the elements on a log-scale
are the same as base.

• dtype – Data type specifier. It is inferred from the start and stop arguments by default.

• axis (int) – The axis in the result to store the samples. Relevant only if start or stop are
array-like. By default 0, the samples will be along a new axis inserted at the beginning. Use
-1 to get an axis at the end.

Returns
The 1-D array of ranged values.

Return type
cupy.ndarray

See also:
numpy.logspace()

108 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.logspace.html#numpy.logspace

CuPy Documentation, Release 13.0.0

cupy.meshgrid

cupy.meshgrid(*xi, **kwargs)
Return coordinate matrices from coordinate vectors.

Given one-dimensional coordinate arrays x1, x2, ... , xn this function makes N-D grids.

For one-dimensional arrays x1, x2, ... , xn with lengths Ni = len(xi), this function returns (N1, N2,
N3, ..., Nn) shaped arrays if indexing=’ij’ or (N2, N1, N3, ..., Nn) shaped arrays if indexing=’xy’.

Unlike NumPy, CuPy currently only supports 1-D arrays as inputs.

Parameters
• xi (tuple of ndarrays) – 1-D arrays representing the coordinates of a grid.

• indexing ({'xy', 'ij'}, optional) – Cartesian (‘xy’, default) or matrix (‘ij’) indexing of
output.

• sparse (bool, optional) – If True, a sparse grid is returned in order to conserve mem-
ory. Default is False.

• copy (bool, optional) – If False, a view into the original arrays are returned. Default
is True.

Returns
list of cupy.ndarray

See also:
numpy.meshgrid()

cupy.mgrid

cupy.mgrid = <cupy._creation.ranges.nd_grid object>

Construct a multi-dimensional “meshgrid”.

grid = nd_grid() creates an instance which will return a mesh-grid when indexed. The dimension and num-
ber of the output arrays are equal to the number of indexing dimensions. If the step length is not a complex
number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted
as specifying the number of points to create between the start and stop values, where the stop value is inclusive.

If instantiated with an argument of sparse=True, the mesh-grid is open (or not fleshed out) so that only one-
dimension of each returned argument is greater than 1.

Parameters
sparse (bool, optional) – Whether the grid is sparse or not. Default is False.

See also:
numpy.mgrid and numpy.ogrid

5.3. Routines (NumPy) 109

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.mgrid.html#numpy.mgrid
https://numpy.org/doc/stable/reference/generated/numpy.ogrid.html#numpy.ogrid

CuPy Documentation, Release 13.0.0

cupy.ogrid

cupy.ogrid = <cupy._creation.ranges.nd_grid object>

Construct a multi-dimensional “meshgrid”.

grid = nd_grid() creates an instance which will return a mesh-grid when indexed. The dimension and num-
ber of the output arrays are equal to the number of indexing dimensions. If the step length is not a complex
number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted
as specifying the number of points to create between the start and stop values, where the stop value is inclusive.

If instantiated with an argument of sparse=True, the mesh-grid is open (or not fleshed out) so that only one-
dimension of each returned argument is greater than 1.

Parameters
sparse (bool, optional) – Whether the grid is sparse or not. Default is False.

See also:
numpy.mgrid and numpy.ogrid

Building matrices

diag(v[, k]) Returns a diagonal or a diagonal array.
diagflat(v[, k]) Creates a diagonal array from the flattened input.
tri(N[, M, k, dtype]) Creates an array with ones at and below the given diag-

onal.
tril(m[, k]) Returns a lower triangle of an array.
triu(m[, k]) Returns an upper triangle of an array.
vander(x[, N, increasing]) Returns a Vandermonde matrix.

cupy.diag

cupy.diag(v, k=0)
Returns a diagonal or a diagonal array.

Parameters
• v (array-like) – Array or array-like object.

• k (int) – Index of diagonals. Zero indicates the main diagonal, a positive value an upper
diagonal, and a negative value a lower diagonal.

Returns
If v indicates a 1-D array, then it returns a 2-D array with the specified diagonal filled by v.
If v indicates a 2-D array, then it returns the specified diagonal of v. In latter case, if v is a
cupy.ndarray object, then its view is returned.

Return type
cupy.ndarray

See also:
numpy.diag()

110 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.mgrid.html#numpy.mgrid
https://numpy.org/doc/stable/reference/generated/numpy.ogrid.html#numpy.ogrid
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.diag.html#numpy.diag

CuPy Documentation, Release 13.0.0

cupy.diagflat

cupy.diagflat(v, k=0)
Creates a diagonal array from the flattened input.

Parameters
• v (array-like) – Array or array-like object.

• k (int) – Index of diagonals. See cupy.diag() for detail.

Returns
A 2-D diagonal array with the diagonal copied from v.

Return type
cupy.ndarray

See also:
numpy.diagflat()

cupy.tri

cupy.tri(N, M=None, k=0, dtype=<class 'float'>)
Creates an array with ones at and below the given diagonal.

Parameters
• N (int) – Number of rows.

• M (int) – Number of columns. M == N by default.

• k (int) – The sub-diagonal at and below which the array is filled. Zero is the main diagonal,
a positive value is above it, and a negative value is below.

• dtype – Data type specifier.

Returns
An array with ones at and below the given diagonal.

Return type
cupy.ndarray

See also:
numpy.tri()

cupy.tril

cupy.tril(m, k=0)
Returns a lower triangle of an array.

Parameters
• m (array-like) – Array or array-like object.

• k (int) – The diagonal above which to zero elements. Zero is the main diagonal, a positive
value is above it, and a negative value is below.

Returns
A lower triangle of an array.

5.3. Routines (NumPy) 111

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.diagflat.html#numpy.diagflat
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.tri.html#numpy.tri
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
numpy.tril()

cupy.triu

cupy.triu(m, k=0)
Returns an upper triangle of an array.

Parameters
• m (array-like) – Array or array-like object.

• k (int) – The diagonal below which to zero elements. Zero is the main diagonal, a positive
value is above it, and a negative value is below.

Returns
An upper triangle of an array.

Return type
cupy.ndarray

See also:
numpy.triu()

cupy.vander

cupy.vander(x, N=None, increasing=False)
Returns a Vandermonde matrix.

Parameters
• x (array-like) – 1-D array or array-like object.

• N (int, optional) – Number of columns in the output. N = len(x) by default.

• increasing (bool, optional) – Order of the powers of the columns. If True, the powers
increase from right to left, if False (the default) they are reversed.

Returns
A Vandermonde matrix.

Return type
cupy.ndarray

See also:
numpy.vander()

112 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.tril.html#numpy.tril
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.triu.html#numpy.triu
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.vander.html#numpy.vander

CuPy Documentation, Release 13.0.0

5.3.2 Array manipulation routines

Hint: NumPy API Reference: Array manipulation routines

Basic operations

copyto(dst, src[, casting, where]) Copies values from one array to another with broadcast-
ing.

shape(a) Returns the shape of an array

cupy.copyto

cupy.copyto(dst, src, casting='same_kind', where=None)
Copies values from one array to another with broadcasting.

This function can be called for arrays on different devices. In this case, casting, where, and broadcasting is not
supported, and an exception is raised if these are used.

Parameters
• dst (cupy.ndarray) – Target array.

• src (cupy.ndarray) – Source array.

• casting (str) – Casting rule. See numpy.can_cast() for detail.

• where (cupy.ndarray of bool) – If specified, this array acts as a mask, and an element
is copied only if the corresponding element of where is True.

See also:
numpy.copyto()

cupy.shape

cupy.shape(a)
Returns the shape of an array

Parameters
a (array_like) – Input array

Returns
The elements of the shape tuple give the lengths of the corresponding array dimensions.

Return type
tuple of ints

5.3. Routines (NumPy) 113

https://numpy.org/doc/stable/reference/routines.array-manipulation.html
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.can_cast.html#numpy.can_cast
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.copyto.html#numpy.copyto
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Changing array shape

reshape(a, newshape[, order]) Returns an array with new shape and same elements.
ravel(a[, order]) Returns a flattened array.

cupy.reshape

cupy.reshape(a, newshape, order='C')
Returns an array with new shape and same elements.

It tries to return a view if possible, otherwise returns a copy.

Parameters
• a (cupy.ndarray) – Array to be reshaped.

• newshape (int or tuple of ints) – The new shape of the array to return. If it is an
integer, then it is treated as a tuple of length one. It should be compatible with a.size. One
of the elements can be -1, which is automatically replaced with the appropriate value to make
the shape compatible with a.size.

• order ({'C', 'F', 'A'}) – Read the elements of a using this index order, and place the ele-
ments into the reshaped array using this index order. ‘C’ means to read / write the elements
using C-like index order, with the last axis index changing fastest, back to the first axis index
changing slowest. ‘F’ means to read / write the elements using Fortran-like index order, with
the first index changing fastest, and the last index changing slowest. Note that the ‘C’ and
‘F’ options take no account of the memory layout of the underlying array, and only refer to
the order of indexing. ‘A’ means to read / write the elements in Fortran-like index order if a
is Fortran contiguous in memory, C-like order otherwise.

Returns
A reshaped view of a if possible, otherwise a copy.

Return type
cupy.ndarray

See also:
numpy.reshape()

cupy.ravel

cupy.ravel(a, order='C')
Returns a flattened array.

It tries to return a view if possible, otherwise returns a copy.

Parameters
• a (cupy.ndarray) – Array to be flattened.

• order ({'C', 'F', 'A', 'K'}) – The elements of a are read using this index order. ‘C’ means
to index the elements in row-major, C-style order, with the last axis index changing fastest,
back to the first axis index changing slowest. ‘F’ means to index the elements in column-
major, Fortran-style order, with the first index changing fastest, and the last index changing
slowest. Note that the ‘C’ and ‘F’ options take no account of the memory layout of the
underlying array, and only refer to the order of axis indexing. ‘A’ means to read the elements

114 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html#numpy.reshape

CuPy Documentation, Release 13.0.0

in Fortran-like index order if a is Fortran contiguous in memory, C-like order otherwise. ‘K’
means to read the elements in the order they occur in memory, except for reversing the data
when strides are negative. By default, ‘C’ index order is used.

Returns
A flattened view of a if possible, otherwise a copy.

Return type
cupy.ndarray

See also:
numpy.ravel()

See also:
cupy.ndarray.flat and cupy.ndarray.flatten()

Transpose-like operations

moveaxis(a, source, destination) Moves axes of an array to new positions.
rollaxis(a, axis[, start]) Moves the specified axis backwards to the given place.
swapaxes(a, axis1, axis2) Swaps the two axes.
transpose(a[, axes]) Permutes the dimensions of an array.

cupy.moveaxis

cupy.moveaxis(a, source, destination)
Moves axes of an array to new positions.

Other axes remain in their original order.

Parameters
• a (cupy.ndarray) – Array whose axes should be reordered.

• source (int or sequence of int) – Original positions of the axes to move. These must
be unique.

• destination (int or sequence of int) – Destination positions for each of the origi-
nal axes. These must also be unique.

Returns
Array with moved axes. This array is a view of the input array.

Return type
cupy.ndarray

See also:
numpy.moveaxis()

5.3. Routines (NumPy) 115

https://numpy.org/doc/stable/reference/generated/numpy.ravel.html#numpy.ravel
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.moveaxis.html#numpy.moveaxis

CuPy Documentation, Release 13.0.0

cupy.rollaxis

cupy.rollaxis(a, axis, start=0)
Moves the specified axis backwards to the given place.

Parameters
• a (cupy.ndarray) – Array to move the axis.

• axis (int) – The axis to move.

• start (int) – The place to which the axis is moved.

Returns
A view of a that the axis is moved to start.

Return type
cupy.ndarray

See also:
numpy.rollaxis()

cupy.swapaxes

cupy.swapaxes(a, axis1, axis2)
Swaps the two axes.

Parameters
• a (cupy.ndarray) – Array to swap the axes.

• axis1 (int) – The first axis to swap.

• axis2 (int) – The second axis to swap.

Returns
A view of a that the two axes are swapped.

Return type
cupy.ndarray

See also:
numpy.swapaxes()

cupy.transpose

cupy.transpose(a, axes=None)
Permutes the dimensions of an array.

Parameters
• a (cupy.ndarray) – Array to permute the dimensions.

• axes (tuple of ints) – Permutation of the dimensions. This function reverses the shape
by default.

Returns
A view of a that the dimensions are permuted.

116 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.rollaxis.html#numpy.rollaxis
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.swapaxes.html#numpy.swapaxes
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
numpy.transpose()

See also:
cupy.ndarray.T

Changing number of dimensions

atleast_1d(*arys) Converts arrays to arrays with dimensions >= 1.
atleast_2d(*arys) Converts arrays to arrays with dimensions >= 2.
atleast_3d(*arys) Converts arrays to arrays with dimensions >= 3.
broadcast(*arrays) Object that performs broadcasting.
broadcast_to(array, shape) Broadcast an array to a given shape.
broadcast_arrays(*args) Broadcasts given arrays.
expand_dims(a, axis) Expands given arrays.
squeeze(a[, axis]) Removes size-one axes from the shape of an array.

cupy.atleast_1d

cupy.atleast_1d(*arys)
Converts arrays to arrays with dimensions >= 1.

Parameters
arys (tuple of arrays) – Arrays to be converted. All arguments must be cupy.ndarray
objects. Only zero-dimensional array is affected.

Returns
If there are only one input, then it returns its converted version. Otherwise, it returns a list of
converted arrays.

See also:
numpy.atleast_1d()

cupy.atleast_2d

cupy.atleast_2d(*arys)
Converts arrays to arrays with dimensions >= 2.

If an input array has dimensions less than two, then this function inserts new axes at the head of dimensions to
make it have two dimensions.

Parameters
arys (tuple of arrays) – Arrays to be converted. All arguments must be cupy.ndarray
objects.

Returns
If there are only one input, then it returns its converted version. Otherwise, it returns a list of
converted arrays.

5.3. Routines (NumPy) 117

https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.atleast_1d.html#numpy.atleast_1d
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

See also:
numpy.atleast_2d()

cupy.atleast_3d

cupy.atleast_3d(*arys)
Converts arrays to arrays with dimensions >= 3.

If an input array has dimensions less than three, then this function inserts new axes to make it have three dimen-
sions. The place of the new axes are following:

• If its shape is (), then the shape of output is (1, 1, 1).

• If its shape is (N,), then the shape of output is (1, N, 1).

• If its shape is (M, N), then the shape of output is (M, N, 1).

• Otherwise, the output is the input array itself.

Parameters
arys (tuple of arrays) – Arrays to be converted. All arguments must be cupy.ndarray
objects.

Returns
If there are only one input, then it returns its converted version. Otherwise, it returns a list of
converted arrays.

See also:
numpy.atleast_3d()

cupy.broadcast

class cupy.broadcast(*arrays)
Object that performs broadcasting.

CuPy actually uses this class to support broadcasting in various operations. Note that this class does not provide
an iterator.

Parameters
arrays (tuple of arrays) – Arrays to be broadcasted.

Variables
• ~broadcast.shape (tuple of ints) – The broadcasted shape.

• nd (int) – Number of dimensions of the broadcasted shape.

• ~broadcast.size (int) – Total size of the broadcasted shape.

• values (list of arrays) – The broadcasted arrays.

See also:
numpy.broadcast

118 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.atleast_2d.html#numpy.atleast_2d
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.atleast_3d.html#numpy.atleast_3d
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.broadcast.html#numpy.broadcast

CuPy Documentation, Release 13.0.0

Methods

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

nd

shape

size

values

cupy.broadcast_to

cupy.broadcast_to(array, shape)
Broadcast an array to a given shape.

Parameters
• array (cupy.ndarray) – Array to broadcast.

• shape (tuple of int) – The shape of the desired array.

Returns
Broadcasted view.

Return type
cupy.ndarray

See also:
numpy.broadcast_to()

5.3. Routines (NumPy) 119

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to

CuPy Documentation, Release 13.0.0

cupy.broadcast_arrays

cupy.broadcast_arrays(*args)
Broadcasts given arrays.

Parameters
args (tuple of arrays) – Arrays to broadcast for each other.

Returns
A list of broadcasted arrays.

Return type
list

See also:
numpy.broadcast_arrays()

cupy.expand_dims

cupy.expand_dims(a, axis)
Expands given arrays.

Parameters
• a (cupy.ndarray) – Array to be expanded.

• axis (int) – Position where new axis is to be inserted.

Returns
The number of dimensions is one greater than that of the input array.

Return type
cupy.ndarray

See also:
numpy.expand_dims()

cupy.squeeze

cupy.squeeze(a, axis=None)
Removes size-one axes from the shape of an array.

Parameters
• a (cupy.ndarray) – Array to be reshaped.

• axis (int or tuple of ints) – Axes to be removed. This function removes all size-one
axes by default. If one of the specified axes is not of size one, an exception is raised.

Returns
An array without (specified) size-one axes.

Return type
cupy.ndarray

See also:
numpy.squeeze()

120 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.broadcast_arrays.html#numpy.broadcast_arrays
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html#numpy.expand_dims
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html#numpy.squeeze

CuPy Documentation, Release 13.0.0

Changing kind of array

asarray(a[, dtype, order, blocking]) Converts an object to array.
asanyarray(a[, dtype, order, blocking]) Converts an object to array.
asfarray(a[, dtype]) Converts array elements to float type.
asfortranarray(a[, dtype]) Return an array laid out in Fortran order in memory.
ascontiguousarray(a[, dtype]) Returns a C-contiguous array.
asarray_chkfinite(a[, dtype, order]) Converts the given input to an array, and raises an error

if the input contains NaNs or Infs.
require(a[, dtype, requirements]) Return an array which satisfies the requirements.

cupy.asfarray

cupy.asfarray(a, dtype=<class 'numpy.float64'>)
Converts array elements to float type.

Parameters
• a (cupy.ndarray) – Source array.

• dtype – str or dtype object, optional

Returns
The input array a as a float ndarray.

Return type
cupy.ndarray

See also:
numpy.asfarray()

cupy.asfortranarray

cupy.asfortranarray(a, dtype=None)
Return an array laid out in Fortran order in memory.

Parameters
• a (ndarray) – The input array.

• dtype (str or dtype object, optional) – By default, the data-type is inferred from
the input data.

Returns
The input a in Fortran, or column-major, order.

Return type
ndarray

See also:
numpy.asfortranarray()

5.3. Routines (NumPy) 121

https://numpy.org/doc/stable/reference/generated/numpy.asfarray.html#numpy.asfarray
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.asfortranarray.html#numpy.asfortranarray

CuPy Documentation, Release 13.0.0

cupy.asarray_chkfinite

cupy.asarray_chkfinite(a, dtype=None, order=None)
Converts the given input to an array, and raises an error if the input contains NaNs or Infs.

Parameters
• a – array like.

• dtype – data type, optional

• order – {‘C’, ‘F’, ‘A’, ‘K’}, optional

Returns
An array on the current device.

Return type
cupy.ndarray

Note: This function performs device synchronization.

See also:
numpy.asarray_chkfinite()

cupy.require

cupy.require(a, dtype=None, requirements=None)
Return an array which satisfies the requirements.

Parameters
• a (ndarray) – The input array.

• dtype (str or dtype object, optional) – The required data-type. If None preserve
the current dtype.

• requirements (str or list of str) – The requirements can be any of the following

– ’F_CONTIGUOUS’ (‘F’, ‘FORTRAN’) - ensure a Fortran-contiguous array.

– ’C_CONTIGUOUS’ (‘C’, ‘CONTIGUOUS’) - ensure a C-contiguous array.

– ’OWNDATA’ (‘O’) - ensure an array that owns its own data.

Returns
The input array a with specified requirements and type if provided.

Return type
ndarray

See also:
numpy.require()

122 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.asarray_chkfinite.html#numpy.asarray_chkfinite
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.require.html#numpy.require

CuPy Documentation, Release 13.0.0

Joining arrays

concatenate(tup[, axis, out, dtype, casting]) Joins arrays along an axis.
stack(tup[, axis, out, dtype, casting]) Stacks arrays along a new axis.
vstack(tup, *[, dtype, casting]) Stacks arrays vertically.
hstack(tup, *[, dtype, casting]) Stacks arrays horizontally.
dstack(tup) Stacks arrays along the third axis.
column_stack(tup) Stacks 1-D and 2-D arrays as columns into a 2-D array.
row_stack(tup, *[, dtype, casting]) Stacks arrays vertically.

cupy.concatenate

cupy.concatenate(tup, axis=0, out=None, *, dtype=None, casting='same_kind')
Joins arrays along an axis.

Parameters
• tup (sequence of arrays) – Arrays to be joined. All of these should have same dimen-

sionalities except the specified axis.

• axis (int or None) – The axis to join arrays along. If axis is None, arrays are flattened
before use. Default is 0.

• out (cupy.ndarray) – Output array.

• dtype (str or dtype) – If provided, the destination array will have this dtype. Cannot be
provided together with out.

• casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional) –
Controls what kind of data casting may occur. Defaults to 'same_kind'.

Returns
Joined array.

Return type
cupy.ndarray

See also:
numpy.concatenate()

cupy.stack

cupy.stack(tup, axis=0, out=None, *, dtype=None, casting='same_kind')
Stacks arrays along a new axis.

Parameters
• tup (sequence of arrays) – Arrays to be stacked.

• axis (int) – Axis along which the arrays are stacked.

• out (cupy.ndarray) – Output array.

• dtype (str or dtype) – If provided, the destination array will have this dtype. Cannot be
provided together with out.

5.3. Routines (NumPy) 123

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html#numpy.concatenate
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional) –
Controls what kind of data casting may occur. Defaults to 'same_kind'.

Returns
Stacked array.

Return type
cupy.ndarray

See also:
numpy.stack()

cupy.vstack

cupy.vstack(tup, *, dtype=None, casting='same_kind')
Stacks arrays vertically.

If an input array has one dimension, then the array is treated as a horizontal vector and stacked along the additional
axis at the head. Otherwise, the array is stacked along the first axis.

Parameters
• tup (sequence of arrays) – Arrays to be stacked. Each array is converted by cupy.
atleast_2d() before stacking.

• dtype (str or dtype) – If provided, the destination array will have this dtype.

• casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional) –
Controls what kind of data casting may occur. Defaults to 'same_kind'.

Returns
Stacked array.

Return type
cupy.ndarray

See also:
numpy.dstack()

cupy.hstack

cupy.hstack(tup, *, dtype=None, casting='same_kind')
Stacks arrays horizontally.

If an input array has one dimension, then the array is treated as a horizontal vector and stacked along the first
axis. Otherwise, the array is stacked along the second axis.

Parameters
• tup (sequence of arrays) – Arrays to be stacked.

• dtype (str or dtype) – If provided, the destination array will have this dtype.

• casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional) –
Controls what kind of data casting may occur. Defaults to 'same_kind'.

Returns
Stacked array.

124 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.stack.html#numpy.stack
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.dstack.html#numpy.dstack
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
numpy.hstack()

cupy.dstack

cupy.dstack(tup)
Stacks arrays along the third axis.

Parameters
tup (sequence of arrays) – Arrays to be stacked. Each array is converted by cupy.
atleast_3d() before stacking.

Returns
Stacked array.

Return type
cupy.ndarray

See also:
numpy.dstack()

cupy.column_stack

cupy.column_stack(tup)
Stacks 1-D and 2-D arrays as columns into a 2-D array.

A 1-D array is first converted to a 2-D column array. Then, the 2-D arrays are concatenated along the second
axis.

Parameters
tup (sequence of arrays) – 1-D or 2-D arrays to be stacked.

Returns
A new 2-D array of stacked columns.

Return type
cupy.ndarray

See also:
numpy.column_stack()

cupy.row_stack

cupy.row_stack(tup, *, dtype=None, casting='same_kind')
Stacks arrays vertically.

If an input array has one dimension, then the array is treated as a horizontal vector and stacked along the additional
axis at the head. Otherwise, the array is stacked along the first axis.

Parameters

5.3. Routines (NumPy) 125

https://numpy.org/doc/stable/reference/generated/numpy.hstack.html#numpy.hstack
https://numpy.org/doc/stable/reference/generated/numpy.dstack.html#numpy.dstack
https://numpy.org/doc/stable/reference/generated/numpy.column_stack.html#numpy.column_stack

CuPy Documentation, Release 13.0.0

• tup (sequence of arrays) – Arrays to be stacked. Each array is converted by cupy.
atleast_2d() before stacking.

• dtype (str or dtype) – If provided, the destination array will have this dtype.

• casting ({‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional) –
Controls what kind of data casting may occur. Defaults to 'same_kind'.

Returns
Stacked array.

Return type
cupy.ndarray

See also:
numpy.dstack()

Splitting arrays

split(ary, indices_or_sections[, axis]) Splits an array into multiple sub arrays along a given
axis.

array_split(ary, indices_or_sections[, axis]) Splits an array into multiple sub arrays along a given
axis.

dsplit(ary, indices_or_sections) Splits an array into multiple sub arrays along the third
axis.

hsplit(ary, indices_or_sections) Splits an array into multiple sub arrays horizontally.
vsplit(ary, indices_or_sections) Splits an array into multiple sub arrays along the first

axis.

cupy.split

cupy.split(ary, indices_or_sections, axis=0)
Splits an array into multiple sub arrays along a given axis.

Parameters
• ary (cupy.ndarray) – Array to split.

• indices_or_sections (int or sequence of ints) – A value indicating how to di-
vide the axis. If it is an integer, then is treated as the number of sections, and the axis is
evenly divided. Otherwise, the integers indicate indices to split at. Note that the sequence
on the device memory is not allowed.

• axis (int) – Axis along which the array is split.

Returns
A list of sub arrays. Each array is a view of the corresponding input array.

See also:
numpy.split()

126 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.dstack.html#numpy.dstack
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.split.html#numpy.split

CuPy Documentation, Release 13.0.0

cupy.array_split

cupy.array_split(ary, indices_or_sections, axis=0)
Splits an array into multiple sub arrays along a given axis.

This function is almost equivalent to cupy.split(). The only difference is that this function allows an integer
sections that does not evenly divide the axis.

See also:
cupy.split() for more detail, numpy.array_split()

cupy.dsplit

cupy.dsplit(ary, indices_or_sections)
Splits an array into multiple sub arrays along the third axis.

This is equivalent to split with axis=2.

See also:
cupy.split() for more detail, numpy.dsplit()

cupy.hsplit

cupy.hsplit(ary, indices_or_sections)
Splits an array into multiple sub arrays horizontally.

This is equivalent to split with axis=0 if ary has one dimension, and otherwise that with axis=1.

See also:
cupy.split() for more detail, numpy.hsplit()

cupy.vsplit

cupy.vsplit(ary, indices_or_sections)
Splits an array into multiple sub arrays along the first axis.

This is equivalent to split with axis=0.

See also:
cupy.split() for more detail, numpy.dsplit()

Tiling arrays

tile(A, reps) Construct an array by repeating A the number of times
given by reps.

repeat(a, repeats[, axis]) Repeat arrays along an axis.

5.3. Routines (NumPy) 127

https://numpy.org/doc/stable/reference/generated/numpy.array_split.html#numpy.array_split
https://numpy.org/doc/stable/reference/generated/numpy.dsplit.html#numpy.dsplit
https://numpy.org/doc/stable/reference/generated/numpy.hsplit.html#numpy.hsplit
https://numpy.org/doc/stable/reference/generated/numpy.dsplit.html#numpy.dsplit

CuPy Documentation, Release 13.0.0

cupy.tile

cupy.tile(A, reps)
Construct an array by repeating A the number of times given by reps.

Parameters
• A (cupy.ndarray) – Array to transform.

• reps (int or tuple) – The number of repeats.

Returns
Transformed array with repeats.

Return type
cupy.ndarray

See also:
numpy.tile()

cupy.repeat

cupy.repeat(a, repeats, axis=None)
Repeat arrays along an axis.

Parameters
• a (cupy.ndarray) – Array to transform.

• repeats (int, list or tuple) – The number of repeats.

• axis (int) – The axis to repeat.

Returns
Transformed array with repeats.

Return type
cupy.ndarray

See also:
numpy.repeat()

Adding and removing elements

delete(arr, indices[, axis]) Delete values from an array along the specified axis.
append(arr, values[, axis]) Append values to the end of an array.
resize(a, new_shape) Return a new array with the specified shape.
unique(ar[, return_index, return_inverse, ...]) Find the unique elements of an array.
trim_zeros(filt[, trim]) Trim the leading and/or trailing zeros from a 1-D array

or sequence.

128 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.tile.html#numpy.tile
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.repeat.html#numpy.repeat

CuPy Documentation, Release 13.0.0

cupy.delete

cupy.delete(arr, indices, axis=None)
Delete values from an array along the specified axis.

Parameters
• arr (cupy.ndarray) – Values are deleted from a copy of this array.

• indices (slice, int or array of ints) – These indices correspond to values that
will be deleted from the copy of arr. Boolean indices are treated as a mask of elements to
remove.

• axis (int or None) – The axis along which indices correspond to values that will be
deleted. If axis is not given, arr will be flattened.

Returns
A copy of arr with values specified by indices deleted along axis.

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
numpy.delete().

cupy.append

cupy.append(arr, values, axis=None)
Append values to the end of an array.

Parameters
• arr (array_like) – Values are appended to a copy of this array.

• values (array_like) – These values are appended to a copy of arr. It must be of the
correct shape (the same shape as arr, excluding axis). If axis is not specified, values
can be any shape and will be flattened before use.

• axis (int or None) – The axis along which values are appended. If axis is not given,
both arr and values are flattened before use.

Returns
A copy of arr with values appended to axis. Note that append does not occur in-place: a
new array is allocated and filled. If axis is None, out is a flattened array.

Return type
cupy.ndarray

See also:
numpy.append()

5.3. Routines (NumPy) 129

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.delete.html#numpy.delete
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.append.html#numpy.append

CuPy Documentation, Release 13.0.0

cupy.resize

cupy.resize(a, new_shape)
Return a new array with the specified shape.

If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note that
this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of a.

Parameters
• a (array_like) – Array to be resized.

• new_shape (int or tuple of int) – Shape of resized array.

Returns
The new array is formed from the data in the old array, repeated if necessary to fill out the required
number of elements. The data are repeated in the order that they are stored in memory.

Return type
cupy.ndarray

See also:
numpy.resize()

cupy.unique

cupy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None, *,
equal_nan=True)

Find the unique elements of an array.

Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique ele-
ments:

• the indices of the input array that give the unique values

• the indices of the unique array that reconstruct the input array

• the number of times each unique value comes up in the input array

Parameters
• ar (array_like) – Input array. This will be flattened if it is not already 1-D.

• return_index (bool, optional) – If True, also return the indices of ar (along the spec-
ified axis, if provided, or in the flattened array) that result in the unique array.

• return_inverse (bool, optional) – If True, also return the indices of the unique array
(for the specified axis, if provided) that can be used to reconstruct ar.

• return_counts (bool, optional) – If True, also return the number of times each unique
item appears in ar.

• axis (int or None, optional) – The axis to operate on. If None, ar will be flattened.
If an integer, the subarrays indexed by the given axis will be flattened and treated as the
elements of a 1-D array with the dimension of the given axis, see the notes for more details.
The default is None.

• equal_nan (bool, optional) – If True, collapse multiple NaN values in the return array
into one.

130 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.resize.html#numpy.resize
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Returns
If there are no optional outputs, it returns the cupy.ndarray of the sorted unique values. Oth-
erwise, it returns the tuple which contains the sorted unique values and followings.

• The indices of the first occurrences of the unique values in the original array. Only provided
if return_index is True.

• The indices to reconstruct the original array from the unique array. Only provided if re-
turn_inverse is True.

• The number of times each of the unique values comes up in the original array. Only provided
if return_counts is True.

Return type
cupy.ndarray or tuple

Notes

When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified axis
the first dimension of the array (move the axis to the first dimension to keep the order of the other axes) and then
flattening the subarrays in C order.

Warning: This function may synchronize the device.

See also:
numpy.unique()

cupy.trim_zeros

cupy.trim_zeros(filt, trim='fb')
Trim the leading and/or trailing zeros from a 1-D array or sequence.

Returns the trimmed array

Parameters
• filt (cupy.ndarray) – Input array

• trim (str, optional) – ‘fb’ default option trims the array from both sides. ‘f’ option trim
zeros from front. ‘b’ option trim zeros from back.

Returns
trimmed input

Return type
cupy.ndarray

See also:
numpy.trim_zeros()

5.3. Routines (NumPy) 131

https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.trim_zeros.html#numpy.trim_zeros

CuPy Documentation, Release 13.0.0

Rearranging elements

flip(a[, axis]) Reverse the order of elements in an array along the given
axis.

fliplr(a) Flip array in the left/right direction.
flipud(a) Flip array in the up/down direction.
reshape(a, newshape[, order]) Returns an array with new shape and same elements.
roll(a, shift[, axis]) Roll array elements along a given axis.
rot90(a[, k, axes]) Rotate an array by 90 degrees in the plane specified by

axes.

cupy.flip

cupy.flip(a, axis=None)
Reverse the order of elements in an array along the given axis.

Note that flip function has been introduced since NumPy v1.12. The contents of this document is the same as
the original one.

Parameters
• a (ndarray) – Input array.

• axis (int or tuple of int or None) – Axis or axes along which to flip over. The
default, axis=None, will flip over all of the axes of the input array. If axis is negative it
counts from the last to the first axis. If axis is a tuple of ints, flipping is performed on all of
the axes specified in the tuple.

Returns
Output array.

Return type
ndarray

See also:
numpy.flip()

cupy.fliplr

cupy.fliplr(a)
Flip array in the left/right direction.

Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than
before.

Parameters
a (ndarray) – Input array.

Returns
Output array.

Return type
ndarray

132 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.flip.html#numpy.flip

CuPy Documentation, Release 13.0.0

See also:
numpy.fliplr()

cupy.flipud

cupy.flipud(a)
Flip array in the up/down direction.

Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than
before.

Parameters
a (ndarray) – Input array.

Returns
Output array.

Return type
ndarray

See also:
numpy.flipud()

cupy.roll

cupy.roll(a, shift, axis=None)
Roll array elements along a given axis.

Elements that roll beyond the last position are re-introduced at the first.

Parameters
• a (ndarray) – Array to be rolled.

• shift (int or tuple of int) – The number of places by which elements are shifted. If
a tuple, then axis must be a tuple of the same size, and each of the given axes is shifted by
the corresponding number. If an int while axis is a tuple of ints, then the same value is used
for all given axes.

• axis (int or tuple of int or None) – The axis along which elements are shifted. By
default, the array is flattened before shifting, after which the original shape is restored.

Returns
Output array.

Return type
ndarray

See also:
numpy.roll()

5.3. Routines (NumPy) 133

https://numpy.org/doc/stable/reference/generated/numpy.fliplr.html#numpy.fliplr
https://numpy.org/doc/stable/reference/generated/numpy.flipud.html#numpy.flipud
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.roll.html#numpy.roll

CuPy Documentation, Release 13.0.0

cupy.rot90

cupy.rot90(a, k=1, axes=(0, 1))
Rotate an array by 90 degrees in the plane specified by axes.

Note that axes argument has been introduced since NumPy v1.12. The contents of this document is the same as
the original one.

Parameters
• a (ndarray) – Array of two or more dimensions.

• k (int) – Number of times the array is rotated by 90 degrees.

• axes – (tuple of ints): The array is rotated in the plane defined by the axes. Axes must be
different.

Returns
Output array.

Return type
ndarray

See also:
numpy.rot90()

5.3.3 Binary operations

Hint: NumPy API Reference: Binary operations

Elementwise bit operations

bitwise_and(x1, x2, /[, out, casting, dtype]) Computes the bitwise AND of two arrays elementwise.
bitwise_or(x1, x2, /[, out, casting, dtype]) Computes the bitwise OR of two arrays elementwise.
bitwise_xor(x1, x2, /[, out, casting, dtype]) Computes the bitwise XOR of two arrays elementwise.
invert(x, /[, out, casting, dtype]) Computes the bitwise NOT of an array elementwise.
left_shift(x1, x2, /[, out, casting, dtype]) Shifts the bits of each integer element to the left.
right_shift(x1, x2, /[, out, casting, dtype]) Shifts the bits of each integer element to the right.

Bit packing

packbits(a[, axis, bitorder]) Packs the elements of a binary-valued array into bits in
a uint8 array.

unpackbits(a[, axis, bitorder]) Unpacks elements of a uint8 array into a binary-valued
output array.

134 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.rot90.html#numpy.rot90
https://numpy.org/doc/stable/reference/routines.bitwise.html

CuPy Documentation, Release 13.0.0

cupy.packbits

cupy.packbits(a, axis=None, bitorder='big')
Packs the elements of a binary-valued array into bits in a uint8 array.

This function currently does not support axis option.

Parameters
• a (cupy.ndarray) – Input array.

• axis (int, optional) – Not supported yet.

• bitorder (str, optional) – bit order to use when packing the array, allowed values are
‘little’ and ‘big’. Defaults to ‘big’.

Returns
The packed array.

Return type
cupy.ndarray

Note: When the input array is empty, this function returns a copy of it, i.e., the type of the output array is
not necessarily always uint8. This exactly follows the NumPy’s behaviour (as of version 1.11), alghough this is
inconsistent to the documentation.

See also:
numpy.packbits()

cupy.unpackbits

cupy.unpackbits(a, axis=None, bitorder='big')
Unpacks elements of a uint8 array into a binary-valued output array.

This function currently does not support axis option.

Parameters
• a (cupy.ndarray) – Input array.

• bitorder (str, optional) – bit order to use when unpacking the array, allowed values
are ‘little’ and ‘big’. Defaults to ‘big’.

Returns
The unpacked array.

Return type
cupy.ndarray

See also:
numpy.unpackbits()

5.3. Routines (NumPy) 135

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.packbits.html#numpy.packbits
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.unpackbits.html#numpy.unpackbits

CuPy Documentation, Release 13.0.0

Output formatting

binary_repr(num[, width]) Return the binary representation of the input number as
a string.

cupy.binary_repr

cupy.binary_repr(num, width=None)
Return the binary representation of the input number as a string.

See also:
numpy.binary_repr()

5.3.4 Data type routines

Hint: NumPy API Reference: Data type routines

can_cast(from_, to[, casting]) Returns True if cast between data types can occur ac-
cording to the casting rule.

min_scalar_type(a) For scalar a, returns the data type with the smallest size
and smallest scalar kind which can hold its value.

result_type(*arrays_and_dtypes) Returns the type that results from applying the NumPy
type promotion rules to the arguments.

common_type(*arrays) Return a scalar type which is common to the input arrays.

cupy.can_cast

cupy.can_cast(from_, to, casting='safe')
Returns True if cast between data types can occur according to the casting rule. If from is a scalar or array scalar,
also returns True if the scalar value can be cast without overflow or truncation to an integer.

See also:
numpy.can_cast()

cupy.min_scalar_type

cupy.min_scalar_type(a)
For scalar a, returns the data type with the smallest size and smallest scalar kind which can hold its value. For
non-scalar array a, returns the vector’s dtype unmodified.

See also:
numpy.min_scalar_type()

136 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.binary_repr.html#numpy.binary_repr
https://numpy.org/doc/stable/reference/routines.dtype.html
https://numpy.org/doc/stable/reference/generated/numpy.can_cast.html#numpy.can_cast
https://numpy.org/doc/stable/reference/generated/numpy.min_scalar_type.html#numpy.min_scalar_type

CuPy Documentation, Release 13.0.0

cupy.result_type

cupy.result_type(*arrays_and_dtypes)
Returns the type that results from applying the NumPy type promotion rules to the arguments.

See also:
numpy.result_type()

cupy.common_type

cupy.common_type(*arrays)
Return a scalar type which is common to the input arrays.

See also:
numpy.common_type()

promote_types (alias of numpy.promote_types())
obj2sctype (alias of numpy.obj2sctype())

Creating data types

dtype (alias of numpy.dtype)
format_parser (alias of numpy.format_parser)

Data type information

finfo (alias of numpy.finfo)
iinfo (alias of numpy.iinfo)
MachAr (alias of numpy.MachAr)

Data type testing

issctype (alias of numpy.issctype())
issubdtype (alias of numpy.issubdtype())
issubsctype (alias of numpy.issubsctype())
issubclass_ (alias of numpy.issubclass_())
find_common_type (alias of numpy.find_common_type())

5.3. Routines (NumPy) 137

https://numpy.org/doc/stable/reference/generated/numpy.result_type.html#numpy.result_type
https://numpy.org/doc/stable/reference/generated/numpy.common_type.html#numpy.common_type
https://numpy.org/doc/stable/reference/generated/numpy.promote_types.html#numpy.promote_types
https://numpy.org/doc/stable/reference/generated/numpy.obj2sctype.html#numpy.obj2sctype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.format_parser.html#numpy.format_parser
https://numpy.org/doc/stable/reference/generated/numpy.finfo.html#numpy.finfo
https://numpy.org/doc/stable/reference/generated/numpy.iinfo.html#numpy.iinfo
https://numpy.org/doc/stable/reference/generated/numpy.issctype.html#numpy.issctype
https://numpy.org/doc/stable/reference/generated/numpy.issubdtype.html#numpy.issubdtype
https://numpy.org/doc/stable/reference/generated/numpy.issubsctype.html#numpy.issubsctype
https://numpy.org/doc/stable/reference/generated/numpy.issubclass_.html#numpy.issubclass_
https://numpy.org/doc/stable/reference/generated/numpy.find_common_type.html#numpy.find_common_type

CuPy Documentation, Release 13.0.0

Miscellaneous

typename (alias of numpy.typename())
sctype2char (alias of numpy.sctype2char())
mintypecode (alias of numpy.mintypecode())

5.3.5 Discrete Fourier Transform (cupy.fft)

Hint: NumPy API Reference: Discrete Fourier Transform (numpy.fft)

See also:
Discrete Fourier transforms (cupyx.scipy.fft), Fast Fourier Transform with CuPy

Standard FFTs

fft(a[, n, axis, norm]) Compute the one-dimensional FFT.
ifft(a[, n, axis, norm]) Compute the one-dimensional inverse FFT.
fft2(a[, s, axes, norm]) Compute the two-dimensional FFT.
ifft2(a[, s, axes, norm]) Compute the two-dimensional inverse FFT.
fftn(a[, s, axes, norm]) Compute the N-dimensional FFT.
ifftn(a[, s, axes, norm]) Compute the N-dimensional inverse FFT.

cupy.fft.fft

cupy.fft.fft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional FFT.

Parameters
• a (cupy.ndarray) – Array to be transform.

• n (None or int) – Length of the transformed axis of the output. If n is not given, the length
of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by n and type will convert to complex if the input
is other.

Return type
cupy.ndarray

See also:
numpy.fft.fft()

138 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.typename.html#numpy.typename
https://numpy.org/doc/stable/reference/generated/numpy.sctype2char.html#numpy.sctype2char
https://numpy.org/doc/stable/reference/generated/numpy.mintypecode.html#numpy.mintypecode
https://numpy.org/doc/stable/reference/routines.fft.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft

CuPy Documentation, Release 13.0.0

cupy.fft.ifft

cupy.fft.ifft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional inverse FFT.

Parameters
• a (cupy.ndarray) – Array to be transform.

• n (None or int) – Length of the transformed axis of the output. If n is not given, the length
of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by n and type will convert to complex if the input
is other.

Return type
cupy.ndarray

See also:
numpy.fft.ifft()

cupy.fft.fft2

cupy.fft.fft2(a, s=None, axes=(-2, -1), norm=None)
Compute the two-dimensional FFT.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape of the transformed axes of the output. If s is not
given, the lengths of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other.

Return type
cupy.ndarray

See also:
numpy.fft.fft2()

5.3. Routines (NumPy) 139

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2

CuPy Documentation, Release 13.0.0

cupy.fft.ifft2

cupy.fft.ifft2(a, s=None, axes=(-2, -1), norm=None)
Compute the two-dimensional inverse FFT.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape of the transformed axes of the output. If s is not
given, the lengths of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other.

Return type
cupy.ndarray

See also:
numpy.fft.ifft2()

cupy.fft.fftn

cupy.fft.fftn(a, s=None, axes=None, norm=None)
Compute the N-dimensional FFT.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape of the transformed axes of the output. If s is not
given, the lengths of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other.

Return type
cupy.ndarray

See also:
numpy.fft.fftn()

140 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft2.html#numpy.fft.ifft2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn

CuPy Documentation, Release 13.0.0

cupy.fft.ifftn

cupy.fft.ifftn(a, s=None, axes=None, norm=None)
Compute the N-dimensional inverse FFT.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape of the transformed axes of the output. If s is not
given, the lengths of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other.

Return type
cupy.ndarray

See also:
numpy.fft.ifftn()

Real FFTs

rfft(a[, n, axis, norm]) Compute the one-dimensional FFT for real input.
irfft(a[, n, axis, norm]) Compute the one-dimensional inverse FFT for real input.
rfft2(a[, s, axes, norm]) Compute the two-dimensional FFT for real input.
irfft2(a[, s, axes, norm]) Compute the two-dimensional inverse FFT for real input.
rfftn(a[, s, axes, norm]) Compute the N-dimensional FFT for real input.
irfftn(a[, s, axes, norm]) Compute the N-dimensional inverse FFT for real input.

cupy.fft.rfft

cupy.fft.rfft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional FFT for real input.

Parameters
• a (cupy.ndarray) – Array to be transform.

• n (None or int) – Number of points along transformation axis in the input to use. If n is
not given, the length of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by n and type will convert to complex if the input
is other. The length of the transformed axis is n//2+1.

5.3. Routines (NumPy) 141

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftn.html#numpy.fft.ifftn
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
numpy.fft.rfft()

cupy.fft.irfft

cupy.fft.irfft(a, n=None, axis=-1, norm=None)
Compute the one-dimensional inverse FFT for real input.

Parameters
• a (cupy.ndarray) – Array to be transform.

• n (None or int) – Length of the transformed axis of the output. For n output points, n//
2+1 input points are necessary. If n is not given, it is determined from the length of the input
along the axis specified by axis.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by n and type will convert to complex if the input
is other. If n is not given, the length of the transformed axis is`2*(m-1)` where m is the length of
the transformed axis of the input.

Return type
cupy.ndarray

See also:
numpy.fft.irfft()

cupy.fft.rfft2

cupy.fft.rfft2(a, s=None, axes=(-2, -1), norm=None)
Compute the two-dimensional FFT for real input.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape to use from the input. If s is not given, the lengths
of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other. The length of the last axis transformed will be s[-1]//2+1.

Return type
cupy.ndarray

142 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

See also:
numpy.fft.rfft2()

cupy.fft.irfft2

cupy.fft.irfft2(a, s=None, axes=(-2, -1), norm=None)
Compute the two-dimensional inverse FFT for real input.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape of the output. If s is not given, they are determined
from the lengths of the input along the axes specified by axes.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other. If s is not given, the length of final transformed axis of output will be 2*(m-1) where m
is the length of the final transformed axis of the input.

Return type
cupy.ndarray

See also:
numpy.fft.irfft2()

cupy.fft.rfftn

cupy.fft.rfftn(a, s=None, axes=None, norm=None)
Compute the N-dimensional FFT for real input.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape to use from the input. If s is not given, the lengths
of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other. The length of the last axis transformed will be s[-1]//2+1.

Return type
cupy.ndarray

See also:
numpy.fft.rfftn()

5.3. Routines (NumPy) 143

https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft2.html#numpy.fft.rfft2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft2.html#numpy.fft.irfft2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn

CuPy Documentation, Release 13.0.0

cupy.fft.irfftn

cupy.fft.irfftn(a, s=None, axes=None, norm=None)
Compute the N-dimensional inverse FFT for real input.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape of the output. If s is not given, they are determined
from the lengths of the input along the axes specified by axes.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other. If s is not given, the length of final transformed axis of output will be 2*(m-1) where
m is the length of the final transformed axis of the input.

Return type
cupy.ndarray

See also:
numpy.fft.irfftn()

Hermitian FFTs

hfft(a[, n, axis, norm]) Compute the FFT of a signal that has Hermitian symme-
try.

ihfft(a[, n, axis, norm]) Compute the FFT of a signal that has Hermitian symme-
try.

cupy.fft.hfft

cupy.fft.hfft(a, n=None, axis=-1, norm=None)
Compute the FFT of a signal that has Hermitian symmetry.

Parameters
• a (cupy.ndarray) – Array to be transform.

• n (None or int) – Length of the transformed axis of the output. For n output points, n//
2+1 input points are necessary. If n is not given, it is determined from the length of the input
along the axis specified by axis.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by n and type will convert to complex if the input
is other. If n is not given, the length of the transformed axis is 2*(m-1) where m is the length of
the transformed axis of the input.

144 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.fft.irfftn.html#numpy.fft.irfftn
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
numpy.fft.hfft()

cupy.fft.ihfft

cupy.fft.ihfft(a, n=None, axis=-1, norm=None)
Compute the FFT of a signal that has Hermitian symmetry.

Parameters
• a (cupy.ndarray) – Array to be transform.

• n (None or int) – Number of points along transformation axis in the input to use. If n is
not given, the length of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

Returns
The transformed array which shape is specified by n and type will convert to complex if the input
is other. The length of the transformed axis is n//2+1.

Return type
cupy.ndarray

See also:
numpy.fft.ihfft()

Helper routines

fftfreq(n[, d]) Return the FFT sample frequencies.
rfftfreq(n[, d]) Return the FFT sample frequencies for real input.
fftshift(x[, axes]) Shift the zero-frequency component to the center of the

spectrum.
ifftshift(x[, axes]) The inverse of fftshift().

cupy.fft.fftfreq

cupy.fft.fftfreq(n, d=1.0)
Return the FFT sample frequencies.

Parameters
• n (int) – Window length.

• d (scalar) – Sample spacing.

Returns
Array of length n containing the sample frequencies.

5.3. Routines (NumPy) 145

https://numpy.org/doc/stable/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
numpy.fft.fftfreq()

cupy.fft.rfftfreq

cupy.fft.rfftfreq(n, d=1.0)
Return the FFT sample frequencies for real input.

Parameters
• n (int) – Window length.

• d (scalar) – Sample spacing.

Returns
Array of length n//2+1 containing the sample frequencies.

Return type
cupy.ndarray

See also:
numpy.fft.rfftfreq()

cupy.fft.fftshift

cupy.fft.fftshift(x, axes=None)
Shift the zero-frequency component to the center of the spectrum.

Parameters
• x (cupy.ndarray) – Input array.

• axes (int or tuple of ints) – Axes over which to shift. Default is None, which shifts
all axes.

Returns
The shifted array.

Return type
cupy.ndarray

See also:
numpy.fft.fftshift()

146 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.fft.fftfreq.html#numpy.fft.fftfreq
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftfreq.html#numpy.fft.rfftfreq
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.fft.fftshift.html#numpy.fft.fftshift

CuPy Documentation, Release 13.0.0

cupy.fft.ifftshift

cupy.fft.ifftshift(x, axes=None)
The inverse of fftshift().

Parameters
• x (cupy.ndarray) – Input array.

• axes (int or tuple of ints) – Axes over which to shift. Default is None, which shifts
all axes.

Returns
The shifted array.

Return type
cupy.ndarray

See also:
numpy.fft.ifftshift()

CuPy-specific APIs

See the description below for details.

config.set_cufft_callbacks(...) A context manager for setting up load and/or store call-
backs.

config.set_cufft_gpus(gpus) Set the GPUs to be used in multi-GPU FFT.
config.get_plan_cache() Get the per-thread, per-device plan cache, or create one

if not found.
config.show_plan_cache_info() Show all of the plan caches' info on this thread.

cupy.fft.config.set_cufft_callbacks

class cupy.fft.config.set_cufft_callbacks(unicode cb_load=u'', unicode cb_store=u'', ndarray
cb_load_aux_arr=None, *, ndarray
cb_store_aux_arr=None)

A context manager for setting up load and/or store callbacks.

Parameters
• cb_load (str) – A string contains the device kernel for the load callback. It must define
d_loadCallbackPtr.

• cb_store (str) – A string contains the device kernel for the store callback. It must define
d_storeCallbackPtr.

• cb_load_aux_arr (cupy.ndarray, optional) – A CuPy array containing data to be
used in the load callback.

• cb_store_aux_arr (cupy.ndarray, optional) – A CuPy array containing data to be
used in the store callback.

Note: Any FFT calls living in this context will have callbacks set up. An example for a load callback is shown
below:

5.3. Routines (NumPy) 147

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftshift.html#numpy.fft.ifftshift
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

code = r'''
__device__ cufftComplex CB_ConvertInputC(

void *dataIn,
size_t offset,
void *callerInfo,
void *sharedPtr) {

// implementation
}

__device__ cufftCallbackLoadC d_loadCallbackPtr = CB_ConvertInputC;
'''

with cp.fft.config.set_cufft_callbacks(cb_load=code):
out_arr = cp.fft.fft(in_arr, ...)

Note: Below are the runtime requirements for using this feature:

• cython >= 0.29.0

• A host compiler that supports C++11 and above; might need to set up the CXX environment variable.

• nvcc and the full CUDA Toolkit. Note that the cudatoolkit package from Conda-Forge is not enough,
as it does not contain static libraries.

Note: Callbacks only work for transforms over contiguous axes; the behavior for non-contiguous transforms is
in general undefined.

Warning: Using cuFFT callbacks requires compiling and loading a Python module at runtime as well as
static linking for each distinct transform and callback, so the first invocation for each combination will be very
slow. This is a limitation of cuFFT, so use this feature only when the callback-enabled transform is known
more performant and can be reused to amortize the cost.

Warning: The generated Python modules are by default cached in ~/.cupy/callback_cache for possible
reuse (with the same set of load/store callbacks). Due to static linking, however, the file sizes can be excessive!
The cache position can be changed via setting CUPY_CACHE_DIR.

See also:
cuFFT Callback Routines

148 Chapter 5. API Reference

https://docs.nvidia.com/cuda/cufft/index.html#callback-routines

CuPy Documentation, Release 13.0.0

Methods

__enter__(self)

__exit__(self, exc_type, exc_value, traceback)

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

cupy.fft.config.set_cufft_gpus

cupy.fft.config.set_cufft_gpus(gpus)
Set the GPUs to be used in multi-GPU FFT.

Parameters
gpus (int or list of int) – The number of GPUs or a list of GPUs to be used. For the
former case, the first gpus GPUs will be used.

Warning: This API is currently experimental and may be changed in the future version.

See also:
Multiple GPU cuFFT Transforms

cupy.fft.config.get_plan_cache

cupy.fft.config.get_plan_cache()→ PlanCache
Get the per-thread, per-device plan cache, or create one if not found.

See also:
PlanCache

5.3. Routines (NumPy) 149

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/cuda/cufft/index.html#multiple-GPU-cufft-transforms

CuPy Documentation, Release 13.0.0

cupy.fft.config.show_plan_cache_info

cupy.fft.config.show_plan_cache_info()

Show all of the plan caches’ info on this thread.

See also:
PlanCache

Normalization

The default normalization (norm is "backward" or None) has the direct transforms unscaled and the inverse transforms
scaled by 1/𝑛. If the keyword argument norm is "forward", it is the exact opposite of "backward": the direct trans-
forms are scaled by 1/𝑛 and the inverse transforms are unscaled. Finally, if the keyword argument norm is "ortho",
both transforms are scaled by 1/

√
𝑛.

Code compatibility features

FFT functions of NumPy always return numpy.ndarray which type is numpy.complex128 or numpy.float64. CuPy
functions do not follow the behavior, they will return numpy.complex64 or numpy.float32 if the type of the input
is numpy.float16, numpy.float32, or numpy.complex64.

Internally, cupy.fft always generates a cuFFT plan (see the cuFFT documentation for detail) corresponding to the
desired transform. When possible, an n-dimensional plan will be used, as opposed to applying separate 1D plans
for each axis to be transformed. Using n-dimensional planning can provide better performance for multidimensional
transforms, but requires more GPU memory than separable 1D planning. The user can disable n-dimensional planning
by setting cupy.fft.config.enable_nd_planning = False. This ability to adjust the planning type is a deviation
from the NumPy API, which does not use precomputed FFT plans.

Moreover, the automatic plan generation can be suppressed by using an existing plan returned by cupyx.scipy.
fftpack.get_fft_plan() as a context manager. This is again a deviation from NumPy.

Finally, when using the high-level NumPy-like FFT APIs as listed above, internally the cuFFT plans are cached for
possible reuse. The plan cache can be retrieved by get_plan_cache(), and its current status can be queried by
show_plan_cache_info(). For finer control of the plan cache, see PlanCache.

Multi-GPU FFT

cupy.fft can use multiple GPUs. To enable (disable) this feature, set cupy.fft.config.use_multi_gpus to
True (False). Next, to set the number of GPUs or the participating GPU IDs, use the function cupy.fft.config.
set_cufft_gpus(). All of the limitations listed in the cuFFT documentation apply here. In particular, using more
than one GPU does not guarantee better performance.

5.3.6 Functional programming

Hint: NumPy API Reference: Functional programming

Note: cupy.vectorize applies JIT compiler to the given Python function. See JIT kernel definition for details.

150 Chapter 5. API Reference

https://docs.nvidia.com/cuda/cufft/index.html
https://docs.nvidia.com/cuda/cufft/index.html
https://numpy.org/doc/stable/reference/routines.functional.html

CuPy Documentation, Release 13.0.0

apply_along_axis(func1d, axis, arr, *args, ...) Apply a function to 1-D slices along the given axis.
vectorize(pyfunc[, otypes, doc, excluded, ...]) Generalized function class.
piecewise(x, condlist, funclist) Evaluate a piecewise-defined function.

cupy.apply_along_axis

cupy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.

Parameters
• func1d (function (M,) -> (Nj...)) – This function should accept 1-D arrays. It is

applied to 1-D slices of arr along the specified axis. It must return a 1-D cupy.ndarray.

• axis (integer) – Axis along which arr is sliced.

• arr (cupy.ndarray (Ni..., M, Nk...)) – Input array.

• args – Additional arguments for func1d.

• kwargs – Additional keyword arguments for func1d.

Returns
The output array. The shape of out is identical to the shape of arr, except along the axis
dimension. This axis is removed, and replaced with new dimensions equal to the shape of the
return value of func1d. So if func1d returns a scalar out will have one fewer dimensions than
arr.

Return type
cupy.ndarray

See also:
numpy.apply_along_axis()

cupy.vectorize

class cupy.vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False, signature=None)
Generalized function class.

See also:
numpy.vectorize

Methods

__call__(*args)
Call self as a function.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

5.3. Routines (NumPy) 151

https://numpy.org/doc/stable/reference/generated/numpy.apply_along_axis.html#numpy.apply_along_axis
https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html#numpy.vectorize

CuPy Documentation, Release 13.0.0

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

cupy.piecewise

cupy.piecewise(x, condlist, funclist)
Evaluate a piecewise-defined function.

Parameters
• x (cupy.ndarray) – input domain

• condlist (list of cupy.ndarray) – Each boolean array/ scalar corresponds to a func-
tion in funclist. Length of funclist is equal to that of condlist. If one extra function is given,
it is used as the default value when the otherwise condition is met

• funclist (list of scalars) – list of scalar functions.

Returns
the scalar values in funclist on portions of x defined by condlist.

Return type
cupy.ndarray

Warning: This function currently doesn’t support callable functions, args and kw parameters.

See also:
numpy.piecewise()

5.3.7 Indexing routines

Hint: NumPy API Reference: Indexing routines

152 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.piecewise.html#numpy.piecewise
https://numpy.org/doc/stable/reference/routines.indexing.html

CuPy Documentation, Release 13.0.0

Generating index arrays

c_

r_

nonzero(a) Return the indices of the elements that are non-zero.
where(condition[, x, y]) Return elements, either from x or y, depending on con-

dition.
indices(dimensions[, dtype]) Returns an array representing the indices of a grid.
mask_indices(n, mask_func[, k]) Return the indices to access (n, n) arrays, given a mask-

ing function.
tril_indices(n[, k, m]) Returns the indices of the lower triangular matrix.
tril_indices_from(arr[, k]) Returns the indices for the lower-triangle of arr.
triu_indices(n[, k, m]) Returns the indices of the upper triangular matrix.
triu_indices_from(arr[, k]) Returns indices for the upper-triangle of arr.
ix_(*args) Construct an open mesh from multiple sequences.
ravel_multi_index(multi_index, dims[, mode, ...]) Converts a tuple of index arrays into an array of flat in-

dices, applying boundary modes to the multi-index.
unravel_index(indices, dims[, order]) Converts array of flat indices into a tuple of coordinate

arrays.
diag_indices(n[, ndim]) Return the indices to access the main diagonal of an ar-

ray.
diag_indices_from(arr) Return the indices to access the main diagonal of an n-

dimensional array.

cupy.c_

cupy.c_ = <cupy._indexing.generate.CClass object>

cupy.r_

cupy.r_ = <cupy._indexing.generate.RClass object>

cupy.nonzero

cupy.nonzero(a)
Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in that
dimension.

Parameters
a (cupy.ndarray) – array

Returns
Indices of elements that are non-zero.

Return type
tuple of arrays

5.3. Routines (NumPy) 153

https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Warning: This function may synchronize the device.

See also:
numpy.nonzero()

cupy.where

cupy.where(condition, x=None, y=None)
Return elements, either from x or y, depending on condition.

If only condition is given, return condition.nonzero().

Parameters
• condition (cupy.ndarray) – When True, take x, otherwise take y.

• x (cupy.ndarray) – Values from which to choose on True.

• y (cupy.ndarray) – Values from which to choose on False.

Returns
Each element of output contains elements of x when condition is True, otherwise elements
of y. If only condition is given, return the tuple condition.nonzero(), the indices where
condition is True.

Return type
cupy.ndarray

Warning: This function may synchronize the device if both x and y are omitted.

See also:
numpy.where()

cupy.indices

cupy.indices(dimensions, dtype=<class 'int'>)
Returns an array representing the indices of a grid.

Computes an array where the subarrays contain index values 0,1,. . . varying only along the corresponding axis.

Parameters
• dimensions – The shape of the grid.

• dtype – Data type specifier. It is int by default.

Returns
The array of grid indices, grid.shape = (len(dimensions),) + tuple(dimensions).

Return type
ndarray

154 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.nonzero.html#numpy.nonzero
https://numpy.org/doc/stable/reference/generated/numpy.where.html#numpy.where

CuPy Documentation, Release 13.0.0

Examples

>>> grid = cupy.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array([[0, 0, 0],

[1, 1, 1]])
>>> grid[1] # column indices
array([[0, 1, 2],

[0, 1, 2]])

See also:
numpy.indices()

cupy.mask_indices

cupy.mask_indices(n, mask_func, k=0)
Return the indices to access (n, n) arrays, given a masking function.

Assume mask_func is a function that, for a square array a of size (n, n) with a possible offset argument k,
when called as mask_func(a, k) returns a new array with zeros in certain locations (functions like triu() or
tril() do precisely this). Then this function returns the indices where the non-zero values would be located.

Parameters
• n (int) – The returned indices will be valid to access arrays of shape (n, n).

• mask_func (callable) – A function whose call signature is similar to that of triu(),
tril(). That is, mask_func(x, k) returns a boolean array, shaped like x. k is an optional
argument to the function.

• k (scalar) – An optional argument which is passed through to mask_func. Functions like
triu(), tril() take a second argument that is interpreted as an offset.

Returns
The n arrays of indices corresponding to the locations where mask_func(np.ones((n, n)),
k) is True.

Return type
tuple of arrays

Warning: This function may synchronize the device.

See also:
numpy.mask_indices()

5.3. Routines (NumPy) 155

https://numpy.org/doc/stable/reference/generated/numpy.indices.html#numpy.indices
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.mask_indices.html#numpy.mask_indices

CuPy Documentation, Release 13.0.0

cupy.tril_indices

cupy.tril_indices(n, k=0, m=None)
Returns the indices of the lower triangular matrix. Here, the first group of elements contains row coordinates of
all indices and the second group of elements contains column coordinates.

Parameters
• n (int) – The row dimension of the arrays for which the returned indices will be valid.

• k (int, optional) – Diagonal above which to zero elements. k = 0 (the default) is the
main diagonal, k < 0 is below it and k > 0 is above.

• m (int, optional) – The column dimension of the arrays for which the returned arrays
will be valid. By default, m = n.

Returns
y – The indices for the triangle. The returned tuple contains two arrays, each with the indices
along one dimension of the array.

Return type
tuple of ndarrays

See also:
numpy.tril_indices

cupy.tril_indices_from

cupy.tril_indices_from(arr, k=0)
Returns the indices for the lower-triangle of arr.

Parameters
• arr (cupy.ndarray) – The indices are valid for square arrays whose dimensions are the

same as arr.

• k (int, optional) – Diagonal offset.

See also:
numpy.tril_indices_from

cupy.triu_indices

cupy.triu_indices(n, k=0, m=None)
Returns the indices of the upper triangular matrix. Here, the first group of elements contains row coordinates of
all indices and the second group of elements contains column coordinates.

Parameters
• n (int) – The size of the arrays for which the returned indices will be valid.

• k (int, optional) – Refers to the diagonal offset. By default, k = 0 i.e. the main dialogal.
The positive value of k denotes the diagonals above the main diagonal, while the negative
value includes the diagonals below the main diagonal.

• m (int, optional) – The column dimension of the arrays for which the returned arrays
will be valid. By default, m = n.

156 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.tril_indices.html#numpy.tril_indices
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.tril_indices_from.html#numpy.tril_indices_from
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Returns
y – The indices for the triangle. The returned tuple contains two arrays, each with the indices
along one dimension of the array.

Return type
tuple of ndarrays

See also:
numpy.triu_indices

cupy.triu_indices_from

cupy.triu_indices_from(arr, k=0)
Returns indices for the upper-triangle of arr.

Parameters
• arr (cupy.ndarray) – The indices are valid for square arrays.

• k (int, optional) – Diagonal offset (see ‘triu_indices` for details).

Returns
triu_indices_from – Indices for the upper-triangle of arr.

Return type
tuple of ndarrays

See also:
numpy.triu_indices_from

cupy.ix_

cupy.ix_(*args)
Construct an open mesh from multiple sequences.

This function takes N 1-D sequences and returns N outputs with N dimensions each, such that the shape is 1 in
all but one dimension and the dimension with the non-unit shape value cycles through all N dimensions.

Using ix_ one can quickly construct index arrays that will index the cross product. a[cupy.ix_([1,3],[2,
5])] returns the array [[a[1,2] a[1,5]], [a[3,2] a[3,5]]].

Parameters
*args – 1-D sequences

Returns
N arrays with N dimensions each, with N the number of input sequences. Together these arrays
form an open mesh.

Return type
tuple of ndarrays

5.3. Routines (NumPy) 157

https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.triu_indices.html#numpy.triu_indices
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.triu_indices_from.html#numpy.triu_indices_from
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Examples

>>> a = cupy.arange(10).reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])
>>> ixgrid = cupy.ix_([0,1], [2,4])
>>> ixgrid
(array([[0],

[1]]), array([[2, 4]]))

Warning: This function may synchronize the device.

See also:
numpy.ix_()

cupy.ravel_multi_index

cupy.ravel_multi_index(multi_index, dims, mode='wrap', order='C')
Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index.

Parameters
• multi_index (tuple of cupy.ndarray) – A tuple of integer arrays, one array for each

dimension.

• dims (tuple of ints) – The shape of array into which the indices from multi_index
apply.

• mode ('raise', 'wrap' or 'clip') – Specifies how out-of-bounds indices are handled. Can
specify either one mode or a tuple of modes, one mode per index:

– ’raise’ – raise an error

– ’wrap’ – wrap around (default)

– ’clip’ – clip to the range

In ‘clip’ mode, a negative index which would normally wrap will clip to 0 instead.

• order ('C' or 'F') – Determines whether the multi-index should be viewed as indexing in
row-major (C-style) or column-major (Fortran-style) order.

Returns
An array of indices into the flattened version of an array of dimensions dims.

Return type
raveled_indices (cupy.ndarray)

Warning: This function may synchronize the device when mode == 'raise'.

158 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ix_.html#numpy.ix_
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Notes

Note that the default mode ('wrap') is different than in NumPy. This is done to avoid potential device synchro-
nization.

Examples

>>> cupy.ravel_multi_index(cupy.asarray([[3,6,6],[4,5,1]]), (7,6))
array([22, 41, 37])
>>> cupy.ravel_multi_index(cupy.asarray([[3,6,6],[4,5,1]]), (7,6),
... order='F')
array([31, 41, 13])
>>> cupy.ravel_multi_index(cupy.asarray([[3,6,6],[4,5,1]]), (4,6),
... mode='clip')
array([22, 23, 19])
>>> cupy.ravel_multi_index(cupy.asarray([[3,6,6],[4,5,1]]), (4,4),
... mode=('clip', 'wrap'))
array([12, 13, 13])
>>> cupy.ravel_multi_index(cupy.asarray((3,1,4,1)), (6,7,8,9))
array(1621)

See also:
numpy.ravel_multi_index(), unravel_index()

cupy.unravel_index

cupy.unravel_index(indices, dims, order='C')
Converts array of flat indices into a tuple of coordinate arrays.

Parameters
• indices (cupy.ndarray) – An integer array whose elements are indices into the flattened

version of an array of dimensions dims.

• dims (tuple of ints) – The shape of the array to use for unraveling indices.

• order ('C' or 'F') – Determines whether the indices should be viewed as indexing in row-
major (C-style) or column-major (Fortran-style) order.

Returns
Each array in the tuple has the same shape as the indices array.

Return type
tuple of ndarrays

5.3. Routines (NumPy) 159

https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html#numpy.ravel_multi_index
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Examples

>>> cupy.unravel_index(cupy.array([22, 41, 37]), (7, 6))
(array([3, 6, 6]), array([4, 5, 1]))
>>> cupy.unravel_index(cupy.array([31, 41, 13]), (7, 6), order='F')
(array([3, 6, 6]), array([4, 5, 1]))

Warning: This function may synchronize the device.

See also:
numpy.unravel_index(), ravel_multi_index()

cupy.diag_indices

cupy.diag_indices(n, ndim=2)
Return the indices to access the main diagonal of an array.

Returns a tuple of indices that can be used to access the main diagonal of an array with ndim >= 2 dimensions
and shape (n, n, . . . , n).

Parameters
• n (int) – The size, along each dimension of the arrays for which the indices are to be re-

turned.

• ndim (int) – The number of dimensions. default 2.

Examples

Create a set of indices to access the diagonal of a (4, 4) array:

>>> di = cupy.diag_indices(4)
>>> di
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
>>> a = cupy.arange(16).reshape(4, 4)
>>> a
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

>>> a[di] = 100
>>> a
array([[100, 1, 2, 3],

[4, 100, 6, 7],
[8, 9, 100, 11],
[12, 13, 14, 100]])

Create indices to manipulate a 3-D array:

160 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html#numpy.unravel_index
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

>>> d3 = cupy.diag_indices(2, 3)
>>> d3
(array([0, 1]), array([0, 1]), array([0, 1]))

And use it to set the diagonal of an array of zeros to 1:

>>> a = cupy.zeros((2, 2, 2), dtype=int)
>>> a[d3] = 1
>>> a
array([[[1, 0],

[0, 0]],

[[0, 0],
[0, 1]]])

See also:
numpy.diag_indices()

cupy.diag_indices_from

cupy.diag_indices_from(arr)
Return the indices to access the main diagonal of an n-dimensional array. See diag_indices for full details.

Parameters
arr (cupy.ndarray) – At least 2-D.

See also:
numpy.diag_indices_from()

Indexing-like operations

take(a, indices[, axis, out]) Takes elements of an array at specified indices along an
axis.

take_along_axis(a, indices, axis) Take values from the input array by matching 1d index
and data slices.

choose(a, choices[, out, mode])

compress(condition, a[, axis, out]) Returns selected slices of an array along given axis.
diag(v[, k]) Returns a diagonal or a diagonal array.
diagonal(a[, offset, axis1, axis2]) Returns specified diagonals.
select(condlist, choicelist[, default]) Return an array drawn from elements in choicelist, de-

pending on conditions.
lib.stride_tricks.as_strided(x[, shape,
strides])

Create a view into the array with the given shape and
strides.

5.3. Routines (NumPy) 161

https://numpy.org/doc/stable/reference/generated/numpy.diag_indices.html#numpy.diag_indices
https://numpy.org/doc/stable/reference/generated/numpy.diag_indices_from.html#numpy.diag_indices_from

CuPy Documentation, Release 13.0.0

cupy.take

cupy.take(a, indices, axis=None, out=None)
Takes elements of an array at specified indices along an axis.

This is an implementation of “fancy indexing” at single axis.

This function does not support mode option.

Parameters
• a (cupy.ndarray) – Array to extract elements.

• indices (int or array-like) – Indices of elements that this function takes.

• axis (int) – The axis along which to select indices. The flattened input is used by default.

• out (cupy.ndarray) – Output array. If provided, it should be of appropriate shape and
dtype.

Returns
The result of fancy indexing.

Return type
cupy.ndarray

See also:
numpy.take()

cupy.take_along_axis

cupy.take_along_axis(a, indices, axis)
Take values from the input array by matching 1d index and data slices.

Parameters
• a (cupy.ndarray) – Array to extract elements.

• indices (cupy.ndarray) – Indices to take along each 1d slice of a.

• axis (int) – The axis to take 1d slices along.

Returns
The indexed result.

Return type
cupy.ndarray

See also:
numpy.take_along_axis()

162 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.take.html#numpy.take
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.take_along_axis.html#numpy.take_along_axis

CuPy Documentation, Release 13.0.0

cupy.choose

cupy.choose(a, choices, out=None, mode='raise')

cupy.compress

cupy.compress(condition, a, axis=None, out=None)
Returns selected slices of an array along given axis.

Parameters
• condition (1-D array of bools) – Array that selects which entries to return. If

len(condition) is less than the size of a along the given axis, then output is truncated to
the length of the condition array.

• a (cupy.ndarray) – Array from which to extract a part.

• axis (int) – Axis along which to take slices. If None (default), work on the flattened array.

• out (cupy.ndarray) – Output array. If provided, it should be of appropriate shape and
dtype.

Returns
A copy of a without the slices along axis for which condition is false.

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
numpy.compress()

cupy.diagonal

cupy.diagonal(a, offset=0, axis1=0, axis2=1)
Returns specified diagonals.

This function extracts the diagonals along two specified axes. The other axes are not changed. This function
returns a writable view of this array as NumPy 1.10 will do.

Parameters
• a (cupy.ndarray) – Array from which the diagonals are taken.

• offset (int) – Index of the diagonals. Zero indicates the main diagonals, a positive value
upper diagonals, and a negative value lower diagonals.

• axis1 (int) – The first axis to take diagonals from.

• axis2 (int) – The second axis to take diagonals from.

Returns
A view of the diagonals of a.

Return type
cupy.ndarray

5.3. Routines (NumPy) 163

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.compress.html#numpy.compress
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

See also:
numpy.diagonal()

cupy.select

cupy.select(condlist, choicelist, default=0)
Return an array drawn from elements in choicelist, depending on conditions.

Parameters
• condlist (list of bool arrays) – The list of conditions which determine from which

array in choicelist the output elements are taken. When multiple conditions are satisfied, the
first one encountered in condlist is used.

• choicelist (list of cupy.ndarray) – The list of arrays from which the output ele-
ments are taken. It has to be of the same length as condlist.

• default (scalar) – If provided, will fill element inserted in output when all conditions
evaluate to False. default value is 0.

Returns
The output at position m is the m-th element of the array in choicelist where the m-th element of
the corresponding array in condlist is True.

Return type
cupy.ndarray

See also:
numpy.select()

cupy.lib.stride_tricks.as_strided

cupy.lib.stride_tricks.as_strided(x, shape=None, strides=None)
Create a view into the array with the given shape and strides.

Warning: This function has to be used with extreme care, see notes.

Parameters
• x (ndarray) – Array to create a new.

• shape (sequence of int, optional) – The shape of the new array. Defaults to x.
shape.

• strides (sequence of int, optional) – The strides of the new array. Defaults to x.
strides.

Returns
view

Return type
ndarray

See also:
numpy.lib.stride_tricks.as_strided

164 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.diagonal.html#numpy.diagonal
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.select.html#numpy.select
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.lib.stride_tricks.as_strided.html#numpy.lib.stride_tricks.as_strided

CuPy Documentation, Release 13.0.0

reshape
reshape an array.

Notes

as_strided creates a view into the array given the exact strides and shape. This means it manipulates the
internal data structure of ndarray and, if done incorrectly, the array elements can point to invalid memory and
can corrupt results or crash your program.

Inserting data into arrays

place(arr, mask, vals) Change elements of an array based on conditional and
input values.

put(a, ind, v[, mode]) Replaces specified elements of an array with given val-
ues.

putmask(a, mask, values) Changes elements of an array inplace, based on a condi-
tional mask and input values.

fill_diagonal(a, val[, wrap]) Fills the main diagonal of the given array of any dimen-
sionality.

cupy.place

cupy.place(arr, mask, vals)
Change elements of an array based on conditional and input values.

This function uses the first N elements of vals, where N is the number of true values in mask.

Parameters
• arr (cupy.ndarray) – Array to put data into.

• mask (array-like) – Boolean mask array. Must have the same size as a.

• vals (array-like) – Values to put into a. Only the first N elements are used, where N
is the number of True values in mask. If vals is smaller than N, it will be repeated, and if
elements of a are to be masked, this sequence must be non-empty.

Examples

>>> arr = np.arange(6).reshape(2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr
array([[0, 1, 2],

[44, 55, 44]])

Warning: This function may synchronize the device.

See also:
numpy.place()

5.3. Routines (NumPy) 165

https://numpy.org/doc/stable/reference/generated/numpy.place.html#numpy.place

CuPy Documentation, Release 13.0.0

cupy.put

cupy.put(a, ind, v, mode='wrap')
Replaces specified elements of an array with given values.

Parameters
• a (cupy.ndarray) – Target array.

• ind (array-like) – Target indices, interpreted as integers.

• v (array-like) – Values to place in a at target indices. If v is shorter than ind it will be
repeated as necessary.

• mode (str) – How out-of-bounds indices will behave. Its value must be either ‘raise’, ‘wrap’
or ‘clip’. Otherwise, TypeError is raised.

Note: Default mode is set to ‘wrap’ to avoid unintended performance drop. If you need NumPy’s behavior,
please pass mode=’raise’ manually.

See also:
numpy.put()

cupy.putmask

cupy.putmask(a, mask, values)
Changes elements of an array inplace, based on a conditional mask and input values.

Sets a.flat[n] = values[n] for each n where mask.flat[n]==True. If values is not the same size as a
and mask then it will repeat.

Parameters
• a (cupy.ndarray) – Target array.

• mask (cupy.ndarray) – Boolean mask array. It has to be the same shape as a.

• values (cupy.ndarray or scalar) – Values to put into a where mask is True. If values
is smaller than a, then it will be repeated.

Examples

>>> x = cupy.arange(6).reshape(2, 3)
>>> cupy.putmask(x, x>2, x**2)
>>> x
array([[0, 1, 2],

[9, 16, 25]])

If values is smaller than a it is repeated:

>>> x = cupy.arange(6)
>>> cupy.putmask(x, x>2, cupy.array([-33, -44]))
>>> x
array([0, 1, 2, -44, -33, -44])

166 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://numpy.org/doc/stable/reference/generated/numpy.put.html#numpy.put

CuPy Documentation, Release 13.0.0

See also:
numpy.putmask()

cupy.fill_diagonal

cupy.fill_diagonal(a, val, wrap=False)
Fills the main diagonal of the given array of any dimensionality.

For an array a with a.ndim > 2, the diagonal is the list of locations with indices a[i, i, ..., i] all identical.
This function modifies the input array in-place, it does not return a value.

Parameters
• a (cupy.ndarray) – The array, at least 2-D.

• val (scalar) – The value to be written on the diagonal. Its type must be compatible with
that of the array a.

• wrap (bool) – If specified, the diagonal is “wrapped” after N columns. This affects only tall
matrices.

Examples

>>> a = cupy.zeros((3, 3), int)
>>> cupy.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],

[0, 5, 0],
[0, 0, 5]])

See also:
numpy.fill_diagonal()

Iterating over arrays

flatiter(a) Flat iterator object to iterate over arrays.

cupy.flatiter

class cupy.flatiter(a)
Flat iterator object to iterate over arrays.

A flatiter iterator is returned by x.flat for any array x. It allows iterating over the array as if it were a 1-D array,
either in a for-loop or by calling its next method.

Iteration is done in row-major, C-style order (the last index varying the fastest).

Variables
base (cupy.ndarray) – A reference to the array that is iterated over.

5.3. Routines (NumPy) 167

https://numpy.org/doc/stable/reference/generated/numpy.putmask.html#numpy.putmask
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.fill_diagonal.html#numpy.fill_diagonal

CuPy Documentation, Release 13.0.0

Note: Restricted support of basic slicing is currently supplied. Advanced indexing is not supported yet.

See also:
numpy.flatiter()

Methods

__getitem__(ind)

__setitem__(ind, value)

__len__()

__next__()

__iter__()

copy()

Get a copy of the iterator as a 1-D array.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

base

A reference to the array that is iterated over.

5.3.8 Input and output

Hint: NumPy API Reference: Input and output

168 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/routines.io.html

CuPy Documentation, Release 13.0.0

NumPy binary files (NPY, NPZ)

load(file[, mmap_mode, allow_pickle]) Loads arrays or pickled objects from .npy, .npz or pick-
led file.

save(file, arr[, allow_pickle]) Saves an array to a binary file in .npy format.
savez(file, *args, **kwds) Saves one or more arrays into a file in uncompressed .

npz format.
savez_compressed(file, *args, **kwds) Saves one or more arrays into a file in compressed .npz

format.

cupy.load

cupy.load(file, mmap_mode=None, allow_pickle=None)
Loads arrays or pickled objects from .npy, .npz or pickled file.

This function just calls numpy.load and then sends the arrays to the current device. NPZ file is converted to
NpzFile object, which defers the transfer to the time of accessing the items.

Parameters
• file (file-like object or string) – The file to read.

• mmap_mode (None, 'r+', 'r', 'w+', 'c') – If not None, memory-map the file to construct
an intermediate numpy.ndarray object and transfer it to the current device.

• allow_pickle (bool) – Allow loading pickled object arrays stored in npy files. Reasons
for disallowing pickles include security, as loading pickled data can execute arbitrary code.
If pickles are disallowed, loading object arrays will fail. Please be aware that CuPy does not
support arrays with dtype of object. The default is False. This option is available only for
NumPy 1.10 or later. In NumPy 1.9, this option cannot be specified (loading pickled objects
is always allowed).

Returns
CuPy array or NpzFile object depending on the type of the file. NpzFile object is a dictionary-like
object with the context manager protocol (which enables us to use with statement on it).

See also:
numpy.load()

cupy.save

cupy.save(file, arr, allow_pickle=None)
Saves an array to a binary file in .npy format.

Parameters
• file (file or str) – File or filename to save.

• arr (array_like) – Array to save. It should be able to feed to cupy.asnumpy().

• allow_pickle (bool) – Allow saving object arrays using Python pickles. Reasons for dis-
allowing pickles include security (loading pickled data can execute arbitrary code) and porta-
bility (pickled objects may not be loadable on different Python installations, for example if
the stored objects require libraries that are not available, and not all pickled data is compat-
ible between Python 2 and Python 3). The default is True. This option is available only for

5.3. Routines (NumPy) 169

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

NumPy 1.10 or later. In NumPy 1.9, this option cannot be specified (saving objects using
pickles is always allowed).

See also:
numpy.save()

cupy.savez

cupy.savez(file, *args, **kwds)
Saves one or more arrays into a file in uncompressed .npz format.

Arguments without keys are treated as arguments with automatic keys named arr_0, arr_1, etc. corresponding
to the positions in the argument list. The keys of arguments are used as keys in the .npz file, which are used for
accessing NpzFile object when the file is read by cupy.load() function.

Parameters
• file (file or str) – File or filename to save.

• *args – Arrays with implicit keys.

• **kwds – Arrays with explicit keys.

See also:
numpy.savez()

cupy.savez_compressed

cupy.savez_compressed(file, *args, **kwds)
Saves one or more arrays into a file in compressed .npz format.

It is equivalent to cupy.savez() function except the output file is compressed.

See also:
cupy.savez() for more detail, numpy.savez_compressed()

Text files

loadtxt(*args, **kwargs) Load data from a text file.
savetxt(fname, X, *args, **kwargs) Save an array to a text file.
genfromtxt(*args, **kwargs) Load data from text file, with missing values handled as

specified.
fromstring(*args, **kwargs) A new 1-D array initialized from text data in a string.

170 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.savez.html#numpy.savez
https://numpy.org/doc/stable/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed

CuPy Documentation, Release 13.0.0

cupy.savetxt

cupy.savetxt(fname, X, *args, **kwargs)
Save an array to a text file.

Note: Uses NumPy’s savetxt.

See also:
numpy.savetxt()

cupy.genfromtxt

cupy.genfromtxt(*args, **kwargs)
Load data from text file, with missing values handled as specified.

Note: Uses NumPy’s genfromtxt and coerces the result to a CuPy array.

See also:
numpy.genfromtxt()

String formatting

array2string(a, *args, **kwargs) Return a string representation of an array.
array_repr(arr[, max_line_width, precision, ...]) Returns the string representation of an array.
array_str(arr[, max_line_width, precision, ...]) Returns the string representation of the content of an ar-

ray.
format_float_positional(x, *args, **kwargs) Format a floating-point scalar as a decimal string in po-

sitional notation.
format_float_scientific(x, *args, **kwargs) Format a floating-point scalar as a decimal string in sci-

entific notation.

cupy.array2string

cupy.array2string(a, *args, **kwargs)
Return a string representation of an array.

See also:
numpy.array2string()

5.3. Routines (NumPy) 171

https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt
https://numpy.org/doc/stable/reference/generated/numpy.array2string.html#numpy.array2string

CuPy Documentation, Release 13.0.0

cupy.array_repr

cupy.array_repr(arr, max_line_width=None, precision=None, suppress_small=None)
Returns the string representation of an array.

Parameters
• arr (array_like) – Input array. It should be able to feed to cupy.asnumpy().

• max_line_width (int) – The maximum number of line lengths.

• precision (int) – Floating point precision. It uses the current printing precision of NumPy.

• suppress_small (bool) – If True, very small numbers are printed as zeros

Returns
The string representation of arr.

Return type
str

See also:
numpy.array_repr()

cupy.array_str

cupy.array_str(arr, max_line_width=None, precision=None, suppress_small=None)
Returns the string representation of the content of an array.

Parameters
• arr (array_like) – Input array. It should be able to feed to cupy.asnumpy().

• max_line_width (int) – The maximum number of line lengths.

• precision (int) – Floating point precision. It uses the current printing precision of NumPy.

• suppress_small (bool) – If True, very small number are printed as zeros.

See also:
numpy.array_str()

cupy.format_float_positional

cupy.format_float_positional(x, *args, **kwargs)
Format a floating-point scalar as a decimal string in positional notation.

See numpy.format_float_positional() for the list of arguments.

See also:
numpy.format_float_positional()

172 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.array_repr.html#numpy.array_repr
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.array_str.html#numpy.array_str
https://numpy.org/doc/stable/reference/generated/numpy.format_float_positional.html#numpy.format_float_positional
https://numpy.org/doc/stable/reference/generated/numpy.format_float_positional.html#numpy.format_float_positional

CuPy Documentation, Release 13.0.0

cupy.format_float_scientific

cupy.format_float_scientific(x, *args, **kwargs)
Format a floating-point scalar as a decimal string in scientific notation.

See numpy.format_float_scientific() for the list of arguments.

See also:
numpy.format_float_scientific()

Base-n representations

binary_repr(num[, width]) Return the binary representation of the input number as
a string.

base_repr(number[, base, padding]) Return a string representation of a number in the given
base system.

cupy.base_repr

cupy.base_repr(number, base=2, padding=0)
Return a string representation of a number in the given base system.

See also:
numpy.base_repr()

5.3.9 Linear algebra (cupy.linalg)

Hint: NumPy API Reference: Linear algebra (numpy.linalg)

See also:
Linear algebra (cupyx.scipy.linalg)

Matrix and vector products

dot(a, b[, out]) Returns a dot product of two arrays.
vdot(a, b) Returns the dot product of two vectors.
inner(a, b) Returns the inner product of two arrays.
outer(a, b[, out]) Returns the outer product of two vectors.
matmul matmul(x1, x2, /, out=None, **kwargs)
tensordot(a, b[, axes]) Returns the tensor dot product of two arrays along spec-

ified axes.
einsum(subscripts, *operands[, dtype, optimize]) Evaluates the Einstein summation convention on the

operands.
linalg.matrix_power(M, n) Raise a square matrix to the (integer) power n.
kron(a, b) Returns the kronecker product of two arrays.

5.3. Routines (NumPy) 173

https://numpy.org/doc/stable/reference/generated/numpy.format_float_scientific.html#numpy.format_float_scientific
https://numpy.org/doc/stable/reference/generated/numpy.format_float_scientific.html#numpy.format_float_scientific
https://numpy.org/doc/stable/reference/generated/numpy.base_repr.html#numpy.base_repr
https://numpy.org/doc/stable/reference/routines.linalg.html

CuPy Documentation, Release 13.0.0

cupy.dot

cupy.dot(a, b, out=None)
Returns a dot product of two arrays.

For arrays with more than one axis, it computes the dot product along the last axis of a and the second-to-last
axis of b. This is just a matrix product if the both arrays are 2-D. For 1-D arrays, it uses their unique axis as an
axis to take dot product over.

Parameters
• a (cupy.ndarray) – The left argument.

• b (cupy.ndarray) – The right argument.

• out (cupy.ndarray) – Output array.

Returns
The dot product of a and b.

Return type
cupy.ndarray

See also:
numpy.dot()

cupy.vdot

cupy.vdot(a, b)
Returns the dot product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs inner product of these vectors.

Parameters
• a (cupy.ndarray) – The first argument.

• b (cupy.ndarray) – The second argument.

Returns
Zero-dimensional array of the dot product result.

Return type
cupy.ndarray

See also:
numpy.vdot()

cupy.inner

cupy.inner(a, b)
Returns the inner product of two arrays.

It uses the last axis of each argument to take sum product.

Parameters
• a (cupy.ndarray) – The first argument.

174 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.dot.html#numpy.dot
https://numpy.org/doc/stable/reference/generated/numpy.vdot.html#numpy.vdot

CuPy Documentation, Release 13.0.0

• b (cupy.ndarray) – The second argument.

Returns
The inner product of a and b.

Return type
cupy.ndarray

See also:
numpy.inner()

cupy.outer

cupy.outer(a, b, out=None)
Returns the outer product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs outer product of these vectors.

Parameters
• a (cupy.ndarray) – The first argument.

• b (cupy.ndarray) – The second argument.

• out (cupy.ndarray) – Output array.

Returns
2-D array of the outer product of a and b.

Return type
cupy.ndarray

See also:
numpy.outer()

cupy.tensordot

cupy.tensordot(a, b, axes=2)
Returns the tensor dot product of two arrays along specified axes.

This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping.

Parameters
• a (cupy.ndarray) – The first argument.

• b (cupy.ndarray) – The second argument.

• axes –

– If it is an integer, then axes axes at the last of a and the first of b are used.

– If it is a pair of sequences of integers, then these two sequences specify the list of axes for
a and b. The corresponding axes are paired for sum-product.

Returns
The tensor dot product of a and b along the axes specified by axes.

Return type
cupy.ndarray

5.3. Routines (NumPy) 175

https://numpy.org/doc/stable/reference/generated/numpy.inner.html#numpy.inner
https://numpy.org/doc/stable/reference/generated/numpy.outer.html#numpy.outer

CuPy Documentation, Release 13.0.0

See also:
numpy.tensordot()

cupy.einsum

cupy.einsum(subscripts, *operands, dtype=None, optimize=False)
Evaluates the Einstein summation convention on the operands. Using the Einstein summation convention, many
common multi-dimensional array operations can be represented in a simple fashion. This function provides a
way to compute such summations.

Note:
• Memory contiguity of the returned array is not always compatible with that of numpy.einsum().

• out, order, and casting options are not supported.

• If CUPY_ACCELERATORS includes cutensornet, the einsum calculation will be performed by the cuTen-
sorNet backend if possible.

– The support of the optimize option is limited (currently, only False, ‘cutensornet’, or a custom path
for pairwise contraction is supported, and the maximum intermediate size is ignored). If you need
finer control for path optimization, consider replacing cupy.einsum() by cuquantum.contract()
instead.

– Requires cuQuantum Python (v22.03+).

• If CUPY_ACCELERATORS includes cutensor, einsum will be accelerated by the cuTENSOR backend when-
ever possible.

Parameters
• subscripts (str) – Specifies the subscripts for summation.

• operands (sequence of arrays) – These are the arrays for the operation.

• dtype – If provided, forces the calculation to use the data type specified. Default is None.

• optimize – Valid options include {False, True, ‘greedy’, ‘optimal’}. Controls if inter-
mediate optimization should occur. No optimization will occur if False, and True will
default to the ‘greedy’ algorithm. Also accepts an explicit contraction list from numpy.
einsum_path(). Defaults to False. If a pair is supplied, the second argument is assumed
to be the maximum intermediate size created.

Returns
The calculation based on the Einstein summation convention.

Return type
cupy.ndarray

See also:
numpy.einsum()

176 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.tensordot.html#numpy.tensordot
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html#numpy.einsum
https://docs.nvidia.com/cuda/cuquantum/latest/python/api/generated/cuquantum.contract.html#cuquantum.contract
https://docs.nvidia.com/cuda/cuquantum/python/
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.einsum_path.html#numpy.einsum_path
https://numpy.org/doc/stable/reference/generated/numpy.einsum_path.html#numpy.einsum_path
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html#numpy.einsum

CuPy Documentation, Release 13.0.0

cupy.linalg.matrix_power

cupy.linalg.matrix_power(M, n)
Raise a square matrix to the (integer) power n.

Parameters
• M (ndarray) – Matrix to raise by power n.

• n (~int) – Power to raise matrix to.

Returns
Output array.

Return type
ndarray

..seealso:: numpy.linalg.matrix_power()

cupy.kron

cupy.kron(a, b)
Returns the kronecker product of two arrays.

Parameters
• a (ndarray) – The first argument.

• b (ndarray) – The second argument.

Returns
Output array.

Return type
ndarray

See also:
numpy.kron()

Decompositions

linalg.cholesky(a) Cholesky decomposition.
linalg.qr(a[, mode]) QR decomposition.
linalg.svd(a[, full_matrices, compute_uv]) Singular Value Decomposition.

cupy.linalg.cholesky

cupy.linalg.cholesky(a)
Cholesky decomposition.

Decompose a given two-dimensional square matrix into L * L.H, where L is a lower-triangular matrix and .H
is a conjugate transpose operator.

Parameters
a (cupy.ndarray) – Hermitian (symmetric if all elements are real), positive-definite input ma-
trix with dimension (..., M, M).

5.3. Routines (NumPy) 177

https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power
https://numpy.org/doc/stable/reference/generated/numpy.kron.html#numpy.kron

CuPy Documentation, Release 13.0.0

Returns
The lower-triangular matrix of shape (..., M, M).

Return type
cupy.ndarray

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

See also:
numpy.linalg.cholesky()

cupy.linalg.qr

cupy.linalg.qr(a, mode='reduced')
QR decomposition.

Decompose a given two-dimensional matrix into Q * R, where Q is an orthonormal and R is an upper-triangular
matrix.

Parameters
• a (cupy.ndarray) – The input matrix.

• mode (str) – The mode of decomposition. Currently ‘reduced’, ‘complete’, ‘r’, and ‘raw’
modes are supported. The default mode is ‘reduced’, in which matrix A = (..., M, N) is
decomposed into Q, R with dimensions (..., M, K), (..., K, N), where K = min(M,
N).

Returns
Although the type of returned object depends on the mode, it returns a tuple of (Q, R) by default.
For details, please see the document of numpy.linalg.qr().

Return type
cupy.ndarray, or tuple of ndarray

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

See also:
numpy.linalg.qr()

178 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.linalg.cholesky.html#numpy.linalg.cholesky
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr

CuPy Documentation, Release 13.0.0

cupy.linalg.svd

cupy.linalg.svd(a, full_matrices=True, compute_uv=True)
Singular Value Decomposition.

Factorizes the matrix a as u * np.diag(s) * v, where u and v are unitary and s is an one-dimensional array
of a’s singular values.

Parameters
• a (cupy.ndarray) – The input matrix with dimension (..., M, N).

• full_matrices (bool) – If True, it returns u and v with dimensions (..., M, M) and
(..., N, N). Otherwise, the dimensions of u and v are (..., M, K) and (..., K, N),
respectively, where K = min(M, N).

• compute_uv (bool) – If False, it only returns singular values.

Returns
A tuple of (u, s, v) such that a = u * np.diag(s) * v.

Return type
tuple of cupy.ndarray

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

Note: On CUDA, when a.ndim > 2 and the matrix dimensions <= 32, a fast code path based on Jacobian
method (gesvdj) is taken. Otherwise, a QR method (gesvd) is used.

On ROCm, there is no such a fast code path that switches the underlying algorithm.

See also:
numpy.linalg.svd()

Matrix eigenvalues

linalg.eigh (a[, UPLO]) Return the eigenvalues and eigenvectors of a complex
Hermitian (conjugate symmetric) or a real symmetric
matrix.

linalg.eigvalsh (a[, UPLO]) Compute the eigenvalues of a complex Hermitian or real
symmetric matrix.

5.3. Routines (NumPy) 179

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd

CuPy Documentation, Release 13.0.0

cupy.linalg.eigh

cupy.linalg.eigh(a, UPLO='L')
Return the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric
matrix.

Returns two objects, a 1-D array containing the eigenvalues of a, and a 2-D square array or matrix (depending
on the input type) of the corresponding eigenvectors (in columns).

Parameters
• a (cupy.ndarray) – A symmetric 2-D square matrix (M, M) or a batch of symmetric 2-D

square matrices (..., M, M).

• UPLO (str) – Select from 'L' or 'U'. It specifies which part of a is used. 'L' uses the lower
triangular part of a, and 'U' uses the upper triangular part of a.

Returns
Returns a tuple (w, v). w contains eigenvalues and v contains eigenvectors. v[:, i] is an
eigenvector corresponding to an eigenvalue w[i]. For batch input, v[k, :, i] is an eigen-
vector corresponding to an eigenvalue w[k, i] of a[k].

Return type
tuple of ndarray

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

See also:
numpy.linalg.eigh()

cupy.linalg.eigvalsh

cupy.linalg.eigvalsh(a, UPLO='L')
Compute the eigenvalues of a complex Hermitian or real symmetric matrix.

Main difference from eigh: the eigenvectors are not computed.

Parameters
• a (cupy.ndarray) – A symmetric 2-D square matrix (M, M) or a batch of symmetric 2-D

square matrices (..., M, M).

• UPLO (str) – Select from 'L' or 'U'. It specifies which part of a is used. 'L' uses the lower
triangular part of a, and 'U' uses the upper triangular part of a.

Returns
Returns eigenvalues as a vector w. For batch input, w[k] is a vector of eigenvalues of matrix
a[k].

Return type
cupy.ndarray

180 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

See also:
numpy.linalg.eigvalsh()

Norms and other numbers

linalg.norm(x[, ord, axis, keepdims]) Returns one of matrix norms specified by ord parameter.
linalg.det(a) Returns the determinant of an array.
linalg.matrix_rank(M[, tol]) Return matrix rank of array using SVD method
linalg.slogdet(a) Returns sign and logarithm of the determinant of an ar-

ray.
trace(a[, offset, axis1, axis2, dtype, out]) Returns the sum along the diagonals of an array.

cupy.linalg.norm

cupy.linalg.norm(x, ord=None, axis=None, keepdims=False)
Returns one of matrix norms specified by ord parameter.

See numpy.linalg.norm for more detail.

Parameters
• x (cupy.ndarray) – Array to take norm. If axis is None, x must be 1-D or 2-D.

• ord (non-zero int, inf, -inf, 'fro') – Norm type.

• axis (int, 2-tuple of ints, None) – 1-D or 2-D norm is cumputed over axis.

• keepdims (bool) – If this is set True, the axes which are normed over are left.

Returns
cupy.ndarray

cupy.linalg.det

cupy.linalg.det(a)
Returns the determinant of an array.

Parameters
a (cupy.ndarray) – The input matrix with dimension (..., N, N).

Returns
Determinant of a. Its shape is a.shape[:-2].

Return type
cupy.ndarray

See also:
numpy.linalg.det()

5.3. Routines (NumPy) 181

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvalsh.html#numpy.linalg.eigvalsh
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.linalg.det.html#numpy.linalg.det

CuPy Documentation, Release 13.0.0

cupy.linalg.matrix_rank

cupy.linalg.matrix_rank(M, tol=None)
Return matrix rank of array using SVD method

Parameters
• M (cupy.ndarray) – Input array. Its ndim must be less than or equal to 2.

• tol (None or float) – Threshold of singular value of M. When tol is None, and eps is the
epsilon value for datatype of M, then tol is set to S.max() * max(M.shape) * eps, where S is
the singular value of M. It obeys numpy.linalg.matrix_rank().

Returns
Rank of M.

Return type
cupy.ndarray

See also:
numpy.linalg.matrix_rank()

cupy.linalg.slogdet

cupy.linalg.slogdet(a)
Returns sign and logarithm of the determinant of an array.

It calculates the natural logarithm of the determinant of a given value.

Parameters
a (cupy.ndarray) – The input matrix with dimension (..., N, N).

Returns
It returns a tuple (sign, logdet). sign represents each sign of the determinant as a real
number 0, 1 or -1. ‘logdet’ represents the natural logarithm of the absolute of the determinant.
If the determinant is zero, sign will be 0 and logdet will be -inf. The shapes of both sign
and logdet are equal to a.shape[:-2].

Return type
tuple of ndarray

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

Warning: To produce the same results as numpy.linalg.slogdet() for singular inputs, set the linalg
configuration to raise.

See also:
numpy.linalg.slogdet()

182 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank
https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank
https://numpy.org/doc/stable/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet
https://numpy.org/doc/stable/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet

CuPy Documentation, Release 13.0.0

cupy.trace

cupy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)
Returns the sum along the diagonals of an array.

It computes the sum along the diagonals at axis1 and axis2.

Parameters
• a (cupy.ndarray) – Array to take trace.

• offset (int) – Index of diagonals. Zero indicates the main diagonal, a positive value an
upper diagonal, and a negative value a lower diagonal.

• axis1 (int) – The first axis along which the trace is taken.

• axis2 (int) – The second axis along which the trace is taken.

• dtype – Data type specifier of the output.

• out (cupy.ndarray) – Output array.

Returns
The trace of a along axes (axis1, axis2).

Return type
cupy.ndarray

See also:
numpy.trace()

Solving equations and inverting matrices

linalg.solve(a, b) Solves a linear matrix equation.
linalg.tensorsolve(a, b[, axes]) Solves tensor equations denoted by ax = b.
linalg.lstsq(a, b[, rcond]) Return the least-squares solution to a linear matrix equa-

tion.
linalg.inv(a) Computes the inverse of a matrix.
linalg.pinv(a[, rcond]) Compute the Moore-Penrose pseudoinverse of a matrix.
linalg.tensorinv(a[, ind]) Computes the inverse of a tensor.

cupy.linalg.solve

cupy.linalg.solve(a, b)
Solves a linear matrix equation.

It computes the exact solution of x in ax = b, where a is a square and full rank matrix.

Parameters
• a (cupy.ndarray) – The matrix with dimension (..., M, M).

• b (cupy.ndarray) – The matrix with dimension (..., M) or (..., M, K).

Returns
The matrix with dimension (..., M) or (..., M, K).

5.3. Routines (NumPy) 183

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.trace.html#numpy.trace

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

See also:
numpy.linalg.solve()

cupy.linalg.tensorsolve

cupy.linalg.tensorsolve(a, b, axes=None)
Solves tensor equations denoted by ax = b.

Suppose that b is equivalent to cupy.tensordot(a, x). This function computes tensor x from a and b.

Parameters
• a (cupy.ndarray) – The tensor with len(shape) >= 1

• b (cupy.ndarray) – The tensor with len(shape) >= 1

• axes (tuple of ints) – Axes in a to reorder to the right before inversion.

Returns
The tensor with shape Q such that b.shape + Q == a.shape.

Return type
cupy.ndarray

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

See also:
numpy.linalg.tensorsolve()

cupy.linalg.lstsq

cupy.linalg.lstsq(a, b, rcond='warn')
Return the least-squares solution to a linear matrix equation.

Solves the equation a x = b by computing a vector x that minimizes the Euclidean 2-norm || b - a x ||^2. The
equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of a can be less
than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank, then
x (but for round-off error) is the “exact” solution of the equation.

Parameters
• a (cupy.ndarray) – “Coefficient” matrix with dimension (M, N)

• b (cupy.ndarray) – “Dependent variable” values with dimension (M,) or (M, K)

184 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.linalg.tensorsolve.html#numpy.linalg.tensorsolve

CuPy Documentation, Release 13.0.0

• rcond (float) – Cutoff parameter for small singular values. For stability it computes the
largest singular value denoted by s, and sets all singular values smaller than s to zero.

Returns
A tuple of (x, residuals, rank, s). Note x is the least-squares solution with shape (N,) or
(N, K) depending if b was two-dimensional. The sums of residuals is the squared Euclidean
2-norm for each column in b - a*x. The residuals is an empty array if the rank of a is < N or
M <= N, but iff b is 1-dimensional, this is a (1,) shape array, Otherwise the shape is (K,). The
rank of matrix a is an integer. The singular values of a are s.

Return type
tuple

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

See also:
numpy.linalg.lstsq()

cupy.linalg.inv

cupy.linalg.inv(a)
Computes the inverse of a matrix.

This function computes matrix a_inv from n-dimensional regular matrix a such that dot(a, a_inv) ==
eye(n).

Parameters
a (cupy.ndarray) – The regular matrix

Returns
The inverse of a matrix.

Return type
cupy.ndarray

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

See also:
numpy.linalg.inv()

5.3. Routines (NumPy) 185

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq
https://numpy.org/doc/stable/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv

CuPy Documentation, Release 13.0.0

cupy.linalg.pinv

cupy.linalg.pinv(a, rcond=1e-15)
Compute the Moore-Penrose pseudoinverse of a matrix.

It computes a pseudoinverse of a matrix a, which is a generalization of the inverse matrix with Singular Value
Decomposition (SVD). Note that it automatically removes small singular values for stability.

Parameters
• a (cupy.ndarray) – The matrix with dimension (..., M, N)

• rcond (float or cupy.ndarray) – Cutoff parameter for small singular values. For sta-
bility it computes the largest singular value denoted by s, and sets all singular values smaller
than rcond * s to zero. Broadcasts against the stack of matrices.

Returns
The pseudoinverse of a with dimension (..., N, M).

Return type
cupy.ndarray

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

See also:
numpy.linalg.pinv()

cupy.linalg.tensorinv

cupy.linalg.tensorinv(a, ind=2)
Computes the inverse of a tensor.

This function computes tensor a_inv from tensor a such that tensordot(a_inv, a, ind) == I, where I
denotes the identity tensor.

Parameters
• a (cupy.ndarray) – The tensor such that prod(a.shape[:ind]) == prod(a.
shape[ind:]).

• ind (int) – The positive number used in axes option of tensordot.

Returns
The inverse of a tensor whose shape is equivalent to a.shape[ind:] + a.shape[:ind].

Return type
cupy.ndarray

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if input
conditions are not met. To detect these invalid results, you can set the linalg configuration to a value that is
not ignore in cupyx.errstate() or cupyx.seterr().

186 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html#numpy.linalg.pinv
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

See also:
numpy.linalg.tensorinv()

5.3.10 Logic functions

Hint: NumPy API Reference: Logic functions

Truth value testing

all(a[, axis, out, keepdims]) Tests whether all array elements along a given axis eval-
uate to True.

any(a[, axis, out, keepdims]) Tests whether any array elements along a given axis eval-
uate to True.

union1d(arr1, arr2) Find the union of two arrays.

cupy.all

cupy.all(a, axis=None, out=None, keepdims=False)
Tests whether all array elements along a given axis evaluate to True.

Parameters
• a (cupy.ndarray) – Input array.

• axis (int or tuple of ints) – Along which axis to compute all. The flattened array is
used by default.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
y – An array reduced of the input array along the axis.

Return type
cupy.ndarray

See also:
numpy.all

cupy.any

cupy.any(a, axis=None, out=None, keepdims=False)
Tests whether any array elements along a given axis evaluate to True.

Parameters
• a (cupy.ndarray) – Input array.

• axis (int or tuple of ints) – Along which axis to compute all. The flattened array is
used by default.

5.3. Routines (NumPy) 187

https://numpy.org/doc/stable/reference/generated/numpy.linalg.tensorinv.html#numpy.linalg.tensorinv
https://numpy.org/doc/stable/reference/routines.logic.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.all.html#numpy.all
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
y – An array reduced of the input array along the axis.

Return type
cupy.ndarray

See also:
numpy.any

cupy.union1d

cupy.union1d(arr1, arr2)
Find the union of two arrays.

Returns the unique, sorted array of values that are in either of the two input arrays.

Parameters
• arr1 (cupy.ndarray) – Input arrays. They are flattend if they are not already 1-D.

• arr2 (cupy.ndarray) – Input arrays. They are flattend if they are not already 1-D.

Returns
union1d – Sorted union of the input arrays.

Return type
cupy.ndarray

See also:
numpy.union1d

Array contents

isfinite(x, /[, out, casting, dtype]) Tests finiteness elementwise.
isinf (x, /[, out, casting, dtype]) Tests if each element is the positive or negative infinity.
isnan(x, /[, out, casting, dtype]) Tests if each element is a NaN.
isneginf (x[, out]) Test element-wise for negative infinity, return result as

bool array.
isposinf (x[, out]) Test element-wise for positive infinity, return result as

bool array.

cupy.isneginf

cupy.isneginf(x, out=None)
Test element-wise for negative infinity, return result as bool array.

Parameters
• x (cupy.ndarray) – Input array.

188 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.any.html#numpy.any
https://numpy.org/doc/stable/reference/generated/numpy.union1d.html#numpy.union1d

CuPy Documentation, Release 13.0.0

• out (cupy.ndarray, optional) – A location into which the result is stored. If provided,
it should have a shape that input broadcasts to. By default, None, a freshly- allocated boolean
array, is returned.

Returns
y – Boolean array of same shape as x.

Return type
cupy.ndarray

Examples

>>> cupy.isneginf(0)
array(False)
>>> cupy.isneginf(-cupy.inf)
array(True)
>>> cupy.isneginf(cupy.array([-cupy.inf, -4, cupy.nan, 0, 4, cupy.inf]))
array([True, False, False, False, False, False])

See also:
numpy.isneginf

cupy.isposinf

cupy.isposinf(x, out=None)
Test element-wise for positive infinity, return result as bool array.

Parameters
• x (cupy.ndarray) – Input array.

• out (cupy.ndarray) – A location into which the result is stored. If provided, it should
have a shape that input broadcasts to. By default, None, a freshly- allocated boolean array,
is returned.

Returns
y – Boolean array of same shape as x.

Return type
cupy.ndarray

Examples

>>> cupy.isposinf(0)
array(False)
>>> cupy.isposinf(cupy.inf)
array(True)
>>> cupy.isposinf(cupy.array([-cupy.inf, -4, cupy.nan, 0, 4, cupy.inf]))
array([False, False, False, False, False, True])

See also:
numpy.isposinf

5.3. Routines (NumPy) 189

https://numpy.org/doc/stable/reference/generated/numpy.isneginf.html#numpy.isneginf
https://numpy.org/doc/stable/reference/generated/numpy.isposinf.html#numpy.isposinf

CuPy Documentation, Release 13.0.0

Array type testing

iscomplex(x) Returns a bool array, where True if input element is com-
plex.

iscomplexobj(x) Check for a complex type or an array of complex num-
bers.

isfortran(a) Returns True if the array is Fortran contiguous but not C
contiguous.

isreal(x) Returns a bool array, where True if input element is real.
isrealobj(x) Return True if x is a not complex type or an array of

complex numbers.
isscalar(element) Returns True if the type of num is a scalar type.

cupy.iscomplex

cupy.iscomplex(x)
Returns a bool array, where True if input element is complex.

What is tested is whether the input has a non-zero imaginary part, not if the input type is complex.

Parameters
x (cupy.ndarray) – Input array.

Returns
Boolean array of the same shape as x.

Return type
cupy.ndarray

See also:
isreal(), iscomplexobj()

Examples

>>> cupy.iscomplex(cupy.array([1+1j, 1+0j, 4.5, 3, 2, 2j]))
array([True, False, False, False, False, True])

cupy.iscomplexobj

cupy.iscomplexobj(x)
Check for a complex type or an array of complex numbers.

The type of the input is checked, not the value. Even if the input has an imaginary part equal to zero, iscomplexobj
evaluates to True.

Parameters
x (cupy.ndarray) – Input array.

Returns
The return value, True if x is of a complex type or has at least one complex element.

Return type
bool

190 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

See also:
isrealobj(), iscomplex()

Examples

>>> cupy.iscomplexobj(cupy.array([3, 1+0j, True]))
True
>>> cupy.iscomplexobj(cupy.array([3, 1, True]))
False

cupy.isfortran

cupy.isfortran(a)
Returns True if the array is Fortran contiguous but not C contiguous.

If you only want to check if an array is Fortran contiguous use a.flags.f_contiguous instead.

Parameters
a (cupy.ndarray) – Input array.

Returns
The return value, True if a is Fortran contiguous but not C contiguous.

Return type
bool

See also:
isfortran()

Examples

cupy.array allows to specify whether the array is written in C-contiguous order (last index varies the fastest), or
FORTRAN-contiguous order in memory (first index varies the fastest).

>>> a = cupy.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> cupy.isfortran(a)
False

>>> b = cupy.array([[1, 2, 3], [4, 5, 6]], order='F')
>>> b
array([[1, 2, 3],

[4, 5, 6]])
>>> cupy.isfortran(b)
True

The transpose of a C-ordered array is a FORTRAN-ordered array.

5.3. Routines (NumPy) 191

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.isfortran.html#numpy.isfortran

CuPy Documentation, Release 13.0.0

>>> a = cupy.array([[1, 2, 3], [4, 5, 6]], order='C')
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> cupy.isfortran(a)
False
>>> b = a.T
>>> b
array([[1, 4],

[2, 5],
[3, 6]])

>>> cupy.isfortran(b)
True

C-ordered arrays evaluate as False even if they are also FORTRAN-ordered.

>>> cupy.isfortran(np.array([1, 2], order='F'))
False

cupy.isreal

cupy.isreal(x)
Returns a bool array, where True if input element is real.

If element has complex type with zero complex part, the return value for that element is True.

Parameters
x (cupy.ndarray) – Input array.

Returns
Boolean array of same shape as x.

Return type
cupy.ndarray

See also:
iscomplex(), isrealobj()

Examples

>>> cupy.isreal(cp.array([1+1j, 1+0j, 4.5, 3, 2, 2j]))
array([False, True, True, True, True, False])

192 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupy.isrealobj

cupy.isrealobj(x)
Return True if x is a not complex type or an array of complex numbers.

The type of the input is checked, not the value. So even if the input has an imaginary part equal to zero, isrealobj
evaluates to False if the data type is complex.

Parameters
x (cupy.ndarray) – The input can be of any type and shape.

Returns
The return value, False if x is of a complex type.

Return type
bool

See also:
iscomplexobj(), isreal()

Examples

>>> cupy.isrealobj(cupy.array([3, 1+0j, True]))
False
>>> cupy.isrealobj(cupy.array([3, 1, True]))
True

cupy.isscalar

cupy.isscalar(element)
Returns True if the type of num is a scalar type.

See also:
numpy.isscalar()

Logic operations

logical_and(x1, x2, /[, out, casting, dtype]) Computes the logical AND of two arrays.
logical_or(x1, x2, /[, out, casting, dtype]) Computes the logical OR of two arrays.
logical_not(x, /[, out, casting, dtype]) Computes the logical NOT of an array.
logical_xor(x1, x2, /[, out, casting, dtype]) Computes the logical XOR of two arrays.

5.3. Routines (NumPy) 193

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.isscalar.html#numpy.isscalar

CuPy Documentation, Release 13.0.0

Comparison

allclose(a, b[, rtol, atol, equal_nan]) Returns True if two arrays are element-wise equal within
a tolerance.

isclose(a, b[, rtol, atol, equal_nan]) Returns a boolean array where two arrays are equal
within a tolerance.

array_equal(a1, a2[, equal_nan]) Returns True if two arrays are element-wise exactly
equal.

array_equiv(a1, a2) Returns True if all elements are equal or shape consis-
tent, i.e., one input array can be broadcasted to create the
same shape as the other.

greater(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 > x2.
greater_equal(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 >= x2.
less(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 < x2.
less_equal(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 <= x2.
equal(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 == x2.
not_equal(x1, x2, /[, out, casting, dtype]) Tests elementwise if x1 != x2.

cupy.allclose

cupy.allclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
Returns True if two arrays are element-wise equal within a tolerance.

Two values in a and b are considiered equal when the following equation is satisfied.

|𝑎− 𝑏| ≤ atol + rtol|𝑏|

Parameters
• a (cupy.ndarray) – Input array to compare.

• b (cupy.ndarray) – Input array to compare.

• rtol (float) – The relative tolerance.

• atol (float) – The absolute tolerance.

• equal_nan (bool) – If True, NaN’s in a will be considered equal to NaN’s in b.

Returns
A boolean 0-dim array. If its value is True, two arrays are element-wise equal within a tolerance.

Return type
cupy.ndarray

See also:
numpy.allclose()

194 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.allclose.html#numpy.allclose

CuPy Documentation, Release 13.0.0

cupy.isclose

cupy.isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False)
Returns a boolean array where two arrays are equal within a tolerance.

Two values in a and b are considiered equal when the following equation is satisfied.

|𝑎− 𝑏| ≤ atol + rtol|𝑏|

Parameters
• a (cupy.ndarray) – Input array to compare.

• b (cupy.ndarray) – Input array to compare.

• rtol (float) – The relative tolerance.

• atol (float) – The absolute tolerance.

• equal_nan (bool) – If True, NaN’s in a will be considered equal to NaN’s in b.

Returns
A boolean array storing where a and b are equal.

Return type
cupy.ndarray

See also:
numpy.isclose()

cupy.array_equal

cupy.array_equal(a1, a2, equal_nan=False)
Returns True if two arrays are element-wise exactly equal.

Parameters
• a1 (cupy.ndarray) – Input array to compare.

• a2 (cupy.ndarray) – Input array to compare.

• equal_nan (bool) – If True, NaN’s in a1 will be considered equal to NaN’s in a2.

Returns
A boolean 0-dim array. If its value is True, two arrays are element-wise equal.

Return type
cupy.ndarray

See also:
numpy.array_equal()

5.3. Routines (NumPy) 195

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html#numpy.array_equal

CuPy Documentation, Release 13.0.0

cupy.array_equiv

cupy.array_equiv(a1, a2)
Returns True if all elements are equal or shape consistent, i.e., one input array can be broadcasted to create the
same shape as the other.

Parameters
• a1 (cupy.ndarray) – Input array.

• a2 (cupy.ndarray) – Input array.

Returns
A boolean 0-dim array.

True if equivalent, otherwise False.

Return type
cupy.ndarray

See also:
numpy.array_equiv()

5.3.11 Mathematical functions

Hint: NumPy API Reference: Mathematical functions

Trigonometric functions

sin(x, /[, out, casting, dtype]) Elementwise sine function.
cos(x, /[, out, casting, dtype]) Elementwise cosine function.
tan(x, /[, out, casting, dtype]) Elementwise tangent function.
arcsin(x, /[, out, casting, dtype]) Elementwise inverse-sine function (a.k.a.
arccos(x, /[, out, casting, dtype]) Elementwise inverse-cosine function (a.k.a.
arctan(x, /[, out, casting, dtype]) Elementwise inverse-tangent function (a.k.a.
hypot(x1, x2, /[, out, casting, dtype]) Computes the hypoteneous of orthogonal vectors of

given length.
arctan2(x1, x2, /[, out, casting, dtype]) Elementwise inverse-tangent of the ratio of two arrays.
degrees rad2deg(x, /, out=None, *, casting='same_kind',

dtype=None)
radians(x, /[, out, casting, dtype]) Converts angles from degrees to radians elementwise.
unwrap(p[, discont, axis, period]) Unwrap by taking the complement of large deltas w.r.t.
deg2rad radians(x, /, out=None, *, casting='same_kind',

dtype=None)
rad2deg(x, /[, out, casting, dtype]) Converts angles from radians to degrees elementwise.

196 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.array_equiv.html#numpy.array_equiv
https://numpy.org/doc/stable/reference/routines.math.html

CuPy Documentation, Release 13.0.0

cupy.unwrap

cupy.unwrap(p, discont=None, axis=-1, *, period=6.283185307179586)
Unwrap by taking the complement of large deltas w.r.t. the period.

This unwraps a signal p by changing elements which have an absolute difference from their predecessor of more
than max(discont, period/2) to their period-complementary values.

For the default case where period is 2𝜋 and is discont is 𝜋, this unwraps a radian phase p such that adjacent
differences are never greater than 𝜋 by adding 2𝑘𝜋 for some integer 𝑘.

Parameters
• p (cupy.ndarray) – Input array. discont (float): Maximum discontinuity between values,

default is period/2. Values below period/2 are treated as if they were period/2. To have
an effect different from the default, discont should be larger than period/2.

• axis (int) – Axis along which unwrap will operate, default is the last axis.

• period – float, optional Size of the range over which the input wraps. By default, it is 2𝜋.

Returns
The result array.

Return type
cupy.ndarray

See also:
numpy.unwrap()

Hyperbolic functions

sinh (x, /[, out, casting, dtype]) Elementwise hyperbolic sine function.
cosh (x, /[, out, casting, dtype]) Elementwise hyperbolic cosine function.
tanh (x, /[, out, casting, dtype]) Elementwise hyperbolic tangent function.
arcsinh (x, /[, out, casting, dtype]) Elementwise inverse of hyperbolic sine function.
arccosh (x, /[, out, casting, dtype]) Elementwise inverse of hyperbolic cosine function.
arctanh (x, /[, out, casting, dtype]) Elementwise inverse of hyperbolic tangent function.

Rounding

around(a[, decimals, out]) Rounds to the given number of decimals.
round_(a[, decimals, out])

rint(x, /[, out, casting, dtype]) Rounds each element of an array to the nearest integer.
fix(x, /[, out, casting, dtype]) If given value x is positive, it return floor(x).
floor(x, /[, out, casting, dtype]) Rounds each element of an array to its floor integer.
ceil(x, /[, out, casting, dtype]) Rounds each element of an array to its ceiling integer.
trunc(x, /[, out, casting, dtype]) Rounds each element of an array towards zero.

5.3. Routines (NumPy) 197

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.unwrap.html#numpy.unwrap

CuPy Documentation, Release 13.0.0

cupy.around

cupy.around(a, decimals=0, out=None)
Rounds to the given number of decimals.

Parameters
• a (cupy.ndarray) – The source array.

• decimals (int) – Number of decimal places to round to (default: 0). If decimals is negative,
it specifies the number of positions to the left of the decimal point.

• out (cupy.ndarray) – Output array.

Returns
Rounded array.

Return type
cupy.ndarray

See also:
numpy.around()

cupy.round_

cupy.round_(a, decimals=0, out=None)

cupy.fix

cupy.fix(x, /, out=None, *, casting='same_kind', dtype=None)

If given value x is positive, it return floor(x).
Else, it return ceil(x).

See also:
numpy.fix()

198 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.around.html#numpy.around
https://numpy.org/doc/stable/reference/generated/numpy.fix.html#numpy.fix

CuPy Documentation, Release 13.0.0

Sums, products, differences

prod(a[, axis, dtype, out, keepdims]) Returns the product of an array along given axes.
sum(a[, axis, dtype, out, keepdims]) Returns the sum of an array along given axes.
nanprod(a[, axis, dtype, out, keepdims]) Returns the product of an array along given axes treating

Not a Numbers (NaNs) as zero.
nansum(a[, axis, dtype, out, keepdims]) Returns the sum of an array along given axes treating Not

a Numbers (NaNs) as zero.
cumprod(a[, axis, dtype, out]) Returns the cumulative product of an array along a given

axis.
cumsum(a[, axis, dtype, out]) Returns the cumulative sum of an array along a given

axis.
nancumprod(a[, axis, dtype, out]) Returns the cumulative product of an array along a given

axis treating Not a Numbers (NaNs) as one.
nancumsum(a[, axis, dtype, out]) Returns the cumulative sum of an array along a given

axis treating Not a Numbers (NaNs) as zero.
diff (a[, n, axis, prepend, append]) Calculate the n-th discrete difference along the given

axis.
gradient(f, *varargs[, axis, edge_order]) Return the gradient of an N-dimensional array.
ediff1d(arr[, to_end, to_begin]) Calculates the difference between consecutive elements

of an array.
cross(a, b[, axisa, axisb, axisc, axis]) Returns the cross product of two vectors.
trapz(y[, x, dx, axis]) Integrate along the given axis using the composite trape-

zoidal rule.

cupy.prod

cupy.prod(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the product of an array along given axes.

Parameters
• a (cupy.ndarray) – Array to take product.

• axis (int or sequence of ints) – Axes along which the product is taken.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns
The result array.

Return type
cupy.ndarray

See also:
numpy.prod()

5.3. Routines (NumPy) 199

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.prod.html#numpy.prod

CuPy Documentation, Release 13.0.0

cupy.sum

cupy.sum(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the sum of an array along given axes.

Parameters
• a (cupy.ndarray) – Array to take sum.

• axis (int or sequence of ints) – Axes along which the sum is taken.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns
The result array.

Return type
cupy.ndarray

See also:
numpy.sum()

cupy.nanprod

cupy.nanprod(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the product of an array along given axes treating Not a Numbers (NaNs) as zero.

Parameters
• a (cupy.ndarray) – Array to take product.

• axis (int or sequence of ints) – Axes along which the product is taken.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns
The result array.

Return type
cupy.ndarray

See also:
numpy.nanprod()

200 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.nanprod.html#numpy.nanprod

CuPy Documentation, Release 13.0.0

cupy.nansum

cupy.nansum(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the sum of an array along given axes treating Not a Numbers (NaNs) as zero.

Parameters
• a (cupy.ndarray) – Array to take sum.

• axis (int or sequence of ints) – Axes along which the sum is taken.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns
The result array.

Return type
cupy.ndarray

See also:
numpy.nansum()

cupy.cumprod

cupy.cumprod(a, axis=None, dtype=None, out=None)
Returns the cumulative product of an array along a given axis.

Parameters
• a (cupy.ndarray) – Input array.

• axis (int) – Axis along which the cumulative product is taken. If it is not specified, the
input is flattened.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

Returns
The result array.

Return type
cupy.ndarray

See also:
numpy.cumprod()

5.3. Routines (NumPy) 201

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.nansum.html#numpy.nansum
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.cumprod.html#numpy.cumprod

CuPy Documentation, Release 13.0.0

cupy.cumsum

cupy.cumsum(a, axis=None, dtype=None, out=None)
Returns the cumulative sum of an array along a given axis.

Parameters
• a (cupy.ndarray) – Input array.

• axis (int) – Axis along which the cumulative sum is taken. If it is not specified, the input
is flattened.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

Returns
The result array.

Return type
cupy.ndarray

See also:
numpy.cumsum()

cupy.nancumprod

cupy.nancumprod(a, axis=None, dtype=None, out=None)
Returns the cumulative product of an array along a given axis treating Not a Numbers (NaNs) as one.

Parameters
• a (cupy.ndarray) – Input array.

• axis (int) – Axis along which the cumulative product is taken. If it is not specified, the
input is flattened.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

Returns
The result array.

Return type
cupy.ndarray

See also:
numpy.nancumprod()

202 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html#numpy.cumsum
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.nancumprod.html#numpy.nancumprod

CuPy Documentation, Release 13.0.0

cupy.nancumsum

cupy.nancumsum(a, axis=None, dtype=None, out=None)
Returns the cumulative sum of an array along a given axis treating Not a Numbers (NaNs) as zero.

Parameters
• a (cupy.ndarray) – Input array.

• axis (int) – Axis along which the cumulative sum is taken. If it is not specified, the input
is flattened.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

Returns
The result array.

Return type
cupy.ndarray

See also:
numpy.nancumsum()

cupy.diff

cupy.diff(a, n=1, axis=-1, prepend=None, append=None)
Calculate the n-th discrete difference along the given axis.

Parameters
• a (cupy.ndarray) – Input array.

• n (int) – The number of times values are differenced. If zero, the input is returned as-is.

• axis (int) – The axis along which the difference is taken, default is the last axis.

• prepend (int, float, cupy.ndarray) – Value to prepend to a.

• append (int, float, cupy.ndarray) – Value to append to a.

Returns
The result array.

Return type
cupy.ndarray

See also:
numpy.diff()

5.3. Routines (NumPy) 203

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.nancumsum.html#numpy.nancumsum
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.diff.html#numpy.diff

CuPy Documentation, Release 13.0.0

cupy.gradient

cupy.gradient(f, *varargs, axis=None, edge_order=1)
Return the gradient of an N-dimensional array.

The gradient is computed using second order accurate central differences in the interior points and either first
or second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient
hence has the same shape as the input array.

Parameters
• f (cupy.ndarray) – An N-dimensional array containing samples of a scalar function.

• varargs (list of scalar or array, optional) – Spacing between f values. Default
unitary spacing for all dimensions. Spacing can be specified using:

1. single scalar to specify a sample distance for all dimensions.

2. N scalars to specify a constant sample distance for each dimension. i.e. dx, dy, dz, . . .

3. N arrays to specify the coordinates of the values along each dimension of F. The length of
the array must match the size of the corresponding dimension

4. Any combination of N scalars/arrays with the meaning of 2. and 3.

If axis is given, the number of varargs must equal the number of axes. Default: 1.

• edge_order ({1, 2}, optional) – The gradient is calculated using N-th order accurate
differences at the boundaries. Default: 1.

• axis (None or int or tuple of ints, optional) – The gradient is calculated only
along the given axis or axes. The default (axis = None) is to calculate the gradient for all the
axes of the input array. axis may be negative, in which case it counts from the last to the first
axis.

Returns
A set of ndarrays (or a single ndarray if there is only one dimension) corresponding to the deriva-
tives of f with respect to each dimension. Each derivative has the same shape as f.

Return type
gradient (cupy.ndarray or list of cupy.ndarray)

See also:
numpy.gradient()

cupy.ediff1d

cupy.ediff1d(arr, to_end=None, to_begin=None)
Calculates the difference between consecutive elements of an array.

Parameters
• arr (cupy.ndarray) – Input array.

• to_end (cupy.ndarray, optional) – Numbers to append at the end of the returend dif-
ferences.

• to_begin (cupy.ndarray, optional) – Numbers to prepend at the beginning of the re-
turned differences.

204 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.gradient.html#numpy.gradient

CuPy Documentation, Release 13.0.0

Returns
New array consisting differences among succeeding elements.

Return type
cupy.ndarray

See also:
numpy.ediff1d()

cupy.cross

cupy.cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)
Returns the cross product of two vectors.

The cross product of a and b in 𝑅3 is a vector perpendicular to both a and b. If a and b are arrays of vectors,
the vectors are defined by the last axis of a and b by default, and these axes can have dimensions 2 or 3. Where
the dimension of either a or b is 2, the third component of the input vector is assumed to be zero and the cross
product calculated accordingly. In cases where both input vectors have dimension 2, the z-component of the
cross product is returned.

Parameters
• a (cupy.ndarray) – Components of the first vector(s).

• b (cupy.ndarray) – Components of the second vector(s).

• axisa (int, optional) – Axis of a that defines the vector(s). By default, the last axis.

• axisb (int, optional) – Axis of b that defines the vector(s). By default, the last axis.

• axisc (int, optional) – Axis of c containing the cross product vector(s). Ignored if both
input vectors have dimension 2, as the return is scalar. By default, the last axis.

• axis (int, optional) – If defined, the axis of a, b and c that defines the vector(s) and
cross product(s). Overrides axisa, axisb and axisc.

Returns
Vector cross product(s).

Return type
cupy.ndarray

See also:
numpy.cross()

cupy.trapz

cupy.trapz(y, x=None, dx=1.0, axis=-1)
Integrate along the given axis using the composite trapezoidal rule. Integrate y (x) along the given axis.

Parameters
• y (cupy.ndarray) – Input array to integrate.

• x (cupy.ndarray) – Sample points over which to integrate. If None equal spacing dx is
assumed.

• dx (float) – Spacing between sample points, used if x is None, default is 1.

5.3. Routines (NumPy) 205

https://numpy.org/doc/stable/reference/generated/numpy.ediff1d.html#numpy.ediff1d
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.cross.html#numpy.cross
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• axis (int) – The axis along which the integral is taken, default is the last axis.

Returns
Definite integral as approximated by the trapezoidal rule.

Return type
cupy.ndarray

See also:
numpy.trapz()

Exponents and logarithms

exp(x, /[, out, casting, dtype]) Elementwise exponential function.
expm1(x, /[, out, casting, dtype]) Computes exp(x) - 1 elementwise.
exp2(x, /[, out, casting, dtype]) Elementwise exponentiation with base 2.
log(x, /[, out, casting, dtype]) Elementwise natural logarithm function.
log10(x, /[, out, casting, dtype]) Elementwise common logarithm function.
log2(x, /[, out, casting, dtype]) Elementwise binary logarithm function.
log1p(x, /[, out, casting, dtype]) Computes log(1 + x) elementwise.
logaddexp(x1, x2, /[, out, casting, dtype]) Computes log(exp(x1) + exp(x2)) elementwise.
logaddexp2(x1, x2, /[, out, casting, dtype]) Computes log2(exp2(x1) + exp2(x2)) element-

wise.

Other special functions

i0(x, /[, out, casting, dtype]) Modified Bessel function of the first kind, order 0.
sinc(x, /[, out, casting, dtype]) Elementwise sinc function.

cupy.i0

cupy.i0(x, /, out=None, *, casting='same_kind', dtype=None)
Modified Bessel function of the first kind, order 0.

See also:
numpy.i0()

cupy.sinc

cupy.sinc(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise sinc function.

See also:
numpy.sinc()

206 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.trapz.html#numpy.trapz
https://numpy.org/doc/stable/reference/generated/numpy.i0.html#numpy.i0
https://numpy.org/doc/stable/reference/generated/numpy.sinc.html#numpy.sinc

CuPy Documentation, Release 13.0.0

Floating point routines

signbit(x, /[, out, casting, dtype]) Tests elementwise if the sign bit is set (i.e.
copysign(x1, x2, /[, out, casting, dtype]) Returns the first argument with the sign bit of the second

elementwise.
frexp(x[, out1, out2], / [[, out, casting, ...]) Decomposes each element to mantissa and two's expo-

nent.
ldexp(x1, x2, /[, out, casting, dtype]) Computes x1 * 2 ** x2 elementwise.
nextafter(x1, x2, /[, out, casting, dtype]) Computes the nearest neighbor float values towards the

second argument.

Rational routines

lcm(x1, x2, /[, out, casting, dtype]) Computes lcm of x1 and x2 elementwise.
gcd(x1, x2, /[, out, casting, dtype]) Computes gcd of x1 and x2 elementwise.

Arithmetic operations

add(x1, x2, /[, out, casting, dtype]) Adds two arrays elementwise.
reciprocal(x, /[, out, casting, dtype]) Computes 1 / x elementwise.
positive(x, /[, out, casting, dtype]) Takes numerical positive elementwise.
negative(x, /[, out, casting, dtype]) Takes numerical negative elementwise.
multiply(x1, x2, /[, out, casting, dtype]) Multiplies two arrays elementwise.
divide true_divide(x1, x2, /, out=None, *, casting='same_kind',

dtype=None)
power(x1, x2, /[, out, casting, dtype]) Computes x1 ** x2 elementwise.
subtract(x1, x2, /[, out, casting, dtype]) Subtracts arguments elementwise.
true_divide(x1, x2, /[, out, casting, dtype]) Elementwise true division (i.e.
floor_divide(x1, x2, /[, out, casting, dtype]) Elementwise floor division (i.e.
float_power(x1, x2, /[, out, casting, dtype]) First array elements raised to powers from second array,

element-wise.
fmod(x1, x2, /[, out, casting, dtype]) Computes the remainder of C division elementwise.
mod(x1, x2, /[, out, casting, dtype]) Computes the remainder of Python division element-

wise.
modf (x[, out1, out2], / [[, out, casting, dtype]) Extracts the fractional and integral parts of an array ele-

mentwise.
remainder mod(x1, x2, /, out=None, *, casting='same_kind',

dtype=None)
divmod(x1, x2[, out1, out2], / [[, out, ...])

5.3. Routines (NumPy) 207

CuPy Documentation, Release 13.0.0

Handling complex numbers

angle(z[, deg]) Returns the angle of the complex argument.
real(val) Returns the real part of the elements of the array.
imag(val) Returns the imaginary part of the elements of the array.
conj conjugate(x, /, out=None, *, casting='same_kind',

dtype=None)
conjugate(x, /[, out, casting, dtype]) Returns the complex conjugate, element-wise.

cupy.angle

cupy.angle(z, deg=False)
Returns the angle of the complex argument.

See also:
numpy.angle()

cupy.real

cupy.real(val)
Returns the real part of the elements of the array.

See also:
numpy.real()

cupy.imag

cupy.imag(val)
Returns the imaginary part of the elements of the array.

See also:
numpy.imag()

208 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.angle.html#numpy.angle
https://numpy.org/doc/stable/reference/generated/numpy.real.html#numpy.real
https://numpy.org/doc/stable/reference/generated/numpy.imag.html#numpy.imag

CuPy Documentation, Release 13.0.0

Miscellaneous

convolve(a, v[, mode]) Returns the discrete, linear convolution of two one-
dimensional sequences.

clip(a, a_min, a_max[, out]) Clips the values of an array to a given interval.
sqrt(x, /[, out, casting, dtype]) Elementwise square root function.
cbrt(x, /[, out, casting, dtype]) Elementwise cube root function.
square(x, /[, out, casting, dtype]) Elementwise square function.
absolute(x, /[, out, casting, dtype]) Elementwise absolute value function.
fabs(x, /[, out, casting, dtype]) Calculates absolute values element-wise.
sign(x, /[, out, casting, dtype]) Elementwise sign function.
maximum(x1, x2, /[, out, casting, dtype]) Takes the maximum of two arrays elementwise.
minimum(x1, x2, /[, out, casting, dtype]) Takes the minimum of two arrays elementwise.
fmax(x1, x2, /[, out, casting, dtype]) Takes the maximum of two arrays elementwise.
fmin(x1, x2, /[, out, casting, dtype]) Takes the minimum of two arrays elementwise.
nan_to_num(x[, copy, nan, posinf, neginf]) Replace NaN with zero and infinity with large finite

numbers (default behaviour) or with the numbers defined
by the user using the nan, posinf and/or neginf key-
words.

heaviside(x1, x2, /[, out, casting, dtype]) Compute the Heaviside step function.
real_if_close(a[, tol]) If input is complex with all imaginary parts close to zero,

return real parts.
interp(x, xp, fp[, left, right, period]) One-dimensional linear interpolation.

cupy.convolve

cupy.convolve(a, v, mode='full')
Returns the discrete, linear convolution of two one-dimensional sequences.

Parameters
• a (cupy.ndarray) – first 1-dimensional input.

• v (cupy.ndarray) – second 1-dimensional input.

• mode (str, optional) – valid, same, full

Returns
Discrete, linear convolution of a and v.

Return type
cupy.ndarray

See also:
numpy.convolve()

5.3. Routines (NumPy) 209

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.convolve.html#numpy.convolve

CuPy Documentation, Release 13.0.0

cupy.clip

cupy.clip(a, a_min, a_max, out=None)
Clips the values of an array to a given interval.

This is equivalent to maximum(minimum(a, a_max), a_min), while this function is more efficient.

Parameters
• a (cupy.ndarray) – The source array.

• a_min (scalar, cupy.ndarray or None) – The left side of the interval. When it is
None, it is ignored.

• a_max (scalar, cupy.ndarray or None) – The right side of the interval. When it is
None, it is ignored.

• out (cupy.ndarray) – Output array.

Returns
Clipped array.

Return type
cupy.ndarray

See also:
numpy.clip()

Notes

When a_min is greater than a_max, clip returns an array in which all values are equal to a_max.

cupy.nan_to_num

cupy.nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None)
Replace NaN with zero and infinity with large finite numbers (default behaviour) or with the numbers defined by
the user using the nan, posinf and/or neginf keywords.

See also:
numpy.nan_to_num()

cupy.real_if_close

cupy.real_if_close(a, tol=100)
If input is complex with all imaginary parts close to zero, return real parts. “Close to zero” is defined as tol *
(machine epsilon of the type for a).

Warning: This function may synchronize the device.

See also:
numpy.real_if_close()

210 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.clip.html#numpy.clip
https://numpy.org/doc/stable/reference/generated/numpy.nan_to_num.html#numpy.nan_to_num
https://numpy.org/doc/stable/reference/generated/numpy.real_if_close.html#numpy.real_if_close

CuPy Documentation, Release 13.0.0

cupy.interp

cupy.interp(x, xp, fp, left=None, right=None, period=None)
One-dimensional linear interpolation.

Parameters
• x (cupy.ndarray) – a 1D array of points on which the interpolation is performed.

• xp (cupy.ndarray) – a 1D array of points on which the function values (fp) are known.

• fp (cupy.ndarray) – a 1D array containing the function values at the the points xp.

• left (float or complex) – value to return if x < xp[0]. Default is fp[0].

• right (float or complex) – value to return if x > xp[-1]. Default is fp[-1].

• period (None or float) – a period for the x-coordinates. Parameters left and right
are ignored if period is specified. Default is None.

Returns
The interpolated values, same shape as x.

Return type
cupy.ndarray

Note: This function may synchronize if left or right is not already on the device.

See also:
numpy.interp()

5.3.12 Miscellaneous routines

Hint: NumPy API Reference: Miscellaneous routines

Memory ranges

byte_bounds(a) Returns pointers to the end-points of an array.
shares_memory(a, b[, max_work])

may_share_memory(a, b[, max_work])

5.3. Routines (NumPy) 211

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.interp.html#numpy.interp
https://numpy.org/doc/stable/reference/routines.other.html

CuPy Documentation, Release 13.0.0

cupy.byte_bounds

cupy.byte_bounds(a)
Returns pointers to the end-points of an array.

Parameters
a – ndarray

Returns
pointers to the end-points of an array

Return type
Tuple[int, int]

See also:
numpy.byte_bounds()

cupy.shares_memory

cupy.shares_memory(a, b, max_work=None)

cupy.may_share_memory

cupy.may_share_memory(a, b, max_work=None)

Utility

show_config(*[, _full]) Prints the current runtime configuration to standard out-
put.

cupy.show_config

cupy.show_config(*, _full=False)
Prints the current runtime configuration to standard output.

Matlab-like Functions

who([vardict]) Print the CuPy arrays in the given dictionary.

212 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.byte_bounds.html#numpy.byte_bounds

CuPy Documentation, Release 13.0.0

cupy.who

cupy.who(vardict=None)
Print the CuPy arrays in the given dictionary.

Prints out the name, shape, bytes and type of all of the ndarrays present in vardict.

If there is no dictionary passed in or vardict is None then returns CuPy arrays in the globals() dictionary (all
CuPy arrays in the namespace).

Parameters
vardict – (None or dict) A dictionary possibly containing ndarrays. Default is globals() if None
specified

Example

>>> a = cupy.arange(10)
>>> b = cupy.ones(20)
>>> cupy.who()
Name Shape Bytes Type
===

a 10 80 int64
b 20 160 float64

Upper bound on total bytes = 240
>>> d = {'x': cupy.arange(2.0),
... 'y': cupy.arange(3.0), 'txt': 'Some str',
... 'idx':5}
>>> cupy.who(d)
Name Shape Bytes Type
===

x 2 16 float64
y 3 24 float64

Upper bound on total bytes = 40

5.3.13 Padding arrays

Hint: NumPy API Reference: Padding arrays

pad(array, pad_width[, mode]) Pads an array with specified widths and values.

5.3. Routines (NumPy) 213

https://numpy.org/doc/stable/reference/routines.padding.html

CuPy Documentation, Release 13.0.0

cupy.pad

cupy.pad(array, pad_width, mode='constant', **kwargs)
Pads an array with specified widths and values.

Parameters
• array (cupy.ndarray) – The array to pad.

• pad_width (sequence, array_like or int) – Number of values padded to the edges
of each axis. ((before_1, after_1), . . . (before_N, after_N)) unique pad widths for each axis.
((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for
before = after = pad width for all axes. You cannot specify cupy.ndarray.

• mode (str or function, optional) – One of the following string values or a user sup-
plied function

’constant’ (default)
Pads with a constant value.

’edge’
Pads with the edge values of array.

’linear_ramp’
Pads with the linear ramp between end_value and the array edge value.

’maximum’
Pads with the maximum value of all or part of the vector along each axis.

’mean’
Pads with the mean value of all or part of the vector along each axis.

’median’
Pads with the median value of all or part of the vector along each axis. (Not Implemented)

’minimum’
Pads with the minimum value of all or part of the vector along each axis.

’reflect’
Pads with the reflection of the vector mirrored on the first and last values of the vector
along each axis.

’symmetric’
Pads with the reflection of the vector mirrored along the edge of the array.

’wrap’
Pads with the wrap of the vector along the axis. The first values are used to pad the end
and the end values are used to pad the beginning.

’empty’
Pads with undefined values.

<function>
Padding function, see Notes.

• stat_length (sequence or int, optional) – Used in ‘maximum’, ‘mean’, ‘median’,
and ‘minimum’. Number of values at edge of each axis used to calculate the statistic value.
((before_1, after_1), . . . (before_N, after_N)) unique statistic lengths for each axis. ((before,
after),) yields same before and after statistic lengths for each axis. (stat_length,) or int is a
shortcut for before = after = statistic length for all axes. Default is None, to use the entire
axis. You cannot specify cupy.ndarray.

214 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• constant_values (sequence or scalar, optional) – Used in ‘constant’. The values
to set the padded values for each axis. ((before_1, after_1), . . . (before_N, after_N)) unique
pad constants for each axis. ((before, after),) yields same before and after constants for each
axis. (constant,) or constant is a shortcut for before = after = constant for all axes. Default is
0. You cannot specify cupy.ndarray.

• end_values (sequence or scalar, optional) – Used in ‘linear_ramp’. The values
used for the ending value of the linear_ramp and that will form the edge of the padded array.
((before_1, after_1), . . . (before_N, after_N)) unique end values for each axis. ((before,
after),) yields same before and after end values for each axis. (constant,) or constant is a
shortcut for before = after = constant for all axes. Default is 0. You cannot specify cupy.
ndarray.

• reflect_type ({'even', 'odd'}, optional) – Used in ‘reflect’, and ‘symmetric’. The
‘even’ style is the default with an unaltered reflection around the edge value. For the ‘odd’
style, the extended part of the array is created by subtracting the reflected values from two
times the edge value.

Returns
Padded array with shape extended by pad_width.

Return type
cupy.ndarray

Note: For an array with rank greater than 1, some of the padding of later axes is calculated from padding
of previous axes. This is easiest to think about with a rank 2 array where the corners of the padded array are
calculated by using padded values from the first axis.

The padding function, if used, should modify a rank 1 array in-place. It has the following signature:

padding_func(vector, iaxis_pad_width, iaxis, kwargs)

where

vector (cupy.ndarray)
A rank 1 array already padded with zeros. Padded values are vector[:iaxis_pad_width[0]] and
vector[-iaxis_pad_width[1]:].

iaxis_pad_width (tuple)
A 2-tuple of ints, iaxis_pad_width[0] represents the number of values padded at the beginning of vector
where iaxis_pad_width[1] represents the number of values padded at the end of vector.

iaxis (int)
The axis currently being calculated.

kwargs (dict)
Any keyword arguments the function requires.

5.3. Routines (NumPy) 215

CuPy Documentation, Release 13.0.0

Examples

>>> a = cupy.array([1, 2, 3, 4, 5])
>>> cupy.pad(a, (2, 3), 'constant', constant_values=(4, 6))
array([4, 4, 1, ..., 6, 6, 6])

>>> cupy.pad(a, (2, 3), 'edge')
array([1, 1, 1, ..., 5, 5, 5])

>>> cupy.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([5, 3, 1, 2, 3, 4, 5, 2, -1, -4])

>>> cupy.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

>>> cupy.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> a = cupy.array([[1, 2], [3, 4]])
>>> cupy.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],

[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])

>>> a = cupy.array([1, 2, 3, 4, 5])
>>> cupy.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

>>> cupy.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

>>> cupy.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

>>> cupy.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

>>> cupy.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

>>> def pad_with(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
>>> a = cupy.arange(6)
>>> a = a.reshape((2, 3))

(continues on next page)

216 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

(continued from previous page)

>>> cupy.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],

[10, 10, 10, 10, 10, 10, 10],
[10, 10, 0, 1, 2, 10, 10],
[10, 10, 3, 4, 5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])

>>> cupy.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],

[100, 100, 100, 100, 100, 100, 100],
[100, 100, 0, 1, 2, 100, 100],
[100, 100, 3, 4, 5, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100]])

5.3.14 Polynomials

Hint: NumPy API Reference: Polynomials

Power Series (cupy.polynomial.polynomial)

Hint: NumPy API Reference: Power Series (numpy.polynomial.polynomial)

Misc Functions

polyvander(x, deg) Computes the Vandermonde matrix of given degree.
polycompanion(c) Computes the companion matrix of c.
polyval(x, c[, tensor]) Evaluate a polynomial at points x.
polyvalfromroots(x, r[, tensor]) Evaluate a polynomial specified by its roots at points x.

cupy.polynomial.polynomial.polyvander

cupy.polynomial.polynomial.polyvander(x, deg)
Computes the Vandermonde matrix of given degree.

Parameters
• x (cupy.ndarray) – array of points

• deg (int) – degree of the resulting matrix.

Returns
The Vandermonde matrix

Return type
cupy.ndarray

5.3. Routines (NumPy) 217

https://numpy.org/doc/stable/reference/routines.polynomials.html
https://numpy.org/doc/stable/reference/routines.polynomials.polynomial.html
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

See also:
numpy.polynomial.polynomial.polyvander()

cupy.polynomial.polynomial.polycompanion

cupy.polynomial.polynomial.polycompanion(c)
Computes the companion matrix of c.

Parameters
c (cupy.ndarray) – 1-D array of polynomial coefficients ordered from low to high degree.

Returns
Companion matrix of dimensions (deg, deg).

Return type
cupy.ndarray

See also:
numpy.polynomial.polynomial.polycompanion()

cupy.polynomial.polynomial.polyval

cupy.polynomial.polynomial.polyval(x, c, tensor=True)
Evaluate a polynomial at points x.

If c is of length n + 1, this function returns the value

𝑝(𝑥) = 𝑐0 + 𝑐1 * 𝑥+ ...+ 𝑐𝑛 * 𝑥𝑛

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either
case, either x or its elements must support multiplication and addition both with themselves and with the elements
of c.

If c is a 1-D array, then p(x) will have the same shape as x. If c is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is true the shape will be c.shape[1:] + x.shape. If tensor is false the
shape will be c.shape[1:]. Note that scalars have shape (,).

Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a concern.

Parameters
• x (array_like, compatible object) – If x is a list or tuple, it is converted to an ndarray,

otherwise it is left unchanged and treated as a scalar. In either case, x or its elements must
support addition and multiplication with with themselves and with the elements of c.

• c (array_like) – Array of coefficients ordered so that the coefficients for terms of degree
n are contained in c[n]. If c is multidimensional the remaining indices enumerate multiple
polynomials. In the two dimensional case the coefficients may be thought of as stored in the
columns of c.

• tensor (boolean, optional) – If True, the shape of the coefficient array is extended with
ones on the right, one for each dimension of x. Scalars have dimension 0 for this action. The
result is that every column of coefficients in c is evaluated for every element of x. If False,
x is broadcast over the columns of c for the evaluation. This keyword is useful when c is
multidimensional. The default value is True.

218 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyvander.html#numpy.polynomial.polynomial.polyvander
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polycompanion.html#numpy.polynomial.polynomial.polycompanion

CuPy Documentation, Release 13.0.0

Returns
values – The shape of the returned array is described above.

Return type
ndarray, compatible object

See also:
numpy.polynomial.polynomial.polyval

Notes

The evaluation uses Horner’s method.

cupy.polynomial.polynomial.polyvalfromroots

cupy.polynomial.polynomial.polyvalfromroots(x, r, tensor=True)
Evaluate a polynomial specified by its roots at points x.

If r is of length N, this function returns the value

𝑝(𝑥) =

𝑁∏︁
𝑛=1

(𝑥− 𝑟𝑛)

The parameter x is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either
case, either x or its elements must support multiplication and addition both with themselves and with the elements
of r.

If r is a 1-D array, then p(x) will have the same shape as x. If r is multidimensional, then the shape of the result
depends on the value of tensor. If tensor is True the shape will be r.shape[1:] + x.shape; that is, each polynomial
is evaluated at every value of x. If tensor is False, the shape will be r.shape[1:]; that is, each polynomial is
evaluated only for the corresponding broadcast value of x. Note that scalars have shape (,).

Parameters
• x (array_like, compatible object) – If x is a list or tuple, it is converted to an ndarray,

otherwise it is left unchanged and treated as a scalar. In either case, x or its elements must
support addition and multiplication with with themselves and with the elements of r.

• r (array_like) – Array of roots. If r is multidimensional the first index is the root index,
while the remaining indices enumerate multiple polynomials. For instance, in the two di-
mensional case the roots of each polynomial may be thought of as stored in the columns of
r.

• tensor (boolean, optional) – If True, the shape of the roots array is extended with ones
on the right, one for each dimension of x. Scalars have dimension 0 for this action. The
result is that every column of coefficients in r is evaluated for every element of x. If False,
x is broadcast over the columns of r for the evaluation. This keyword is useful when r is
multidimensional. The default value is True.

Returns
values – The shape of the returned array is described above.

Return type
ndarray, compatible object

See also:
numpy.polynomial.polynomial.polyvalfroomroots

5.3. Routines (NumPy) 219

https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyval.html#numpy.polynomial.polynomial.polyval

CuPy Documentation, Release 13.0.0

Polyutils

Hint: NumPy API Reference: Polyutils

Functions

as_series(alist[, trim]) Returns argument as a list of 1-d arrays.
trimseq(seq) Removes small polynomial series coefficients.
trimcoef (c[, tol]) Removes small trailing coefficients from a polynomial.

cupy.polynomial.polyutils.as_series

cupy.polynomial.polyutils.as_series(alist, trim=True)
Returns argument as a list of 1-d arrays.

Parameters
• alist (cupy.ndarray or list of cupy.ndarray) – 1-D or 2-D input array.

• trim (bool, optional) – trim trailing zeros.

Returns
list of 1-D arrays.

Return type
list of cupy.ndarray

See also:
numpy.polynomial.polyutils.as_series()

cupy.polynomial.polyutils.trimseq

cupy.polynomial.polyutils.trimseq(seq)
Removes small polynomial series coefficients.

Parameters
seq (cupy.ndarray) – input array.

Returns
input array with trailing zeros removed. If the resulting output is empty, it returns the first element.

Return type
cupy.ndarray

See also:
numpy.polynomial.polyutils.trimseq()

220 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/routines.polynomials.polyutils.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.as_series.html#numpy.polynomial.polyutils.as_series
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.trimseq.html#numpy.polynomial.polyutils.trimseq

CuPy Documentation, Release 13.0.0

cupy.polynomial.polyutils.trimcoef

cupy.polynomial.polyutils.trimcoef(c, tol=0)
Removes small trailing coefficients from a polynomial.

Parameters
• c (cupy.ndarray) – 1d array of coefficients from lowest to highest order.

• tol (number, optional) – trailing coefficients whose absolute value are less than or equal
to tol are trimmed.

Returns
trimmed 1d array.

Return type
cupy.ndarray

See also:
numpy.polynomial.polyutils.trimcoef()

Poly1d

Hint: NumPy API Reference: Poly1d

Basics

poly1d(c_or_r[, r, variable]) A one-dimensional polynomial class.
cupy.poly(seq_of_zeros) Computes the coefficients of a polynomial with the given

roots sequence.
polyval(p, x) Evaluates a polynomial at specific values.
roots(p) Computes the roots of a polynomial with given coeffi-

cients.

cupy.poly1d

class cupy.poly1d(c_or_r, r=False, variable=None)
A one-dimensional polynomial class.

Note: This is a counterpart of an old polynomial class in NumPy. Note that the new NumPy polynomial API
(numpy.polynomial.polynomial) has different convention, e.g. order of coefficients is reversed.

Parameters
• c_or_r (array_like) – The polynomial’s coefficients in decreasing powers

• r (bool, optional) – If True, c_or_r specifies the polynomial’s roots; the default is False.

• variable (str, optional) – Changes the variable used when printing the polynomial
from x to variable

5.3. Routines (NumPy) 221

https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.trimcoef.html#numpy.polynomial.polyutils.trimcoef
https://numpy.org/doc/stable/reference/routines.polynomials.poly1d.html
https://numpy.org/doc/stable/reference/routines.polynomials.polynomial.html#module-numpy.polynomial.polynomial
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

See also:
numpy.poly1d

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(key, /)
Return self[key].

__setitem__(key, value, /)
Set self[key] to value.

__len__()

Return len(self).

__iter__()

Implement iter(self).

deriv(self, m=1)

get(self, stream=None)
Returns a copy of poly1d object on host memory.

Parameters
stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the copy runs asyn-
chronously. Otherwise, the copy is synchronous. The default uses CUDA stream object of
the current context.

Returns
Copy of poly1d object on host memory.

Return type
numpy.poly1d

integ(self, m=1, k=0)

set(self, polyin, stream=None)
Copies a poly1d object on the host memory to cupy.poly1d .

Parameters
• polyin (numpy.poly1d) – The source object on the host memory.

• stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the copy runs asyn-
chronously. Otherwise, the copy is synchronous. The default uses CUDA stream object of
the current context.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

222 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html#numpy.poly1d
https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html#numpy.poly1d
https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html#numpy.poly1d

CuPy Documentation, Release 13.0.0

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

c

coef

coefficients

coeffs

o

order

r

roots

variable

cupy.poly

cupy.poly(seq_of_zeros)
Computes the coefficients of a polynomial with the given roots sequence.

Parameters
seq_of_zeros (cupy.ndarray) – a sequence of polynomial roots.

Returns
polynomial coefficients from highest to lowest degree.

Return type
cupy.ndarray

Warning: This function doesn’t support general 2d square arrays currently. Only complex Hermitian and
real symmetric 2d arrays are allowed.

See also:
numpy.poly()

5.3. Routines (NumPy) 223

https://numpy.org/doc/stable/reference/generated/numpy.poly.html#numpy.poly

CuPy Documentation, Release 13.0.0

cupy.polyval

cupy.polyval(p, x)
Evaluates a polynomial at specific values.

Parameters
• p (cupy.ndarray or cupy.poly1d) – input polynomial.

• x (scalar, cupy.ndarray) – values at which the polynomial

• evaluated. (is) –

Returns
polynomial evaluated at x.

Return type
cupy.ndarray or cupy.poly1d

Warning: This function doesn’t currently support poly1d values to evaluate.

See also:
numpy.polyval()

cupy.roots

cupy.roots(p)
Computes the roots of a polynomial with given coefficients.

Parameters
p (cupy.ndarray or cupy.poly1d) – polynomial coefficients.

Returns
polynomial roots.

Return type
cupy.ndarray

Warning: This function doesn’t support currently polynomial coefficients whose companion matrices are
general 2d square arrays. Only those with complex Hermitian or real symmetric 2d arrays are allowed.

The current cupy.roots doesn’t guarantee the order of results.

See also:
numpy.roots()

224 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.polyval.html#numpy.polyval
https://numpy.org/doc/stable/reference/generated/numpy.roots.html#numpy.roots

CuPy Documentation, Release 13.0.0

Fitting

polyfit(x, y, deg[, rcond, full, w, cov]) Returns the least squares fit of polynomial of degree deg
to the data y sampled at x.

cupy.polyfit

cupy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)
Returns the least squares fit of polynomial of degree deg to the data y sampled at x.

Parameters
• x (cupy.ndarray) – x-coordinates of the sample points of shape (M,).

• y (cupy.ndarray) – y-coordinates of the sample points of shape (M,) or (M, K).

• deg (int) – degree of the fitting polynomial.

• rcond (float, optional) – relative condition number of the fit. The default value is
len(x) * eps.

• full (bool, optional) – indicator of the return value nature. When False (default), only
the coefficients are returned. When True, diagnostic information is also returned.

• w (cupy.ndarray, optional) – weights applied to the y-coordinates of the sample points
of shape (M,).

• cov (bool or str, optional) – if given, returns the coefficients along with the covari-
ance matrix.

Returns
p (cupy.ndarray of shape (deg + 1,) or (deg + 1, K)):

Polynomial coefficients from highest to lowest degree

residuals, rank, singular_values, rcond (cupy.ndarray, int, cupy.ndarray, float):
Present only if full=True. Sum of squared residuals of the least-squares fit, rank of the
scaled Vandermonde coefficient matrix, its singular values, and the specified value of rcond.

V (cupy.ndarray of shape (M, M) or (M, M, K)):
Present only if full=False and cov=True. The covariance matrix of the polynomial coef-
ficient estimates.

Return type
cupy.ndarray or tuple

Warning: numpy.RankWarning: The rank of the coefficient matrix in the least-squares fit is deficient. It is
raised if full=False.

See also:
numpy.polyfit()

5.3. Routines (NumPy) 225

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html#numpy.polyfit

CuPy Documentation, Release 13.0.0

Arithmetic

polyadd(a1, a2) Computes the sum of two polynomials.
polysub(a1, a2) Computes the difference of two polynomials.
polymul(a1, a2) Computes the product of two polynomials.

cupy.polyadd

cupy.polyadd(a1, a2)
Computes the sum of two polynomials.

Parameters
• a1 (scalar, cupy.ndarray or cupy.poly1d) – first input polynomial.

• a2 (scalar, cupy.ndarray or cupy.poly1d) – second input polynomial.

Returns
The sum of the inputs.

Return type
cupy.ndarray or cupy.poly1d

See also:
numpy.polyadd()

cupy.polysub

cupy.polysub(a1, a2)
Computes the difference of two polynomials.

Parameters
• a1 (scalar, cupy.ndarray or cupy.poly1d) – first input polynomial.

• a2 (scalar, cupy.ndarray or cupy.poly1d) – second input polynomial.

Returns
The difference of the inputs.

Return type
cupy.ndarray or cupy.poly1d

See also:
numpy.polysub()

226 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.polyadd.html#numpy.polyadd
https://numpy.org/doc/stable/reference/generated/numpy.polysub.html#numpy.polysub

CuPy Documentation, Release 13.0.0

cupy.polymul

cupy.polymul(a1, a2)
Computes the product of two polynomials.

Parameters
• a1 (scalar, cupy.ndarray or cupy.poly1d) – first input polynomial.

• a2 (scalar, cupy.ndarray or cupy.poly1d) – second input polynomial.

Returns
The product of the inputs.

Return type
cupy.ndarray or cupy.poly1d

See also:
numpy.polymul()

5.3.15 Random sampling (cupy.random)

Differences between cupy.random and numpy.random:

• Most functions under cupy.random support the dtype option, which do not exist in the corresponding NumPy
APIs. This option enables generation of float32 values directly without any space overhead.

• cupy.random.default_rng() uses XORWOW bit generator by default.

• Random states cannot be serialized. See the description below for details.

• CuPy does not guarantee that the same number generator is used across major versions. This means that numbers
generated by cupy.random by new major version may not be the same as the previous one, even if the same
seed and distribution are used.

New Random Generator API

Hint: NumPy API Reference: Random sampling (numpy.random)

Random Generator

Hint: NumPy API Reference: Random Generator

default_rng([seed]) Construct a new Generator with the default BitGenerator
(XORWOW).

Generator(bit_generator) Container for the BitGenerators.

5.3. Routines (NumPy) 227

https://numpy.org/doc/stable/reference/generated/numpy.polymul.html#numpy.polymul
https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random
https://numpy.org/doc/stable/reference/random/
https://numpy.org/doc/stable/reference/random/generator.html

CuPy Documentation, Release 13.0.0

cupy.random.default_rng

cupy.random.default_rng(seed=None)
Construct a new Generator with the default BitGenerator (XORWOW).

Parameters
seed (None, int, array_like[ints], numpy.random.SeedSequence, cupy.
random.BitGenerator, cupy.random.Generator, optional) – A seed to initialize
the cupy.random.BitGenerator. If an int or array_like[ints] or None is passed, then it
will be passed to numpy.random.SeedSequence to detive the initial BitGenerator state. One
may also pass in a SeedSequence instance. Adiditionally, when passed :class:`BitGenerator, it
will be wrapped by Generator. If passed a Generator, it will be returned unaltered.

Returns
The initialized generator object.

Return type
Generator

cupy.random.Generator

class cupy.random.Generator(bit_generator)
Container for the BitGenerators.

Generator exposes a number of methods for generating random numbers drawn from a variety of probability
distributions. In addition to the distribution-specific arguments, each method takes a keyword argument size that
defaults to None. If size is None, then a single value is generated and returned. If size is an integer, then a 1-D
array filled with generated values is returned. If size is a tuple, then an array with that shape is filled and returned.
The function numpy.random.default_rng() will instantiate a Generator with numpy’s default BitGenerator.
No Compatibility Guarantee Generator does not provide a version compatibility guarantee. In particular, as
better algorithms evolve the bit stream may change.

Parameters
bit_generator – (cupy.random.BitGenerator): BitGenerator to use as the core generator.

Methods

beta(self, a, b, size=None, dtype=numpy.float64)
Beta distribution.

Returns an array of samples drawn from the beta distribution. Its probability density function is defined as

𝑓(𝑥) =
𝑥𝛼−1(1− 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
.

Parameters
• a (float) – Parameter of the beta distribution 𝛼.

• b (float) – Parameter of the beta distribution 𝛽.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are al-
lowed.

228 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence
https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Returns
Samples drawn from the beta distribution.

Return type
cupy.ndarray

See also:
numpy.random.Generator.beta()

binomial(self, n, p, size=None)
Binomial distribution.

Returns an array of samples drawn from the binomial distribution. Its probability mass function is defined
as

𝑓(𝑥) =

(︂
𝑛

𝑥

)︂
𝑝𝑥(1− 𝑝)(𝑛− 𝑥).

Parameters
• n (int or cupy.ndarray of ints) – Parameter of the distribution, >= 0. Floats are

also accepted, but they will be truncated to integers.

• p (float or cupy.ndarray of floats) – Parameter of the distribution, >= 0 and <=
1.

• size (int or tuple of ints, optional) – The shape of the output array. If None
(default), a single value is returned if n and p are both scalars. Otherwise, cupy.
broadcast(n, p).size samples are drawn.

Returns
Samples drawn from the binomial distribution.

Return type
cupy.ndarray

See also:
numpy.random.Generator.binomial()

chisquare(self, df, size=None)
Chi-square distribution.

Returns an array of samples drawn from the chi-square distribution. Its probability density function is
defined as

𝑓(𝑥) =
(1/2)𝑘/2

Γ(𝑘/2)
𝑥𝑘/2−1𝑒−𝑥/2.

Parameters
• df (float or array_like of floats) – Degree of freedom 𝑘.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

Returns
Samples drawn from the chi-square distribution.

Return type
cupy.ndarray

5.3. Routines (NumPy) 229

https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.beta.html#numpy.random.Generator.beta
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.binomial.html#numpy.random.Generator.binomial
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

See also:
numpy.random.Generator.chisquare()

dirichlet(self, alpha, size=None)
Dirichlet distribution.

Returns an array of samples drawn from the dirichlet distribution. Its probability density function is defined
as

𝑓(𝑥) =
Γ(
∑︀𝐾

𝑖=1 𝛼𝑖)∏︀𝐾
𝑖=1 Γ(𝛼𝑖)

𝐾∏︁
𝑖=1

𝑥𝛼𝑖−1
𝑖 .

Parameters
• alpha (array) – Parameters of the dirichlet distribution 𝛼.

• size (int or tuple of ints) – The shape of the array. If None, array of alpha.
shape is generated

Returns
Samples drawn from the dirichlet distribution.

Return type
cupy.ndarray

See also:
numpy.random.Generator.dirichlet()

exponential(self, scale=1.0, size=None)
Exponential distribution.

Returns an array of samples drawn from the exponential distribution. Its probability density function is
defined as

𝑓(𝑥) =
1

𝛽
exp(−𝑥

𝛽
).

Parameters
• scale (float or array_like of floats) – The scale parameter 𝛽.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

Returns
Samples drawn from the exponential distribution.

Return type
cupy.ndarray

See also:
numpy.random.Generator.exponential()

f(self, dfnum, dfden, size=None)
F distribution.

Returns an array of samples drawn from the f distribution. Its probability density function is defined as

𝑓(𝑥) =
1

𝐵(𝑑1

2 , 𝑑2

2)

(︂
𝑑1
𝑑2

)︂ 𝑑1
2

𝑥
𝑑1
2 −1

(︂
1 +

𝑑1
𝑑2

𝑥

)︂− 𝑑1+𝑑2
2

.

230 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.chisquare.html#numpy.random.Generator.chisquare
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.dirichlet.html#numpy.random.Generator.dirichlet
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.exponential.html#numpy.random.Generator.exponential

CuPy Documentation, Release 13.0.0

Parameters
• dfnum (float or array_like of floats) – Degrees of freedom in numerator, 𝑑1.

• dfden (float or array_like of floats) – Degrees of freedom in denominator, 𝑑2.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

Returns
Samples drawn from the f distribution.

Return type
cupy.ndarray

See also:
numpy.random.Generator.f()

gamma(self, shape, scale=1.0, size=None)
Gamma distribution.

Returns an array of samples drawn from the gamma distribution. Its probability density function is defined
as

𝑓(𝑥) =
1

Γ(𝑘)𝜃𝑘
𝑥𝑘−1𝑒−𝑥/𝜃.

Parameters
• shape (float or array_like of float) – The shape of the gamma distribution.

Must be non-negative.

• scale (float or array_like of float) – The scale of the gamma distribution. Must
be non-negative. Default equals to 1

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

See also:

• numpy.random.Generator.gamma()

geometric(self, p, size=None)
Geometric distribution.

Returns an array of samples drawn from the geometric distribution. Its probability mass function is defined
as

𝑓(𝑥) = 𝑝(1− 𝑝)𝑘−1.

Parameters
• p (float or cupy.ndarray of floats) – Success probability of the geometric dis-

tribution.

• size (int or tuple of ints, optional) – The shape of the output array. If None
(default), a single value is returned if p is scalar. Otherwise, p.size samples are drawn.

Returns
Samples drawn from the geometric distribution.

Return type
cupy.ndarray

5.3. Routines (NumPy) 231

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.f.html#numpy.random.Generator.f
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.gamma.html#numpy.random.Generator.gamma
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

See also:
numpy.random.Generator.geometric()

hypergeometric(self, ngood, nbad, nsample, size=None)
Hypergeometric distribution.

Returns an array of samples drawn from the hypergeometric distribution. Its probability mass function is
defined as

𝑓(𝑥) =

(︀
𝑚
𝑛

)︀(︀
𝑁−𝑚
𝑛−𝑥

)︀(︀
𝑁
𝑛

)︀ .

Parameters
• ngood (int or array_like of ints) – Parameter of the hypergeometric distribution
𝑛.

• nbad (int or array_like of ints) – Parameter of the hypergeometric distribution
𝑚.

• nsample (int or array_like of ints) – Parameter of the hypergeometric distribu-
tion 𝑁 .

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

Returns
Samples drawn from the hypergeometric distribution.

Return type
cupy.ndarray

See also:
numpy.random.Generator.hypergeometric()

integers(self, low, high=None, size=None, dtype=numpy.int64, endpoint=False)
Returns a scalar or an array of integer values over an interval.

Each element of returned values are independently sampled from uniform distribution over the [low,
high) or [low, high] intervals.

Parameters
• low (int) – If high is not None, it is the lower bound of the interval. Otherwise, it is the

upper bound of the interval and lower bound of the interval is set to 0.

• high (int) – Upper bound of the interval.

• size (None or int or tuple of ints) – The shape of returned value.

• dtype – Data type specifier.

• endpoint (bool) – If True, sample from [low, high]. Defaults to False

Returns
If size is None, it is single integer sampled. If size is integer, it is the 1D-array of length size
element. Otherwise, it is the array whose shape specified by size.

Return type
int or cupy.ndarray of ints

See also:

232 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.geometric.html#numpy.random.Generator.geometric
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.hypergeometric.html#numpy.random.Generator.hypergeometric
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• numpy.random.Generator.integers()

logseries(self, p, size=None)
Log series distribution.

Returns an array of samples drawn from the log series distribution. Its probability mass function is defined
as

𝑓(𝑥) =
−𝑝𝑥

𝑥 ln(1− 𝑝)
.

Parameters
• p (float or cupy.ndarray of floats) – Parameter of the log series distribution.

Must be in the range (0, 1).

• size (int or tuple of ints, optional) – The shape of the output array. If None
(default), a single value is returned if p is scalar. Otherwise, p.size samples are drawn.

Returns
Samples drawn from the log series distribution.

Return type
cupy.ndarray

See also:
numpy.random.Generator.logseries()

poisson(self, lam=1.0, size=None)
Poisson distribution.

Returns an array of samples drawn from the poisson distribution. Its probability mass function is defined
as

𝑓(𝑥) =
𝜆𝑥𝑒−𝜆

𝑥!
.

Parameters
• lam (float or array_like of floats) – Parameter of the poisson distribution 𝜆.

• size (int or tuple of ints) – The shape of the array. If None, this function generate
an array whose shape is lam.shape.

Returns
Samples drawn from the poisson distribution.

Return type
cupy.ndarray

See also:
numpy.random.Generator.poisson()

power(self, a, size=None)
Power distribution.

Returns an array of samples drawn from the power distribution. Its probability density function is defined
as

𝑓(𝑥) = 𝑎𝑥𝑎−1.

Parameters

5.3. Routines (NumPy) 233

https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.integers.html#numpy.random.Generator.integers
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.logseries.html#numpy.random.Generator.logseries
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.poisson.html#numpy.random.Generator.poisson

CuPy Documentation, Release 13.0.0

• a (float or array_like of floats) – Parameter of the power distribution 𝑎.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

Returns
Samples drawn from the power distribution.

Return type
cupy.ndarray

See also:
numpy.random.Generator.power()

random(self, size=None, dtype=numpy.float64, out=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 > 𝑎
multiply the output of random by (b-a) and add a:

(b - a) * random() + a

Parameters
• size (None or int or tuple of ints) – The shape of returned value.

• dtype – Data type specifier.

• out (cupy.ndarray, optional) – If specified, values will be written to this array

Returns
Samples uniformly drawn from the [0, 1) interval

Return type
cupy.ndarray

See also:

• numpy.random.Generator.random()

standard_exponential(self, size=None, dtype=numpy.float64, method='inv', out=None)
Standard exponential distribution.

Returns an array of samples drawn from the standard exponential distribution. Its probability density func-
tion is defined as

𝑓(𝑥) = 𝑒−𝑥.

Parameters
• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional

array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are al-
lowed.

• method (str) – Method to sample. Currently only 'inv', sampling from the default in-
verse CDF, is supported.

234 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.power.html#numpy.random.Generator.power
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.random.html#numpy.random.Generator.random
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• out (cupy.ndarray, optional) – If specified, values will be written to this array

Returns
Samples drawn from the standard exponential distribution.

Return type
cupy.ndarray

See also:
numpy.random.Generator.standard_exponential()

standard_gamma(self, shape, size=None, dtype=numpy.float64, out=None)
Standard gamma distribution.

Returns an array of samples drawn from the standard gamma distribution. Its probability density function
is defined as

𝑓(𝑥) =
1

Γ(𝑘)
𝑥𝑘−1𝑒−𝑥.

Parameters
• shape (float or array_like of float) – The shape of the gamma distribution.

Must be non-negative.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier.

• out (cupy.ndarray, optional) – If specified, values will be written to this array

See also:

• numpy.random.Generator.standard_gamma()

standard_normal(self, size=None, dtype=numpy.float64, out=None)
Standard normal distribution.

Returns an array of samples drawn from the standard normal distribution.

Parameters
• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional

array is generated.

• dtype – Data type specifier.

• out (cupy.ndarray, optional) – If specified, values will be written to this array

Returns
Samples drawn from the standard normal distribution.

Return type
cupy.ndarray

See also:

• numpy.random.Generator.standard_normal()

5.3. Routines (NumPy) 235

https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.standard_exponential.html#numpy.random.Generator.standard_exponential
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.standard_gamma.html#numpy.random.Generator.standard_gamma
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.Generator.standard_normal.html#numpy.random.Generator.standard_normal

CuPy Documentation, Release 13.0.0

uniform(self, low=0.0, high=1.0, size=None, dtype=numpy.float64)
Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval
[low, high) (includes low, but excludes high). In other words, any value within the given interval is
equally likely to be drawn by uniform.

Parameters
• low (float or array_like of floats, optional) – Lower boundary of the output

interval. All values generated will be greater than or equal to low. The default value is 0.

• high (float or array_like of floats) – Upper boundary of the output interval.
All values generated will be less than high. The high limit may be included in the re-
turned array of floats due to floating-point rounding in the equation low + (high-low)
* random(). high - low must be non-negative. The default value is 1.0.

• size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g.,
(m, n, k), then m * n * k samples are drawn. If size is None (default), a single value is
returned if low and high are both scalars. Otherwise, cupy.broadcast(low, high).
size samples are drawn.

Returns
out – Drawn samples from the parameterized uniform distribution.

Return type
ndarray or scalar

See also:

-
meth:numpy.random.Generator.uniform

-
meth:integers: Discrete uniform distribution, yielding integers.

-
meth:random: Floats uniformly distributed over [0, 1).

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

236 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Bit Generators

Hint: NumPy API Reference: Bit Generators

BitGenerator([seed]) Generic BitGenerator.

cupy.random.BitGenerator

class cupy.random.BitGenerator(seed=None)
Generic BitGenerator.

Base Class for generic BitGenerators, which provide a stream of random bits based on different algorithms. Must
be overridden.

Parameters
seed (int, array_like[ints], numpy.random.SeedSequence, optional) – A seed
to initialize the BitGenerator. If None, then fresh, unpredictable entropy will be pulled
from the OS. If an int or array_like[ints] is passed, then it will be passed to
~`numpy.random.SeedSequence` to derive the initial BitGenerator state. One may also pass in a
SeedSequence instance.

Methods

random_raw(self, size=None, output=True)

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

CuPy provides the following bit generator implementations:

XORWOW([seed, size]) BitGenerator that uses cuRAND XORWOW device gen-
erator.

MRG32k3a([seed, size]) BitGenerator that uses cuRAND MRG32k3a device gen-
erator.

Philox4x3210([seed, size]) BitGenerator that uses cuRAND Philox4x3210 device
generator.

5.3. Routines (NumPy) 237

https://numpy.org/doc/stable/reference/random/bit_generators/index.html
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence

CuPy Documentation, Release 13.0.0

cupy.random.XORWOW

class cupy.random.XORWOW(seed=None, *, size=-1)
BitGenerator that uses cuRAND XORWOW device generator.

This generator allocates the state using the cuRAND device API.

Parameters
• seed (None, int, array_like[ints], numpy.random.SeedSequence) – A seed to

initialize the BitGenerator. If None, then fresh, unpredictable entropy will be pulled
from the OS. If an int or array_like[ints] is passed, then it will be passed to
~`numpy.random.SeedSequence` to derive the initial BitGenerator state. One may also pass
in a SeedSequence instance.

• size (int) – Maximum number of samples that can be generated at once. defaults to 1000
* 256.

Methods

random_raw(self, size=None, output=True)
Return randoms as generated by the underlying BitGenerator.

Parameters
• size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g.,
(m, n, k), then m * n * k samples are drawn. Default is None, in which case a single
value is returned.

• output (bool, optional) – Output values. Used for performance testing since the gen-
erated values are not returned.

Returns
Drawn samples.

Return type
cupy.ndarray

Note: This method directly exposes the the raw underlying pseudo-random number generator. All values
are returned as unsigned 64-bit values irrespective of the number of bits produced by the PRNG. See the
class docstring for the number of bits returned.

state(self)

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

238 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

generator = 0

cupy.random.MRG32k3a

class cupy.random.MRG32k3a(seed=None, *, size=-1)
BitGenerator that uses cuRAND MRG32k3a device generator.

This generator allocates the state using the cuRAND device API.

Parameters
• seed (int, array_like[ints], numpy.random.SeedSequence, optional) – A

seed to initialize the BitGenerator. If None, then fresh, unpredictable entropy will be
pulled from the OS. If an int or array_like[ints] is passed, then it will be passed to
~`numpy.random.SeedSequence` to derive the initial BitGenerator state. One may also pass
in a SeedSequence instance.

• size (int) – Maximum number of samples that can be generated at once. defaults to 1000
* 256.

Methods

random_raw(self, size=None, output=True)
Return randoms as generated by the underlying BitGenerator.

Parameters
• size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g.,
(m, n, k), then m * n * k samples are drawn. Default is None, in which case a single
value is returned.

• output (bool, optional) – Output values. Used for performance testing since the gen-
erated values are not returned.

Returns
Drawn samples.

Return type
cupy.ndarray

Note: This method directly exposes the the raw underlying pseudo-random number generator. All values
are returned as unsigned 64-bit values irrespective of the number of bits produced by the PRNG. See the
class docstring for the number of bits returned.

state(self)

5.3. Routines (NumPy) 239

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

generator = 1

cupy.random.Philox4x3210

class cupy.random.Philox4x3210(seed=None, *, size=-1)
BitGenerator that uses cuRAND Philox4x3210 device generator.

This generator allocates the state using the cuRAND device API.

Parameters
• seed (int, array_like[ints], numpy.random.SeedSequence, optional) – A

seed to initialize the BitGenerator. If None, then fresh, unpredictable entropy will be
pulled from the OS. If an int or array_like[ints] is passed, then it will be passed to
~`numpy.random.SeedSequence` to derive the initial BitGenerator state. One may also pass
in a SeedSequence instance.

• size (int) – Maximum number of samples that can be generated at once. defaults to 1000
* 256.

Methods

random_raw(self, size=None, output=True)
Return randoms as generated by the underlying BitGenerator.

Parameters
• size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g.,
(m, n, k), then m * n * k samples are drawn. Default is None, in which case a single
value is returned.

• output (bool, optional) – Output values. Used for performance testing since the gen-
erated values are not returned.

Returns
Drawn samples.

240 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

Note: This method directly exposes the the raw underlying pseudo-random number generator. All values
are returned as unsigned 64-bit values irrespective of the number of bits produced by the PRNG. See the
class docstring for the number of bits returned.

state(self)

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

generator = 2

Legacy Random Generation

Hint:
• NumPy API Reference: Legacy Random Generation

• NumPy 1.16 Reference

RandomState([seed, method]) Portable container of a pseudo-random number genera-
tor.

5.3. Routines (NumPy) 241

https://numpy.org/doc/stable/reference/random/legacy.html
https://numpy.org/doc/1.16/reference/routines.random.html

CuPy Documentation, Release 13.0.0

cupy.random.RandomState

class cupy.random.RandomState(seed=None, method=None)
Portable container of a pseudo-random number generator.

An instance of this class holds the state of a random number generator. The state is available only on the device
which has been current at the initialization of the instance.

Functions of cupy.random use global instances of this class. Different instances are used for different devices.
The global state for the current device can be obtained by the cupy.random.get_random_state() function.

Parameters
• seed (None or int) – Seed of the random number generator. See the seed() method for

detail.

• method (int) – Method of the random number generator. Following values are available:

cupy.cuda.curand.CURAND_RNG_PSEUDO_DEFAULT
cupy.cuda.curand.CURAND_RNG_PSEUDO_XORWOW
cupy.cuda.curand.CURAND_RNG_PSEUDO_MRG32K3A
cupy.cuda.curand.CURAND_RNG_PSEUDO_MTGP32
cupy.cuda.curand.CURAND_RNG_PSEUDO_MT19937
cupy.cuda.curand.CURAND_RNG_PSEUDO_PHILOX4_32_10

Methods

beta(a, b, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the beta distribution.

See also:

• cupy.random.beta() for full documentation

• numpy.random.RandomState.beta()

binomial(n, p, size=None, dtype=<class 'int'>)
Returns an array of samples drawn from the binomial distribution.

See also:

• cupy.random.binomial() for full documentation

• numpy.random.RandomState.binomial()

chisquare(df, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the chi-square distribution.

See also:

• cupy.random.chisquare() for full documentation

• numpy.random.RandomState.chisquare()

242 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.beta.html#numpy.random.RandomState.beta
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.binomial.html#numpy.random.RandomState.binomial
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.chisquare.html#numpy.random.RandomState.chisquare

CuPy Documentation, Release 13.0.0

choice(a, size=None, replace=True, p=None)
Returns an array of random values from a given 1-D array.

See also:

• cupy.random.choice() for full documentation

• numpy.random.choice()

dirichlet(alpha, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the dirichlet distribution.

See also:

• cupy.random.dirichlet() for full documentation

• numpy.random.RandomState.dirichlet()

exponential(scale=1.0, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from a exponential distribution.

Warning: This function may synchronize the device.

See also:

• cupy.random.exponential() for full documentation

• numpy.random.RandomState.exponential()

f(dfnum, dfden, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the f distribution.

See also:

• cupy.random.f() for full documentation

• numpy.random.RandomState.f()

gamma(shape, scale=1.0, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from a gamma distribution.

See also:

• cupy.random.gamma() for full documentation

• numpy.random.RandomState.gamma()

geometric(p, size=None, dtype=<class 'int'>)
Returns an array of samples drawn from the geometric distribution.

See also:

• cupy.random.geometric() for full documentation

• numpy.random.RandomState.geometric()

5.3. Routines (NumPy) 243

https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.dirichlet.html#numpy.random.RandomState.dirichlet
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.exponential.html#numpy.random.RandomState.exponential
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.f.html#numpy.random.RandomState.f
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.gamma.html#numpy.random.RandomState.gamma
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.geometric.html#numpy.random.RandomState.geometric

CuPy Documentation, Release 13.0.0

gumbel(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from a Gumbel distribution.

See also:

• cupy.random.gumbel() for full documentation

• numpy.random.RandomState.gumbel()

hypergeometric(ngood, nbad, nsample, size=None, dtype=<class 'int'>)
Returns an array of samples drawn from the hypergeometric distribution.

See also:

• cupy.random.hypergeometric() for full documentation

• numpy.random.RandomState.hypergeometric()

laplace(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the laplace distribution.

See also:

• cupy.random.laplace() for full documentation

• numpy.random.RandomState.laplace()

logistic(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the logistic distribution.

See also:

• cupy.random.logistic() for full documentation

• numpy.random.RandomState.logistic()

lognormal(mean=0.0, sigma=1.0, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from a log normal distribution.

See also:

• cupy.random.lognormal() for full documentation

• numpy.random.RandomState.lognormal()

logseries(p, size=None, dtype=<class 'int'>)
Returns an array of samples drawn from a log series distribution.

Warning: This function may synchronize the device.

See also:

• cupy.random.logseries() for full documentation

• numpy.random.RandomState.logseries()

244 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.gumbel.html#numpy.random.RandomState.gumbel
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.hypergeometric.html#numpy.random.RandomState.hypergeometric
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.laplace.html#numpy.random.RandomState.laplace
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.logistic.html#numpy.random.RandomState.logistic
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.lognormal.html#numpy.random.RandomState.lognormal
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.logseries.html#numpy.random.RandomState.logseries

CuPy Documentation, Release 13.0.0

multivariate_normal(mean, cov, size=None, check_valid='ignore', tol=1e-08, method='cholesky',
dtype=<class 'float'>)

Returns an array of samples drawn from the multivariate normal distribution.

Warning: This function calls one or more cuSOLVER routine(s) which may yield invalid results if
input conditions are not met. To detect these invalid results, you can set the linalg configuration to a
value that is not ignore in cupyx.errstate() or cupyx.seterr().

See also:

• cupy.random.multivariate_normal() for full documentation

• numpy.random.RandomState.multivariate_normal()

negative_binomial(n, p, size=None, dtype=<class 'int'>)
Returns an array of samples drawn from the negative binomial distribution.

Warning: This function may synchronize the device.

See also:

• cupy.random.negative_binomial() for full documentation

• numpy.random.RandomState.negative_binomial()

noncentral_chisquare(df, nonc, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the noncentral chi-square distribution.

Warning: This function may synchronize the device.

See also:

• cupy.random.noncentral_chisquare() for full documentation

• numpy.random.RandomState.noncentral_chisquare()

noncentral_f(dfnum, dfden, nonc, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the noncentral F distribution.

Warning: This function may synchronize the device.

See also:

• cupy.random.noncentral_f() for full documentation

• numpy.random.RandomState.noncentral_f()

5.3. Routines (NumPy) 245

https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.multivariate_normal.html#numpy.random.RandomState.multivariate_normal
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.negative_binomial.html#numpy.random.RandomState.negative_binomial
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.noncentral_chisquare.html#numpy.random.RandomState.noncentral_chisquare
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.noncentral_f.html#numpy.random.RandomState.noncentral_f

CuPy Documentation, Release 13.0.0

normal(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)
Returns an array of normally distributed samples.

See also:

• cupy.random.normal() for full documentation

• numpy.random.RandomState.normal()

pareto(a, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the pareto II distribution.

See also:

• cupy.random.pareto() for full documentation

• numpy.random.RandomState.pareto()

permutation(a)
Returns a permuted range or a permutation of an array.

poisson(lam=1.0, size=None, dtype=<class 'int'>)
Returns an array of samples drawn from the poisson distribution.

See also:

• cupy.random.poisson() for full documentation

• numpy.random.RandomState.poisson()

power(a, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the power distribution.

Warning: This function may synchronize the device.

See also:

• cupy.random.power() for full documentation

• numpy.random.RandomState.power()

rand(*size, **kwarg)
Returns uniform random values over the interval [0, 1).

See also:

• cupy.random.rand() for full documentation

• numpy.random.RandomState.rand()

randint(low, high=None, size=None, dtype=<class 'int'>)
Returns a scalar or an array of integer values over [low, high).

See also:

• cupy.random.randint() for full documentation

246 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.normal.html#numpy.random.RandomState.normal
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.pareto.html#numpy.random.RandomState.pareto
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.poisson.html#numpy.random.RandomState.poisson
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.power.html#numpy.random.RandomState.power
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.rand.html#numpy.random.RandomState.rand

CuPy Documentation, Release 13.0.0

• numpy.random.RandomState.randint()

randn(*size, **kwarg)
Returns an array of standard normal random values.

See also:

• cupy.random.randn() for full documentation

• numpy.random.RandomState.randn()

random_sample(size=None, dtype=<class 'float'>)
Returns an array of random values over the interval [0, 1).

See also:

• cupy.random.random_sample() for full documentation

• numpy.random.RandomState.random_sample()

rayleigh(scale=1.0, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from a rayleigh distribution.

Warning: This function may synchronize the device.

See also:

• cupy.random.rayleigh() for full documentation

• numpy.random.RandomState.rayleigh()

seed(seed=None)
Resets the state of the random number generator with a seed.

See also:

• cupy.random.seed() for full documentation

• numpy.random.RandomState.seed()

shuffle(a)
Returns a shuffled array.

See also:

• cupy.random.shuffle() for full documentation

• numpy.random.shuffle()

standard_cauchy(size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the standard cauchy distribution.

See also:

• cupy.random.standard_cauchy() for full documentation

• numpy.random.RandomState.standard_cauchy()

5.3. Routines (NumPy) 247

https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.randint.html#numpy.random.RandomState.randint
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.randn.html#numpy.random.RandomState.randn
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.random_sample.html#numpy.random.RandomState.random_sample
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.rayleigh.html#numpy.random.RandomState.rayleigh
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.seed.html#numpy.random.RandomState.seed
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.standard_cauchy.html#numpy.random.RandomState.standard_cauchy

CuPy Documentation, Release 13.0.0

standard_exponential(size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the standard exp distribution.

See also:

• cupy.random.standard_exponential() for full documentation

• numpy.random.RandomState.standard_exponential()

standard_gamma(shape, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from a standard gamma distribution.

See also:

• cupy.random.standard_gamma() for full documentation

• numpy.random.RandomState.standard_gamma()

standard_normal(size=None, dtype=<class 'float'>)
Returns samples drawn from the standard normal distribution.

See also:

• cupy.random.standard_normal() for full documentation

• numpy.random.RandomState.standard_normal()

standard_t(df, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the standard t distribution.

See also:

• cupy.random.standard_t() for full documentation

• numpy.random.RandomState.standard_t()

tomaxint(size=None)
Draws integers between 0 and max integer inclusive.

Return a sample of uniformly distributed random integers in the interval [0, np.iinfo(np.int_).max].
The np.int_ type translates to the C long integer type and its precision is platform dependent.

Parameters
size (int or tuple of ints) – Output shape.

Returns
Drawn samples.

Return type
cupy.ndarray

See also:
numpy.random.RandomState.tomaxint()

triangular(left, mode, right, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the triangular distribution.

248 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.standard_exponential.html#numpy.random.RandomState.standard_exponential
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.standard_gamma.html#numpy.random.RandomState.standard_gamma
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.standard_normal.html#numpy.random.RandomState.standard_normal
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.standard_t.html#numpy.random.RandomState.standard_t
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Warning: This function may synchronize the device.

See also:

• cupy.random.triangular() for full documentation

• numpy.random.RandomState.triangular()

uniform(low=0.0, high=1.0, size=None, dtype=<class 'float'>)
Returns an array of uniformly-distributed samples over an interval.

See also:

• cupy.random.uniform() for full documentation

• numpy.random.RandomState.uniform()

vonmises(mu, kappa, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the von Mises distribution.

See also:

• cupy.random.vonmises() for full documentation

• numpy.random.RandomState.vonmises()

wald(mean, scale, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the Wald distribution.

See also:

• cupy.random.wald() for full documentation

• numpy.random.RandomState.wald()

weibull(a, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the weibull distribution.

Warning: This function may synchronize the device.

See also:

• cupy.random.weibull() for full documentation

• numpy.random.RandomState.weibull()

zipf(a, size=None, dtype=<class 'int'>)
Returns an array of samples drawn from the Zipf distribution.

Warning: This function may synchronize the device.

See also:

5.3. Routines (NumPy) 249

https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.triangular.html#numpy.random.RandomState.triangular
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.uniform.html#numpy.random.RandomState.uniform
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.vonmises.html#numpy.random.RandomState.vonmises
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.wald.html#numpy.random.RandomState.wald
https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.weibull.html#numpy.random.RandomState.weibull

CuPy Documentation, Release 13.0.0

• cupy.random.zipf() for full documentation

• numpy.random.RandomState.zipf()

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Functions in cupy.random

beta(a, b[, size, dtype]) Beta distribution.
binomial(n, p[, size, dtype]) Binomial distribution.
bytes(length) Returns random bytes.
chisquare(df[, size, dtype]) Chi-square distribution.
choice(a[, size, replace, p]) Returns an array of random values from a given 1-D ar-

ray.
dirichlet(alpha[, size, dtype]) Dirichlet distribution.
exponential(scale[, size, dtype]) Exponential distribution.
f (dfnum, dfden[, size, dtype]) F distribution.
gamma(shape[, scale, size, dtype]) Gamma distribution.
geometric(p[, size, dtype]) Geometric distribution.
gumbel([loc, scale, size, dtype]) Returns an array of samples drawn from a Gumbel dis-

tribution.
hypergeometric(ngood, nbad, nsample[, size, ...]) hypergeometric distribution.
laplace([loc, scale, size, dtype]) Laplace distribution.
logistic([loc, scale, size, dtype]) Logistic distribution.
lognormal([mean, sigma, size, dtype]) Returns an array of samples drawn from a log normal

distribution.
logseries(p[, size, dtype]) Log series distribution.
multinomial(n, pvals[, size]) Returns an array from multinomial distribution.
multivariate_normal(mean, cov[, size, ...]) Multivariate normal distribution.
negative_binomial(n, p[, size, dtype]) Negative binomial distribution.
noncentral_chisquare(df, nonc[, size, dtype]) Noncentral chisquare distribution.
noncentral_f (dfnum, dfden, nonc[, size, dtype]) Noncentral F distribution.
normal([loc, scale, size, dtype]) Returns an array of normally distributed samples.
pareto(a[, size, dtype]) Pareto II or Lomax distribution.
permutation(a) Returns a permuted range or a permutation of an array.
poisson([lam, size, dtype]) Poisson distribution.

continues on next page

250 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/random/generated/numpy.random.RandomState.zipf.html#numpy.random.RandomState.zipf

CuPy Documentation, Release 13.0.0

Table 2 – continued from previous page
power(a[, size, dtype]) Power distribution.
rand(*size, **kwarg) Returns an array of uniform random values over the in-

terval [0, 1).
randint(low[, high, size, dtype]) Returns a scalar or an array of integer values over [low,

high).
randn(*size, **kwarg) Returns an array of standard normal random values.
random([size, dtype]) Returns an array of random values over the interval [0,

1).
random_integers(low[, high, size]) Return a scalar or an array of integer values over [low,

high]
random_sample([size, dtype]) Returns an array of random values over the interval [0,

1).
ranf ([size, dtype]) Returns an array of random values over the interval [0,

1).
rayleigh ([scale, size, dtype]) Rayleigh distribution.
sample([size, dtype]) Returns an array of random values over the interval [0,

1).
seed([seed]) Resets the state of the random number generator with a

seed.
shuffle(a) Shuffles an array.
standard_cauchy([size, dtype]) Standard cauchy distribution.
standard_exponential([size, dtype]) Standard exponential distribution.
standard_gamma(shape[, size, dtype]) Standard gamma distribution.
standard_normal([size, dtype]) Returns an array of samples drawn from the standard nor-

mal distribution.
standard_t(df[, size, dtype]) Standard Student's t distribution.
triangular(left, mode, right[, size, dtype]) Triangular distribution.
uniform([low, high, size, dtype]) Returns an array of uniformly-distributed samples over

an interval.
vonmises(mu, kappa[, size, dtype]) von Mises distribution.
wald(mean, scale[, size, dtype]) Wald distribution.
weibull(a[, size, dtype]) weibull distribution.
zipf (a[, size, dtype]) Zipf distribution.

cupy.random.beta

cupy.random.beta(a, b, size=None, dtype=<class 'float'>)
Beta distribution.

Returns an array of samples drawn from the beta distribution. Its probability density function is defined as

𝑓(𝑥) =
𝑥𝛼−1(1− 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
.

Parameters
• a (float) – Parameter of the beta distribution 𝛼.

• b (float) – Parameter of the beta distribution 𝛽.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

5.3. Routines (NumPy) 251

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Returns
Samples drawn from the beta distribution.

Return type
cupy.ndarray

See also:
numpy.random.beta()

cupy.random.binomial

cupy.random.binomial(n, p, size=None, dtype=<class 'int'>)
Binomial distribution.

Returns an array of samples drawn from the binomial distribution. Its probability mass function is defined as

𝑓(𝑥) =

(︂
𝑛

𝑥

)︂
𝑝𝑥(1− 𝑝)𝑛−𝑥.

Parameters
• n (int) – Trial number of the binomial distribution.

• p (float) – Success probability of the binomial distribution.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.int32 and numpy.int64 types are allowed.

Returns
Samples drawn from the binomial distribution.

Return type
cupy.ndarray

See also:
numpy.random.binomial()

cupy.random.bytes

cupy.random.bytes(length)
Returns random bytes.

Note: This function is just a wrapper for numpy.random.bytes. The resulting bytes are generated on the host
(NumPy), not GPU.

See also:
numpy.random.bytes

252 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/random/generated/numpy.random.beta.html#numpy.random.beta
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.binomial.html#numpy.random.binomial
https://numpy.org/doc/stable/reference/random/generated/numpy.random.bytes.html#numpy.random.bytes

CuPy Documentation, Release 13.0.0

cupy.random.chisquare

cupy.random.chisquare(df, size=None, dtype=<class 'float'>)
Chi-square distribution.

Returns an array of samples drawn from the chi-square distribution. Its probability density function is defined as

𝑓(𝑥) =
(1/2)𝑘/2

Γ(𝑘/2)
𝑥𝑘/2−1𝑒−𝑥/2.

Parameters
• df (int or array_like of ints) – Degree of freedom 𝑘.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the chi-square distribution.

Return type
cupy.ndarray

See also:
numpy.random.chisquare()

cupy.random.choice

cupy.random.choice(a, size=None, replace=True, p=None)
Returns an array of random values from a given 1-D array.

Each element of the returned array is independently sampled from a according to p or uniformly.

Note: Currently p is not supported when replace=False.

Parameters
• a (1-D array-like or int) – If an array-like, a random sample is generated from its

elements. If an int, the random sample is generated as if a was cupy.arange(n)

• size (int or tuple of ints) – The shape of the array.

• replace (boolean) – Whether the sample is with or without replacement.

• p (1-D array-like) – The probabilities associated with each entry in a. If not given the
sample assumes a uniform distribution over all entries in a.

Returns
An array of a values distributed according to p or uniformly.

Return type
cupy.ndarray

See also:
numpy.random.choice()

5.3. Routines (NumPy) 253

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.chisquare.html#numpy.random.chisquare
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

cupy.random.dirichlet

cupy.random.dirichlet(alpha, size=None, dtype=<class 'float'>)
Dirichlet distribution.

Returns an array of samples drawn from the dirichlet distribution. Its probability density function is defined as

𝑓(𝑥) =
Γ(
∑︀𝐾

𝑖=1 𝛼𝑖)∏︀𝐾
𝑖=1 Γ(𝛼𝑖)

𝐾∏︁
𝑖=1

𝑥𝛼𝑖−1
𝑖 .

Parameters
• alpha (array) – Parameters of the dirichlet distribution 𝛼.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the dirichlet distribution.

Return type
cupy.ndarray

See also:
numpy.random.dirichlet()

cupy.random.exponential

cupy.random.exponential(scale, size=None, dtype=<class 'float'>)
Exponential distribution.

Returns an array of samples drawn from the exponential distribution. Its probability density function is defined
as

𝑓(𝑥) =
1

𝛽
exp(−𝑥

𝛽
).

Parameters
• scale (float or array_like of floats) – The scale parameter 𝛽.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the exponential distribution.

Return type
cupy.ndarray

See also:
numpy.random.exponential()

254 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.dirichlet.html#numpy.random.dirichlet
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.exponential.html#numpy.random.exponential

CuPy Documentation, Release 13.0.0

cupy.random.f

cupy.random.f(dfnum, dfden, size=None, dtype=<class 'float'>)
F distribution.

Returns an array of samples drawn from the f distribution. Its probability density function is defined as

𝑓(𝑥) =
1

𝐵(𝑑1

2 , 𝑑2

2)

(︂
𝑑1
𝑑2

)︂ 𝑑1
2

𝑥
𝑑1
2 −1

(︂
1 +

𝑑1
𝑑2

𝑥

)︂− 𝑑1+𝑑2
2

.

Parameters
• dfnum (float or array_like of floats) – Parameter of the f distribution 𝑑1.

• dfden (float or array_like of floats) – Parameter of the f distribution 𝑑2.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the f distribution.

Return type
cupy.ndarray

See also:
numpy.random.f()

cupy.random.gamma

cupy.random.gamma(shape, scale=1.0, size=None, dtype=<class 'float'>)
Gamma distribution.

Returns an array of samples drawn from the gamma distribution. Its probability density function is defined as

𝑓(𝑥) =
1

Γ(𝑘)𝜃𝑘
𝑥𝑘−1𝑒−𝑥/𝜃.

Parameters
• shape (array) – Parameter of the gamma distribution 𝑘.

• scale (array) – Parameter of the gamma distribution 𝜃

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns:cupy.ndarray: Samples drawn from the gamma distribution.

See also:
numpy.random.gamma()

5.3. Routines (NumPy) 255

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.f.html#numpy.random.f
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.gamma.html#numpy.random.gamma

CuPy Documentation, Release 13.0.0

cupy.random.geometric

cupy.random.geometric(p, size=None, dtype=<class 'int'>)
Geometric distribution.

Returns an array of samples drawn from the geometric distribution. Its probability mass function is defined as

𝑓(𝑥) = 𝑝(1− 𝑝)𝑘−1.

Parameters
• p (float) – Success probability of the geometric distribution.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.int32 and numpy.int64 types are allowed.

Returns
Samples drawn from the geometric distribution.

Return type
cupy.ndarray

See also:
numpy.random.geometric()

cupy.random.gumbel

cupy.random.gumbel(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from a Gumbel distribution.

The samples are drawn from a Gumbel distribution with location loc and scale scale. Its probability density
function is defined as

𝑓(𝑥) =
1

𝜂
exp

{︂
−𝑥− 𝜇

𝜂

}︂
exp

[︂
− exp

{︂
−𝑥− 𝜇

𝜂

}︂]︂
,

where 𝜇 is loc and 𝜂 is scale.

Parameters
• loc (float) – The location of the mode 𝜇.

• scale (float) – The scale parameter 𝜂.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the Gumbel distribution.

Return type
cupy.ndarray

See also:
numpy.random.gumbel()

256 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.geometric.html#numpy.random.geometric
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.gumbel.html#numpy.random.gumbel

CuPy Documentation, Release 13.0.0

cupy.random.hypergeometric

cupy.random.hypergeometric(ngood, nbad, nsample, size=None, dtype=<class 'int'>)
hypergeometric distribution.

Returns an array of samples drawn from the hypergeometric distribution. Its probability mass function is defined
as

𝑓(𝑥) =

(︀
𝑚
𝑛

)︀(︀
𝑁−𝑚
𝑛−𝑥

)︀(︀
𝑁
𝑛

)︀ .

Parameters
• ngood (int or array_like of ints) – Parameter of the hypergeometric distribution 𝑛.

• nbad (int or array_like of ints) – Parameter of the hypergeometric distribution 𝑚.

• nsample (int or array_like of ints) – Parameter of the hypergeometric distribution
𝑁 .

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.int32 and numpy.int64 types are allowed.

Returns
Samples drawn from the hypergeometric distribution.

Return type
cupy.ndarray

See also:
numpy.random.hypergeometric()

cupy.random.laplace

cupy.random.laplace(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)
Laplace distribution.

Returns an array of samples drawn from the laplace distribution. Its probability density function is defined as

𝑓(𝑥) =
1

2𝑏
exp

(︂
−|𝑥− 𝜇|

𝑏

)︂
.

Parameters
• loc (float) – The location of the mode 𝜇.

• scale (float) – The scale parameter 𝑏.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the laplace distribution.

Return type
cupy.ndarray

5.3. Routines (NumPy) 257

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.hypergeometric.html#numpy.random.hypergeometric
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

See also:
numpy.random.laplace()

cupy.random.logistic

cupy.random.logistic(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)
Logistic distribution.

Returns an array of samples drawn from the logistic distribution. Its probability density function is defined as

𝑓(𝑥) =
𝑒−(𝑥−𝜇)/𝑠

𝑠(1 + 𝑒−(𝑥−𝜇)/𝑠)2
.

Parameters
• loc (float) – The location of the mode 𝜇.

• scale (float) – The scale parameter 𝑠.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the logistic distribution.

Return type
cupy.ndarray

See also:
numpy.random.logistic()

cupy.random.lognormal

cupy.random.lognormal(mean=0.0, sigma=1.0, size=None, dtype=<class 'float'>)
Returns an array of samples drawn from a log normal distribution.

The samples are natural log of samples drawn from a normal distribution with mean mean and deviation sigma.

Parameters
• mean (float) – Mean of the normal distribution.

• sigma (float) – Standard deviation of the normal distribution.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the log normal distribution.

Return type
cupy.ndarray

See also:
numpy.random.lognormal()

258 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/random/generated/numpy.random.laplace.html#numpy.random.laplace
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.logistic.html#numpy.random.logistic
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.lognormal.html#numpy.random.lognormal

CuPy Documentation, Release 13.0.0

cupy.random.logseries

cupy.random.logseries(p, size=None, dtype=<class 'int'>)
Log series distribution.

Returns an array of samples drawn from the log series distribution. Its probability mass function is defined as

𝑓(𝑥) =
−𝑝𝑥

𝑥 ln(1− 𝑝)
.

Parameters
• p (float) – Parameter of the log series distribution 𝑝.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.int32 and numpy.int64 types are allowed.

Returns
Samples drawn from the log series distribution.

Return type
cupy.ndarray

See also:
numpy.random.logseries()

cupy.random.multinomial

cupy.random.multinomial(n, pvals, size=None)
Returns an array from multinomial distribution.

Parameters
• n (int) – Number of trials.

• pvals (cupy.ndarray) – Probabilities of each of the p different outcomes. The sum of
these values must be 1.

• size (int or tuple of ints or None) – Shape of a sample in each trial. For example
when size is (a, b), shape of returned value is (a, b, p) where p is len(pvals). If
size is None, it is treated as (). So, shape of returned value is (p,).

Returns
An array drawn from multinomial distribution.

Return type
cupy.ndarray

Note: It does not support sum(pvals) < 1 case.

See also:
numpy.random.multinomial()

5.3. Routines (NumPy) 259

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.logseries.html#numpy.random.logseries
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

cupy.random.multivariate_normal

cupy.random.multivariate_normal(mean, cov, size=None, check_valid='ignore', tol=1e-08,
method='cholesky', dtype=<class 'float'>)

Multivariate normal distribution.

Returns an array of samples drawn from the multivariate normal distribution. Its probability density function is
defined as

𝑓(𝑥) =
1

(2𝜋|Σ|)(𝑛/2)
exp

(︂
−1

2
(𝑥− 𝜇)⊤Σ−1(𝑥− 𝜇)

)︂
.

Parameters
• mean (1-D array_like, of length N) – Mean of the multivariate normal distribution
𝜇.

• cov (2-D array_like, of shape (N, N)) – Covariance matrix Σ of the multivariate
normal distribution. It must be symmetric and positive-semidefinite for proper sampling.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• check_valid ('warn', 'raise', 'ignore') – Behavior when the covariance matrix is not
positive semidefinite.

• tol (float) – Tolerance when checking the singular values in covariance matrix.

• method – { ‘cholesky’, ‘eigh’, ‘svd’}, optional The cov input is used to compute a factor
matrix A such that A @ A.T = cov. This argument is used to select the method used to
compute the factor matrix A. The default method ‘cholesky’ is the fastest, while ‘svd’ is the
slowest but more robust than the fastest method. The method eigh uses eigen decomposition
to compute A and is faster than svd but slower than cholesky.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the multivariate normal distribution.

Return type
cupy.ndarray

Note: Default method is set to fastest, ‘cholesky’, unlike numpy which defaults to ‘svd’. Cholesky decomposi-
tion in CuPy will fail silently if the input covariance matrix is not positive definite and give invalid results, unlike
in numpy, where an invalid covariance matrix will raise an exception. Setting check_valid to ‘raise’ will replicate
numpy behavior by checking the input, but will also force device synchronization. If validity of input is unknown,
setting method to ‘einh’ or ‘svd’ and check_valid to ‘warn’ will use cholesky decomposition for positive definite
matrices, and fallback to the specified method for other matrices (i.e., not positive semi-definite), and will warn
if decomposition is suspect.

See also:
numpy.random.multivariate_normal()

260 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/random/generated/numpy.random.multivariate_normal.html#numpy.random.multivariate_normal

CuPy Documentation, Release 13.0.0

cupy.random.negative_binomial

cupy.random.negative_binomial(n, p, size=None, dtype=<class 'int'>)
Negative binomial distribution.

Returns an array of samples drawn from the negative binomial distribution. Its probability mass function is
defined as

𝑓(𝑥) =

(︂
𝑥+ 𝑛− 1

𝑛− 1

)︂
𝑝𝑛(1− 𝑝)𝑥.

Parameters
• n (int) – Parameter of the negative binomial distribution 𝑛.

• p (float) – Parameter of the negative binomial distribution 𝑝.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.int32 and numpy.int64 types are allowed.

Returns
Samples drawn from the negative binomial distribution.

Return type
cupy.ndarray

See also:
numpy.random.negative_binomial()

cupy.random.noncentral_chisquare

cupy.random.noncentral_chisquare(df, nonc, size=None, dtype=<class 'float'>)
Noncentral chisquare distribution.

Returns an array of samples drawn from the noncentral chisquare distribution. Its probability density function is
defined as

𝑓(𝑥) =
1

2
𝑒−(𝑥+𝜆)/2

(︁𝑥
𝜆

)︁𝑘/4−1/2

𝐼𝑘/2−1(
√
𝜆𝑥),

where 𝐼 is the modified Bessel function of the first kind.

Parameters
• df (float) – Parameter of the noncentral chisquare distribution 𝑘.

• nonc (float) – Parameter of the noncentral chisquare distribution 𝜆.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the noncentral chisquare distribution.

Return type
cupy.ndarray

See also:
numpy.random.noncentral_chisquare()

5.3. Routines (NumPy) 261

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.negative_binomial.html#numpy.random.negative_binomial
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.noncentral_chisquare.html#numpy.random.noncentral_chisquare

CuPy Documentation, Release 13.0.0

cupy.random.noncentral_f

cupy.random.noncentral_f(dfnum, dfden, nonc, size=None, dtype=<class 'float'>)
Noncentral F distribution.

Returns an array of samples drawn from the noncentral F distribution.

Reference: https://en.wikipedia.org/wiki/Noncentral_F-distribution

Parameters
• dfnum (float) – Parameter of the noncentral F distribution.

• dfden (float) – Parameter of the noncentral F distribution.

• nonc (float) – Parameter of the noncentral F distribution.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the noncentral F distribution.

Return type
cupy.ndarray

See also:
numpy.random.noncentral_f()

cupy.random.normal

cupy.random.normal(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)
Returns an array of normally distributed samples.

Parameters
• loc (float or array_like of floats) – Mean of the normal distribution.

• scale (float or array_like of floats) – Standard deviation of the normal distribu-
tion.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Normally distributed samples.

Return type
cupy.ndarray

See also:
numpy.random.normal()

262 Chapter 5. API Reference

https://en.wikipedia.org/wiki/Noncentral_F-distribution
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.noncentral_f.html#numpy.random.noncentral_f
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html#numpy.random.normal

CuPy Documentation, Release 13.0.0

cupy.random.pareto

cupy.random.pareto(a, size=None, dtype=<class 'float'>)
Pareto II or Lomax distribution.

Returns an array of samples drawn from the Pareto II distribution. Its probability density function is defined as

𝑓(𝑥) = 𝛼(1 + 𝑥)−(𝛼+1).

Parameters
• a (float or array_like of floats) – Parameter of the Pareto II distribution 𝛼.

• size (int or tuple of ints) – The shape of the array. If None, this function generate
an array whose shape is a.shape.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the Pareto II distribution.

Return type
cupy.ndarray

See also:
numpy.random.pareto()

cupy.random.permutation

cupy.random.permutation(a)
Returns a permuted range or a permutation of an array.

Parameters
a (int or cupy.ndarray) – The range or the array to be shuffled.

Returns
If a is an integer, it is permutation range between 0 and a - 1. Otherwise, it is a permutation of a.

Return type
cupy.ndarray

See also:
numpy.random.permutation()

cupy.random.poisson

cupy.random.poisson(lam=1.0, size=None, dtype=<class 'int'>)
Poisson distribution.

Returns an array of samples drawn from the poisson distribution. Its probability mass function is defined as

𝑓(𝑥) =
𝜆𝑥𝑒−𝜆

𝑘!
.

Parameters
• lam (array_like of floats) – Parameter of the poisson distribution 𝜆.

5.3. Routines (NumPy) 263

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.pareto.html#numpy.random.pareto
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• size (int or tuple of ints) – The shape of the array. If None, this function generate
an array whose shape is lam.shape.

• dtype – Data type specifier. Only numpy.int32 and numpy.int64 types are allowed.

Returns
Samples drawn from the poisson distribution.

Return type
cupy.ndarray

See also:
numpy.random.poisson()

cupy.random.power

cupy.random.power(a, size=None, dtype=<class 'float'>)
Power distribution.

Returns an array of samples drawn from the power distribution. Its probability density function is defined as

𝑓(𝑥) = 𝑎𝑥𝑎−1.

Parameters
• a (float) – Parameter of the power distribution 𝑎.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the power distribution.

Return type
cupy.ndarray

See also:
numpy.random.power()

cupy.random.rand

cupy.random.rand(*size, **kwarg)
Returns an array of uniform random values over the interval [0, 1).

Each element of the array is uniformly distributed on the half-open interval [0, 1). All elements are identically
and independently distributed (i.i.d.).

Parameters
• size (ints) – The shape of the array.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.
The default is numpy.float64.

Returns
A random array.

264 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.poisson.html#numpy.random.poisson
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.power.html#numpy.random.power

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
numpy.random.rand()

Example

>>> cupy.random.rand(3, 2)
array([[0.86476479, 0.05633727], # random

[0.27283185, 0.38255354], # random
[0.16592278, 0.75150313]]) # random

>>> cupy.random.rand(3, 2, dtype=cupy.float32)
array([[0.9672306 , 0.9590486], # random

[0.6851264 , 0.70457625], # random
[0.22382522, 0.36055237]], dtype=float32) # random

cupy.random.randint

cupy.random.randint(low, high=None, size=None, dtype='l')
Returns a scalar or an array of integer values over [low, high).

Each element of returned values are independently sampled from uniform distribution over left-close and right-
open interval [low, high).

Parameters
• low (int) – If high is not None, it is the lower bound of the interval. Otherwise, it is the

upper bound of the interval and lower bound of the interval is set to 0.

• high (int) – Upper bound of the interval.

• size (None or int or tuple of ints) – The shape of returned value.

• dtype – Data type specifier.

Returns
If size is None, it is single integer sampled. If size is integer, it is the 1D-array of length size
element. Otherwise, it is the array whose shape specified by size.

Return type
int or cupy.ndarray of ints

cupy.random.randn

cupy.random.randn(*size, **kwarg)
Returns an array of standard normal random values.

Each element of the array is normally distributed with zero mean and unit variance. All elements are identically
and independently distributed (i.i.d.).

Parameters
• size (ints) – The shape of the array.

5.3. Routines (NumPy) 265

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.
The default is numpy.float64.

Returns
An array of standard normal random values.

Return type
cupy.ndarray

See also:
numpy.random.randn()

Example

>>> cupy.random.randn(3, 2)
array([[0.41193321, 1.59579542], # random

[0.47904589, 0.18566376], # random
[0.59748424, 2.32602829]]) # random

>>> cupy.random.randn(3, 2, dtype=cupy.float32)
array([[0.1373886 , 2.403238], # random

[0.84020025, 1.5089266], # random
[-1.2268474 , -0.48219103]], dtype=float32) # random

cupy.random.random

cupy.random.random(size=None, dtype=<class 'float'>)
Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

Parameters
• size (int or tuple of ints) – The shape of the array.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
An array of uniformly distributed random values.

Return type
cupy.ndarray

See also:
numpy.random.random_sample()

266 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

cupy.random.random_integers

cupy.random.random_integers(low, high=None, size=None)
Return a scalar or an array of integer values over [low, high]

Each element of returned values are independently sampled from uniform distribution over closed interval [low,
high].

Parameters
• low (int) – If high is not None, it is the lower bound of the interval. Otherwise, it is the

upper bound of the interval and the lower bound is set to 1.

• high (int) – Upper bound of the interval.

• size (None or int or tuple of ints) – The shape of returned value.

Returns
If size is None, it is single integer sampled. If size is integer, it is the 1D-array of length size
element. Otherwise, it is the array whose shape specified by size.

Return type
int or cupy.ndarray of ints

cupy.random.random_sample

cupy.random.random_sample(size=None, dtype=<class 'float'>)
Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

Parameters
• size (int or tuple of ints) – The shape of the array.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
An array of uniformly distributed random values.

Return type
cupy.ndarray

See also:
numpy.random.random_sample()

cupy.random.ranf

cupy.random.ranf(size=None, dtype=<class 'float'>)
Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

Parameters
• size (int or tuple of ints) – The shape of the array.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

5.3. Routines (NumPy) 267

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Returns
An array of uniformly distributed random values.

Return type
cupy.ndarray

See also:
numpy.random.random_sample()

cupy.random.rayleigh

cupy.random.rayleigh(scale=1.0, size=None, dtype=<class 'float'>)
Rayleigh distribution.

Returns an array of samples drawn from the rayleigh distribution. Its probability density function is defined as

𝑓(𝑥) =
𝑥

𝜎2
𝑒

−𝑥2

2−𝜎2 , 𝑥 ≥ 0.

Parameters
• scale (array) – Parameter of the rayleigh distribution 𝜎.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the rayleigh distribution.

Return type
cupy.ndarray

See also:
numpy.random.rayleigh()

cupy.random.sample

cupy.random.sample(size=None, dtype=<class 'float'>)
Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

Parameters
• size (int or tuple of ints) – The shape of the array.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
An array of uniformly distributed random values.

Return type
cupy.ndarray

268 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.rayleigh.html#numpy.random.rayleigh
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

See also:
numpy.random.random_sample()

cupy.random.seed

cupy.random.seed(seed=None)
Resets the state of the random number generator with a seed.

This function resets the state of the global random number generator for the current device. Be careful that
generators for other devices are not affected.

Parameters
seed (None or int) – Seed for the random number generator. If None, it uses os.urandom()
if available or time.time() otherwise. Note that this function does not support seeding by an
integer array.

cupy.random.shuffle

cupy.random.shuffle(a)
Shuffles an array.

Parameters
a (cupy.ndarray) – The array to be shuffled.

See also:
numpy.random.shuffle()

cupy.random.standard_cauchy

cupy.random.standard_cauchy(size=None, dtype=<class 'float'>)
Standard cauchy distribution.

Returns an array of samples drawn from the standard cauchy distribution. Its probability density function is
defined as

𝑓(𝑥) =
1

𝜋(1 + 𝑥2)
.

Parameters
• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional

array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the standard cauchy distribution.

Return type
cupy.ndarray

See also:
numpy.random.standard_cauchy()

5.3. Routines (NumPy) 269

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/os.html#os.urandom
https://docs.python.org/3/library/time.html#time.time
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_cauchy.html#numpy.random.standard_cauchy

CuPy Documentation, Release 13.0.0

cupy.random.standard_exponential

cupy.random.standard_exponential(size=None, dtype=<class 'float'>)
Standard exponential distribution.

Returns an array of samples drawn from the standard exponential distribution. Its probability density function is
defined as

𝑓(𝑥) = 𝑒−𝑥.

Parameters
• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional

array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the standard exponential distribution.

Return type
cupy.ndarray

See also:
numpy.random.standard_exponential()

cupy.random.standard_gamma

cupy.random.standard_gamma(shape, size=None, dtype=<class 'float'>)
Standard gamma distribution.

Returns an array of samples drawn from the standard gamma distribution. Its probability density function is
defined as

𝑓(𝑥) =
1

Γ(𝑘)
𝑥𝑘−1𝑒−𝑥.

Parameters
• shape (array) – Parameter of the gamma distribution 𝑘.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the standard gamma distribution.

Return type
cupy.ndarray

See also:
numpy.random.standard_gamma()

270 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_exponential.html#numpy.random.standard_exponential
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_gamma.html#numpy.random.standard_gamma

CuPy Documentation, Release 13.0.0

cupy.random.standard_normal

cupy.random.standard_normal(size=None, dtype=<class 'float'>)
Returns an array of samples drawn from the standard normal distribution.

This is a variant of cupy.random.randn().

Parameters
• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional

array is generated.

• dtype – Data type specifier.

Returns
Samples drawn from the standard normal distribution.

Return type
cupy.ndarray

See also:
numpy.random.standard_normal()

cupy.random.standard_t

cupy.random.standard_t(df, size=None, dtype=<class 'float'>)
Standard Student’s t distribution.

Returns an array of samples drawn from the standard Student’s t distribution. Its probability density function is
defined as

𝑓(𝑥) =
Γ(𝜈+1

2)
√
𝜈𝜋Γ(𝜈2)

(︂
1 +

𝑥2

𝜈

)︂−(𝜈+1
2)

.

Parameters
• df (float or array_like of floats) – Degree of freedom 𝜈.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the standard Student’s t distribution.

Return type
cupy.ndarray

See also:
numpy.random.standard_t()

5.3. Routines (NumPy) 271

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_normal.html#numpy.random.standard_normal
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_t.html#numpy.random.standard_t

CuPy Documentation, Release 13.0.0

cupy.random.triangular

cupy.random.triangular(left, mode, right, size=None, dtype=<class 'float'>)
Triangular distribution.

Returns an array of samples drawn from the triangular distribution. Its probability density function is defined as

𝑓(𝑥) =

⎧⎪⎨⎪⎩
2(𝑥−𝑙)

(𝑟−𝑙)(𝑚−𝑙) for 𝑙 ≤ 𝑥 ≤ 𝑚,
2(𝑟−𝑥)

(𝑟−𝑙)(𝑟−𝑚) for 𝑚 ≤ 𝑥 ≤ 𝑟,

0 otherwise.

Parameters
• left (float) – Lower limit 𝑙.

• mode (float) – The value where the peak of the distribution occurs. 𝑚.

• right (float) – Higher Limit 𝑟.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the triangular distribution.

Return type
cupy.ndarray

See also:
numpy.random.triangular()

cupy.random.uniform

cupy.random.uniform(low=0.0, high=1.0, size=None, dtype=<class 'float'>)
Returns an array of uniformly-distributed samples over an interval.

Samples are drawn from a uniform distribution over the half-open interval [low, high). The samples may
contain the high limit due to floating-point rounding.

Parameters
• low (float) – Lower end of the interval.

• high (float) – Upper end of the interval.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier.

Returns
Samples drawn from the uniform distribution.

Return type
cupy.ndarray

See also:
numpy.random.uniform()

272 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.triangular.html#numpy.random.triangular
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html#numpy.random.uniform

CuPy Documentation, Release 13.0.0

cupy.random.vonmises

cupy.random.vonmises(mu, kappa, size=None, dtype=<class 'float'>)
von Mises distribution.

Returns an array of samples drawn from the von Mises distribution. Its probability density function is defined as

𝑓(𝑥) =
𝑒𝜅 cos(𝑥−𝜇)

2𝜋𝐼0(𝜅)
.

Parameters
• mu (float) – Parameter of the von Mises distribution 𝜇.

• kappa (float) – Parameter of the von Mises distribution 𝜅.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the von Mises distribution.

Return type
cupy.ndarray

See also:
numpy.random.vonmises()

cupy.random.wald

cupy.random.wald(mean, scale, size=None, dtype=<class 'float'>)
Wald distribution.

Returns an array of samples drawn from the Wald distribution. Its probability density function is defined as

𝑓(𝑥) =

√︂
𝜆

2𝜋𝑥3
𝑒

−𝜆(𝑥−𝜇)2

2𝜇2𝑥 .

Parameters
• mean (float) – Parameter of the wald distribution 𝜇.

• scale (float) – Parameter of the wald distribution 𝜆.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the wald distribution.

Return type
cupy.ndarray

See also:
numpy.random.wald()

5.3. Routines (NumPy) 273

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.vonmises.html#numpy.random.vonmises
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.wald.html#numpy.random.wald

CuPy Documentation, Release 13.0.0

cupy.random.weibull

cupy.random.weibull(a, size=None, dtype=<class 'float'>)
weibull distribution.

Returns an array of samples drawn from the weibull distribution. Its probability density function is defined as

𝑓(𝑥) = 𝑎𝑥(𝑎−1)𝑒−𝑥𝑎

.

Parameters
• a (float) – Parameter of the weibull distribution 𝑎.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.float32 and numpy.float64 types are allowed.

Returns
Samples drawn from the weibull distribution.

Return type
cupy.ndarray

See also:
numpy.random.weibull()

cupy.random.zipf

cupy.random.zipf(a, size=None, dtype=<class 'int'>)
Zipf distribution.

Returns an array of samples drawn from the Zipf distribution. Its probability mass function is defined as

𝑓(𝑥) =
𝑥−𝑎

𝜁(𝑎)
,

where 𝜁 is the Riemann Zeta function.

Parameters
• a (float) – Parameter of the beta distribution 𝑎.

• size (int or tuple of ints) – The shape of the array. If None, a zero-dimensional
array is generated.

• dtype – Data type specifier. Only numpy.int32 and numpy.int64 types are allowed.

Returns
Samples drawn from the Zipf distribution.

Return type
cupy.ndarray

See also:
numpy.random.zipf()

274 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.weibull.html#numpy.random.weibull
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/random/generated/numpy.random.zipf.html#numpy.random.zipf

CuPy Documentation, Release 13.0.0

CuPy does not provide cupy.random.get_state nor cupy.random.set_state at this time. Use the following
CuPy-specific APIs instead. Note that these functions use cupy.random.RandomState instance to represent the
internal state, which cannot be serialized.

get_random_state() Gets the state of the random number generator for the
current device.

set_random_state(rs) Sets the state of the random number generator for the
current device.

cupy.random.get_random_state

cupy.random.get_random_state()

Gets the state of the random number generator for the current device.

If the state for the current device is not created yet, this function creates a new one, initializes it, and stores it as
the state for the current device.

Returns
The state of the random number generator for the device.

Return type
RandomState

cupy.random.set_random_state

cupy.random.set_random_state(rs)
Sets the state of the random number generator for the current device.

Parameters
state (RandomState) – Random state to set for the current device.

5.3.16 Set routines

Hint: NumPy API Reference: Set routines

Making proper sets

unique(ar[, return_index, return_inverse, ...]) Find the unique elements of an array.

5.3. Routines (NumPy) 275

https://numpy.org/doc/stable/reference/routines.set.html

CuPy Documentation, Release 13.0.0

Boolean operations

in1d(ar1, ar2[, assume_unique, invert]) Tests whether each element of a 1-D array is also present
in a second array.

intersect1d(arr1, arr2[, assume_unique, ...]) Find the intersection of two arrays.
isin(element, test_elements[, ...]) Calculates element in test_elements, broadcasting

over element only.
setdiff1d(ar1, ar2[, assume_unique]) Find the set difference of two arrays.
setxor1d(ar1, ar2[, assume_unique]) Find the set exclusive-or of two arrays.

cupy.in1d

cupy.in1d(ar1, ar2, assume_unique=False, invert=False)
Tests whether each element of a 1-D array is also present in a second array.

Returns a boolean array the same length as ar1 that is True where an element of ar1 is in ar2 and False
otherwise.

Parameters
• ar1 (cupy.ndarray) – Input array.

• ar2 (cupy.ndarray) – The values against which to test each value of ar1.

• assume_unique (bool, optional) – Ignored

• invert (bool, optional) – If True, the values in the returned array are inverted (that is,
False where an element of ar1 is in ar2 and True otherwise). Default is False.

Returns
y – The values ar1[in1d] are in ar2.

Return type
cupy.ndarray, bool

cupy.intersect1d

cupy.intersect1d(arr1, arr2, assume_unique=False, return_indices=False)
Find the intersection of two arrays. Returns the sorted, unique values that are in both of the input arrays.

Parameters
• arr1 (cupy.ndarray) – Input arrays. Arrays will be flattened if they are not in 1D.

• arr2 (cupy.ndarray) – Input arrays. Arrays will be flattened if they are not in 1D.

• assume_unique (bool) – By default, False. If set True, the input arrays will be assumend
to be unique, which speeds up the calculation. If set True, but the arrays are not unique,
incorrect results and out-of-bounds indices could result.

• return_indices (bool) – By default, False. If True, the indices which correspond to the
intersection of the two arrays are returned.

Returns
• intersect1d (cupy.ndarray) – Sorted 1D array of common and unique elements.

276 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• comm1 (cupy.ndarray) – The indices of the first occurrences of the common values in arr1.
Only provided if return_indices is True.

• comm2 (cupy.ndarray) – The indices of the first occurrences of the common values in arr2.
Only provided if return_indices is True.

See also:
numpy.intersect1d

cupy.isin

cupy.isin(element, test_elements, assume_unique=False, invert=False)
Calculates element in test_elements, broadcasting over element only. Returns a boolean array of the same
shape as element that is True where an element of element is in test_elements and False otherwise.

Parameters
• element (cupy.ndarray) – Input array.

• test_elements (cupy.ndarray) – The values against which to test each value of
element. This argument is flattened if it is an array or array_like.

• assume_unique (bool, optional) – Ignored

• invert (bool, optional) – If True, the values in the returned array are inverted, as if
calculating element not in test_elements. Default is False.

Returns
y – Has the same shape as element. The values element[isin] are in test_elements.

Return type
cupy.ndarray, bool

cupy.setdiff1d

cupy.setdiff1d(ar1, ar2, assume_unique=False)
Find the set difference of two arrays. It returns unique values in ar1 that are not in ar2.

Parameters
• ar1 (cupy.ndarray) – Input array

• ar2 (cupy.ndarray) – Input array for comparision

• assume_unique (bool) – By default, False, i.e. input arrays are not unique. If True, input
arrays are assumed to be unique. This can speed up the calculation.

Returns
setdiff1d – Returns a 1D array of values in ar1 that are not in ar2. It always returns a sorted
output for unsorted input only if assume_unique=False.

Return type
cupy.ndarray

See also:
numpy.setdiff1d

5.3. Routines (NumPy) 277

https://numpy.org/doc/stable/reference/generated/numpy.intersect1d.html#numpy.intersect1d
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.setdiff1d.html#numpy.setdiff1d

CuPy Documentation, Release 13.0.0

cupy.setxor1d

cupy.setxor1d(ar1, ar2, assume_unique=False)
Find the set exclusive-or of two arrays.

Parameters
• ar1 (cupy.ndarray) – Input arrays. They are flattend if they are not already 1-D.

• ar2 (cupy.ndarray) – Input arrays. They are flattend if they are not already 1-D.

• assume_unique (bool) – By default, False, i.e. input arrays are not unique. If True, input
arrays are assumed to be unique. This can speed up the calculation.

Returns
setxor1d – Return the sorted, unique values that are in only one (not both) of the input arrays.

Return type
cupy.ndarray

See also:
numpy.setxor1d

5.3.17 Sorting, searching, and counting

Hint: NumPy API Reference: Sorting, searching, and counting

Sorting

sort(a[, axis, kind]) Returns a sorted copy of an array with a stable sorting
algorithm.

lexsort(keys) Perform an indirect sort using an array of keys.
argsort(a[, axis, kind]) Returns the indices that would sort an array with a stable

sorting.
msort(a) Returns a copy of an array sorted along the first axis.
sort_complex(a) Sort a complex array using the real part first, then the

imaginary part.
partition(a, kth[, axis]) Returns a partitioned copy of an array.
argpartition(a, kth[, axis]) Returns the indices that would partially sort an array.

cupy.sort

cupy.sort(a, axis=-1, kind=None)
Returns a sorted copy of an array with a stable sorting algorithm.

Parameters
• a (cupy.ndarray) – Array to be sorted.

• axis (int or None) – Axis along which to sort. Default is -1, which means sort along the
last axis. If None is supplied, the array is flattened before sorting.

278 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.setxor1d.html#numpy.setxor1d
https://numpy.org/doc/stable/reference/routines.sort.html
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• kind – Default is None, which is equivalent to ‘stable’. Unlike in NumPy any other options
are not accepted here.

Returns
Array of the same type and shape as a.

Return type
cupy.ndarray

Note: For its implementation reason, cupy.sort currently does not support kind and order parameters that
numpy.sort does support.

See also:
numpy.sort()

cupy.lexsort

cupy.lexsort(keys)
Perform an indirect sort using an array of keys.

Parameters
keys (cupy.ndarray) – (k, N) array containing k (N,)-shaped arrays. The k different “rows”
to be sorted. The last row is the primary sort key.

Returns
Array of indices that sort the keys.

Return type
cupy.ndarray

Note: For its implementation reason, cupy.lexsort currently supports only keys with their rank of one or two
and does not support axis parameter that numpy.lexsort supports.

See also:
numpy.lexsort()

cupy.argsort

cupy.argsort(a, axis=-1, kind=None)
Returns the indices that would sort an array with a stable sorting.

Parameters
• a (cupy.ndarray) – Array to sort.

• axis (int or None) – Axis along which to sort. Default is -1, which means sort along the
last axis. If None is supplied, the array is flattened before sorting.

• kind – Default is None, which is equivalent to ‘stable’. Unlike in NumPy any other options
are not accepted here.

Returns
Array of indices that sort a.

5.3. Routines (NumPy) 279

https://numpy.org/doc/stable/reference/generated/numpy.sort.html#numpy.sort
https://numpy.org/doc/stable/reference/generated/numpy.lexsort.html#numpy.lexsort
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

Note: For its implementation reason, cupy.argsort does not support kind and order parameters.

See also:
numpy.argsort()

cupy.msort

cupy.msort(a)
Returns a copy of an array sorted along the first axis.

Parameters
a (cupy.ndarray) – Array to be sorted.

Returns
Array of the same type and shape as a.

Return type
cupy.ndarray

See also:
numpy.msort()

cupy.sort_complex

cupy.sort_complex(a)
Sort a complex array using the real part first, then the imaginary part.

Parameters
a (cupy.ndarray) – Array to be sorted.

Returns
sorted complex array.

Return type
cupy.ndarray

See also:
numpy.sort_complex()

cupy.partition

cupy.partition(a, kth, axis=-1)
Returns a partitioned copy of an array.

Creates a copy of the array whose elements are rearranged such that the value of the element in k-th position
would occur in that position in a sorted array. All of the elements before the new k-th element are less than or
equal to the elements after the new k-th element.

Parameters

280 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort
https://numpy.org/doc/stable/reference/generated/numpy.sort_complex.html#numpy.sort_complex

CuPy Documentation, Release 13.0.0

• a (cupy.ndarray) – Array to be sorted.

• kth (int or sequence of ints) – Element index to partition by. If supplied with a
sequence of k-th it will partition all elements indexed by k-th of them into their sorted position
at once.

• axis (int or None) – Axis along which to sort. Default is -1, which means sort along the
last axis. If None is supplied, the array is flattened before sorting.

Returns
Array of the same type and shape as a.

Return type
cupy.ndarray

See also:
numpy.partition()

cupy.argpartition

cupy.argpartition(a, kth, axis=-1)
Returns the indices that would partially sort an array.

Parameters
• a (cupy.ndarray) – Array to be sorted.

• kth (int or sequence of ints) – Element index to partition by. If supplied with a
sequence of k-th it will partition all elements indexed by k-th of them into their sorted position
at once.

• axis (int or None) – Axis along which to sort. Default is -1, which means sort along the
last axis. If None is supplied, the array is flattened before sorting.

Returns
Array of the same type and shape as a.

Return type
cupy.ndarray

Note: For its implementation reason, cupy.argpartition fully sorts the given array as cupy.argsort does. It also
does not support kind and order parameters that numpy.argpartition supports.

See also:
numpy.argpartition()

See also:
cupy.ndarray.sort()

5.3. Routines (NumPy) 281

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.partition.html#numpy.partition
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.argpartition.html#numpy.argpartition

CuPy Documentation, Release 13.0.0

Searching

argmax(a[, axis, dtype, out, keepdims]) Returns the indices of the maximum along an axis.
nanargmax(a[, axis, dtype, out, keepdims]) Return the indices of the maximum values in the speci-

fied axis ignoring NaNs.
argmin(a[, axis, dtype, out, keepdims]) Returns the indices of the minimum along an axis.
nanargmin(a[, axis, dtype, out, keepdims]) Return the indices of the minimum values in the speci-

fied axis ignoring NaNs.
argwhere(a) Return the indices of the elements that are non-zero.
nonzero(a) Return the indices of the elements that are non-zero.
flatnonzero(a) Return indices that are non-zero in the flattened version

of a.
where(condition[, x, y]) Return elements, either from x or y, depending on con-

dition.
searchsorted(a, v[, side, sorter]) Finds indices where elements should be inserted to

maintain order.
extract(condition, a) Return the elements of an array that satisfy some condi-

tion.

cupy.argmax

cupy.argmax(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the indices of the maximum along an axis.

Parameters
• a (cupy.ndarray) – Array to take argmax.

• axis (int) – Along which axis to find the maximum. a is flattened by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis axis is preserved as an axis of length one.

Returns
The indices of the maximum of a along an axis.

Return type
cupy.ndarray

Note: dtype and keepdim arguments are specific to CuPy. They are not in NumPy.

Note: axis argument accepts a tuple of ints, but this is specific to CuPy. NumPy does not support it.

See also:
numpy.argmax()

282 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html#numpy.argmax

CuPy Documentation, Release 13.0.0

cupy.nanargmax

cupy.nanargmax(a, axis=None, dtype=None, out=None, keepdims=False)
Return the indices of the maximum values in the specified axis ignoring NaNs. For all-NaN slice -1 is returned.
Subclass cannot be passed yet, subok=True still unsupported

Parameters
• a (cupy.ndarray) – Array to take nanargmax.

• axis (int) – Along which axis to find the maximum. a is flattened by default.

Returns
The indices of the maximum of a along an axis ignoring NaN values.

Return type
cupy.ndarray

Note: For performance reasons, cupy.nanargmax returns out of range values for all-NaN slice whereas
numpy.nanargmax raises ValueError

See also:
numpy.nanargmax()

cupy.argmin

cupy.argmin(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the indices of the minimum along an axis.

Parameters
• a (cupy.ndarray) – Array to take argmin.

• axis (int) – Along which axis to find the minimum. a is flattened by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis axis is preserved as an axis of length one.

Returns
The indices of the minimum of a along an axis.

Return type
cupy.ndarray

Note: dtype and keepdim arguments are specific to CuPy. They are not in NumPy.

Note: axis argument accepts a tuple of ints, but this is specific to CuPy. NumPy does not support it.

See also:
numpy.argmin()

5.3. Routines (NumPy) 283

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.nanargmax.html#numpy.nanargmax
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.argmin.html#numpy.argmin

CuPy Documentation, Release 13.0.0

cupy.nanargmin

cupy.nanargmin(a, axis=None, dtype=None, out=None, keepdims=False)
Return the indices of the minimum values in the specified axis ignoring NaNs. For all-NaN slice -1 is returned.
Subclass cannot be passed yet, subok=True still unsupported

Parameters
• a (cupy.ndarray) – Array to take nanargmin.

• axis (int) – Along which axis to find the minimum. a is flattened by default.

Returns
The indices of the minimum of a along an axis ignoring NaN values.

Return type
cupy.ndarray

Note: For performance reasons, cupy.nanargmin returns out of range values for all-NaN slice whereas
numpy.nanargmin raises ValueError

See also:
numpy.nanargmin()

cupy.argwhere

cupy.argwhere(a)
Return the indices of the elements that are non-zero.

Returns a (N, ndim) dimantional array containing the indices of the non-zero elements. Where N is number of
non-zero elements and ndim is dimension of the given array.

Parameters
a (cupy.ndarray) – array

Returns
Indices of elements that are non-zero.

Return type
cupy.ndarray

See also:
numpy.argwhere()

cupy.flatnonzero

cupy.flatnonzero(a)
Return indices that are non-zero in the flattened version of a.

This is equivalent to a.ravel().nonzero()[0].

Parameters
a (cupy.ndarray) – input array

284 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.nanargmin.html#numpy.nanargmin
https://numpy.org/doc/stable/reference/generated/numpy.argwhere.html#numpy.argwhere

CuPy Documentation, Release 13.0.0

Returns
Output array, containing the indices of the elements of a.ravel() that are non-zero.

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
numpy.flatnonzero()

cupy.searchsorted

cupy.searchsorted(a, v, side='left', sorter=None)
Finds indices where elements should be inserted to maintain order.

Find the indices into a sorted array a such that, if the corresponding elements in v were inserted before the
indices, the order of a would be preserved.

Parameters
• a (cupy.ndarray) – Input array. If sorter is None, then it must be sorted in ascending

order, otherwise sorter must be an array of indices that sort it.

• v (cupy.ndarray) – Values to insert into a.

• side – {‘left’, ‘right’} If left, return the index of the first suitable location found If right,
return the last such index. If there is no suitable index, return either 0 or length of a.

• sorter – 1-D array_like Optional array of integer indices that sort array a into ascending
order. They are typically the result of argsort().

Returns
Array of insertion points with the same shape as v.

Return type
cupy.ndarray

Note: When a is not in ascending order, behavior is undefined.

See also:
numpy.searchsorted()

cupy.extract

cupy.extract(condition, a)
Return the elements of an array that satisfy some condition.

This is equivalent to np.compress(ravel(condition), ravel(arr)). If condition is boolean, np.
extract is equivalent to arr[condition].

Parameters

5.3. Routines (NumPy) 285

https://numpy.org/doc/stable/reference/generated/numpy.flatnonzero.html#numpy.flatnonzero
https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html#numpy.searchsorted

CuPy Documentation, Release 13.0.0

• condition (int or array_like) – An array whose nonzero or True entries indicate the
elements of array to extract.

• a (cupy.ndarray) – Input array of the same size as condition.

Returns
Rank 1 array of values from arr where condition is True.

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
numpy.extract()

Counting

count_nonzero(a[, axis]) Counts the number of non-zero values in the array.

cupy.count_nonzero

cupy.count_nonzero(a, axis=None)
Counts the number of non-zero values in the array.

Note: numpy.count_nonzero() returns int value when axis=None, but cupy.count_nonzero() returns
zero-dimensional array to reduce CPU-GPU synchronization.

Parameters
• a (cupy.ndarray) – The array for which to count non-zeros.

• axis (int or tuple, optional) – Axis or tuple of axes along which to count non-zeros.
Default is None, meaning that non-zeros will be counted along a flattened version of a

Returns
Number of non-zero values in the array along a given axis. Otherwise, the total number of non-
zero values in the array is returned.

Return type
cupy.ndarray of int

286 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.extract.html#numpy.extract
https://numpy.org/doc/stable/reference/generated/numpy.count_nonzero.html#numpy.count_nonzero
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

5.3.18 Statistics

Hint: NumPy API Reference: Statistics

Order statistics

amin(a[, axis, out, keepdims]) Returns the minimum of an array or the minimum along
an axis.

amax(a[, axis, out, keepdims]) Returns the maximum of an array or the maximum along
an axis.

nanmin(a[, axis, out, keepdims]) Returns the minimum of an array along an axis ignoring
NaN.

nanmax(a[, axis, out, keepdims]) Returns the maximum of an array along an axis ignoring
NaN.

ptp(a[, axis, out, keepdims]) Returns the range of values (maximum - minimum)
along an axis.

percentile(a, q[, axis, out, ...]) Computes the q-th percentile of the data along the spec-
ified axis.

quantile(a, q[, axis, out, overwrite_input, ...]) Computes the q-th quantile of the data along the speci-
fied axis.

cupy.amin

cupy.amin(a, axis=None, out=None, keepdims=False)
Returns the minimum of an array or the minimum along an axis.

Note: When at least one element is NaN, the corresponding min value will be NaN.

Parameters
• a (cupy.ndarray) – Array to take the minimum.

• axis (int) – Along which axis to take the minimum. The flattened array is used by default.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The minimum of a, along the axis if specified.

Return type
cupy.ndarray

Note: When cuTENSOR accelerator is used, the output value might be collapsed for reduction axes that have
one or more NaN elements.

5.3. Routines (NumPy) 287

https://numpy.org/doc/stable/reference/routines.statistics.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

See also:
numpy.amin()

cupy.amax

cupy.amax(a, axis=None, out=None, keepdims=False)
Returns the maximum of an array or the maximum along an axis.

Note: When at least one element is NaN, the corresponding min value will be NaN.

Parameters
• a (cupy.ndarray) – Array to take the maximum.

• axis (int) – Along which axis to take the maximum. The flattened array is used by default.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The maximum of a, along the axis if specified.

Return type
cupy.ndarray

Note: When cuTENSOR accelerator is used, the output value might be collapsed for reduction axes that have
one or more NaN elements.

See also:
numpy.amax()

cupy.nanmin

cupy.nanmin(a, axis=None, out=None, keepdims=False)
Returns the minimum of an array along an axis ignoring NaN.

When there is a slice whose elements are all NaN, a RuntimeWarning is raised and NaN is returned.

Parameters
• a (cupy.ndarray) – Array to take the minimum.

• axis (int) – Along which axis to take the minimum. The flattened array is used by default.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The minimum of a, along the axis if specified.

Return type
cupy.ndarray

288 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.amin.html#numpy.amin
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.amax.html#numpy.amax
https://docs.python.org/3/library/exceptions.html#RuntimeWarning
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Warning: This function may synchronize the device.

See also:
numpy.nanmin()

cupy.nanmax

cupy.nanmax(a, axis=None, out=None, keepdims=False)
Returns the maximum of an array along an axis ignoring NaN.

When there is a slice whose elements are all NaN, a RuntimeWarning is raised and NaN is returned.

Parameters
• a (cupy.ndarray) – Array to take the maximum.

• axis (int) – Along which axis to take the maximum. The flattened array is used by default.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The maximum of a, along the axis if specified.

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
numpy.nanmax()

cupy.ptp

cupy.ptp(a, axis=None, out=None, keepdims=False)
Returns the range of values (maximum - minimum) along an axis.

Note: The name of the function comes from the acronym for ‘peak to peak’.

When at least one element is NaN, the corresponding ptp value will be NaN.

Parameters
• a (cupy.ndarray) – Array over which to take the range.

• axis (int) – Axis along which to take the minimum. The flattened array is used by default.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is retained as an axis of size one.

5.3. Routines (NumPy) 289

https://numpy.org/doc/stable/reference/generated/numpy.nanmin.html#numpy.nanmin
https://docs.python.org/3/library/exceptions.html#RuntimeWarning
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.nanmax.html#numpy.nanmax
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Returns
The minimum of a, along the axis if specified.

Return type
cupy.ndarray

Note: When cuTENSOR accelerator is used, the output value might be collapsed for reduction axes that have
one or more NaN elements.

See also:
numpy.amin()

cupy.percentile

cupy.percentile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *,
interpolation=None)

Computes the q-th percentile of the data along the specified axis.

Parameters
• a (cupy.ndarray) – Array for which to compute percentiles.

• q (float, tuple of floats or cupy.ndarray) – Percentiles to compute in the range
between 0 and 100 inclusive.

• axis (int or tuple of ints) – Along which axis or axes to compute the percentiles.
The flattened array is used by default.

• out (cupy.ndarray) – Output array.

• overwrite_input (bool) – If True, then allow the input array a to be modified by the
intermediate calculations, to save memory. In this case, the contents of the input a after this
function completes is undefined.

• method (str) – Interpolation method when a quantile lies between two data points. linear
interpolation is used by default. Supported interpolations are``lower``, higher, midpoint,
nearest and linear.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

• interpolation (str) – Deprecated name for the method keyword argument.

Returns
The percentiles of a, along the axis if specified.

Return type
cupy.ndarray

See also:
numpy.percentile()

290 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.amin.html#numpy.amin
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile

CuPy Documentation, Release 13.0.0

cupy.quantile

cupy.quantile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *,
interpolation=None)

Computes the q-th quantile of the data along the specified axis.

Parameters
• a (cupy.ndarray) – Array for which to compute quantiles.

• q (float, tuple of floats or cupy.ndarray) – Quantiles to compute in the range
between 0 and 1 inclusive.

• axis (int or tuple of ints) – Along which axis or axes to compute the quantiles. The
flattened array is used by default.

• out (cupy.ndarray) – Output array.

• overwrite_input (bool) – If True, then allow the input array a to be modified by the
intermediate calculations, to save memory. In this case, the contents of the input a after this
function completes is undefined.

• method (str) – Interpolation method when a quantile lies between two data points. linear
interpolation is used by default. Supported interpolations are``lower``, higher, midpoint,
nearest and linear.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

• interpolation (str) – Deprecated name for the method keyword argument.

Returns
The quantiles of a, along the axis if specified.

Return type
cupy.ndarray

See also:
numpy.quantile()

Averages and variances

median(a[, axis, out, overwrite_input, keepdims]) Compute the median along the specified axis.
average(a[, axis, weights, returned, keepdims]) Returns the weighted average along an axis.
mean(a[, axis, dtype, out, keepdims]) Returns the arithmetic mean along an axis.
std(a[, axis, dtype, out, ddof, keepdims]) Returns the standard deviation along an axis.
var(a[, axis, dtype, out, ddof, keepdims]) Returns the variance along an axis.
nanmedian(a[, axis, out, overwrite_input, ...]) Compute the median along the specified axis, while ig-

noring NaNs.
nanmean(a[, axis, dtype, out, keepdims]) Returns the arithmetic mean along an axis ignoring NaN

values.
nanstd(a[, axis, dtype, out, ddof, keepdims]) Returns the standard deviation along an axis ignoring

NaN values.
nanvar(a[, axis, dtype, out, ddof, keepdims]) Returns the variance along an axis ignoring NaN values.

5.3. Routines (NumPy) 291

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.quantile.html#numpy.quantile

CuPy Documentation, Release 13.0.0

cupy.median

cupy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)
Compute the median along the specified axis.

Returns the median of the array elements.

Parameters
• a (cupy.ndarray) – Array to compute the median.

• axis (int, sequence of int or None) – Axis along which the medians are computed.
The flattened array is used by default.

• out (cupy.ndarray) – Output array.

• overwrite_input (bool) – If True, then allow use of memory of input array a for calcu-
lations. The input array will be modified by the call to median. This will save memory when
you do not need to preserve the contents of the input array. Treat the input as undefined, but
it will probably be fully or partially sorted. Default is False. If overwrite_input is True
and a is not already an ndarray, an error will be raised.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The median of a, along the axis if specified.

Return type
cupy.ndarray

See also:
numpy.median()

cupy.average

cupy.average(a, axis=None, weights=None, returned=False, *, keepdims=False)
Returns the weighted average along an axis.

Parameters
• a (cupy.ndarray) – Array to compute average.

• axis (int) – Along which axis to compute average. The flattened array is used by default.

• weights (cupy.ndarray) – Array of weights where each element corresponds to the value
in a. If None, all the values in a have a weight equal to one.

• returned (bool) – If True, a tuple of the average and the sum of weights is returned,
otherwise only the average is returned.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The average of the input array along the axis and the sum of weights.

Return type
cupy.ndarray or tuple of cupy.ndarray

292 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.median.html#numpy.median
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Warning: This function may synchronize the device if weight is given.

See also:
numpy.average()

cupy.mean

cupy.mean(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the arithmetic mean along an axis.

Parameters
• a (cupy.ndarray) – Array to compute mean.

• axis (int, sequence of int or None) – Along which axis to compute mean. The
flattened array is used by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The mean of the input array along the axis.

Return type
cupy.ndarray

See also:
numpy.mean()

cupy.std

cupy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation along an axis.

Parameters
• a (cupy.ndarray) – Array to compute standard deviation.

• axis (int) – Along which axis to compute standard deviation. The flattened array is used
by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The standard deviation of the input array along the axis.

Return type
cupy.ndarray

See also:
numpy.std()

5.3. Routines (NumPy) 293

https://numpy.org/doc/stable/reference/generated/numpy.average.html#numpy.average
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.std.html#numpy.std

CuPy Documentation, Release 13.0.0

cupy.var

cupy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance along an axis.

Parameters
• a (cupy.ndarray) – Array to compute variance.

• axis (int) – Along which axis to compute variance. The flattened array is used by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The variance of the input array along the axis.

Return type
cupy.ndarray

See also:
numpy.var()

cupy.nanmedian

cupy.nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=False)
Compute the median along the specified axis, while ignoring NaNs.

Returns the median of the array elements.

Parameters
• a (cupy.ndarray) – Array to compute the median.

• axis (int, sequence of int or None) – Axis along which the medians are computed.
The flattened array is used by default.

• out (cupy.ndarray) – Output array.

• overwrite_input (bool) – If True, then allow use of memory of input array a for calcu-
lations. The input array will be modified by the call to median. This will save memory when
you do not need to preserve the contents of the input array. Treat the input as undefined, but
it will probably be fully or partially sorted. Default is False. If overwrite_input is True
and a is not already an ndarray, an error will be raised.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The median of a, along the axis if specified.

Return type
cupy.ndarray

See also:
numpy.nanmedian()

294 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.var.html#numpy.var
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.nanmedian.html#numpy.nanmedian

CuPy Documentation, Release 13.0.0

cupy.nanmean

cupy.nanmean(a, axis=None, dtype=None, out=None, keepdims=False)
Returns the arithmetic mean along an axis ignoring NaN values.

Parameters
• a (cupy.ndarray) – Array to compute mean.

• axis (int, sequence of int or None) – Along which axis to compute mean. The
flattened array is used by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The mean of the input array along the axis ignoring NaNs.

Return type
cupy.ndarray

See also:
numpy.nanmean()

cupy.nanstd

cupy.nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation along an axis ignoring NaN values.

Parameters
• a (cupy.ndarray) – Array to compute standard deviation.

• axis (int) – Along which axis to compute standard deviation. The flattened array is used
by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The standard deviation of the input array along the axis.

Return type
cupy.ndarray

See also:
numpy.nanstd()

5.3. Routines (NumPy) 295

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.nanmean.html#numpy.nanmean
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.nanstd.html#numpy.nanstd

CuPy Documentation, Release 13.0.0

cupy.nanvar

cupy.nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance along an axis ignoring NaN values.

Parameters
• a (cupy.ndarray) – Array to compute variance.

• axis (int) – Along which axis to compute variance. The flattened array is used by default.

• dtype – Data type specifier.

• out (cupy.ndarray) – Output array.

• keepdims (bool) – If True, the axis is remained as an axis of size one.

Returns
The variance of the input array along the axis.

Return type
cupy.ndarray

See also:
numpy.nanvar()

Correlations

corrcoef (a[, y, rowvar, bias, ddof, dtype]) Returns the Pearson product-moment correlation coeffi-
cients of an array.

correlate(a, v[, mode]) Returns the cross-correlation of two 1-dimensional se-
quences.

cov(a[, y, rowvar, bias, ddof, fweights, ...]) Returns the covariance matrix of an array.

cupy.corrcoef

cupy.corrcoef(a, y=None, rowvar=True, bias=None, ddof=None, *, dtype=None)
Returns the Pearson product-moment correlation coefficients of an array.

Parameters
• a (cupy.ndarray) – Array to compute the Pearson product-moment correlation coefficients.

• y (cupy.ndarray) – An additional set of variables and observations.

• rowvar (bool) – If True, then each row represents a variable, with observations in the
columns. Otherwise, the relationship is transposed.

• bias (None) – Has no effect, do not use.

• ddof (None) – Has no effect, do not use.

• dtype – Data type specifier. By default, the return data-type will have at least numpy.float64
precision.

Returns
The Pearson product-moment correlation coefficients of the input array.

296 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.nanvar.html#numpy.nanvar
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
numpy.corrcoef()

cupy.correlate

cupy.correlate(a, v, mode='valid')
Returns the cross-correlation of two 1-dimensional sequences.

Parameters
• a (cupy.ndarray) – first 1-dimensional input.

• v (cupy.ndarray) – second 1-dimensional input.

• mode (str, optional) – valid, same, full

Returns
Discrete cross-correlation of a and v.

Return type
cupy.ndarray

See also:
numpy.correlate()

cupy.cov

cupy.cov(a, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None, *, dtype=None)
Returns the covariance matrix of an array.

This function currently does not support fweights and aweights options.

Parameters
• a (cupy.ndarray) – Array to compute covariance matrix.

• y (cupy.ndarray) – An additional set of variables and observations.

• rowvar (bool) – If True, then each row represents a variable, with observations in the
columns. Otherwise, the relationship is transposed.

• bias (bool) – If False, normalization is by (N - 1), where N is the number of observa-
tions given (unbiased estimate). If True, then normalization is by N.

• ddof (int) – If not None the default value implied by bias is overridden. Note that ddof=1
will return the unbiased estimate and ddof=0 will return the simple average.

• fweights (cupy.ndarray, int) – 1-D array of integer frequency weights. the number of
times each observation vector should be repeated. It is required that fweights >= 0. However,
the function will not error when fweights < 0 for performance reasons.

• aweights (cupy.ndarray) – 1-D array of observation vector weights. These relative
weights are typically large for observations considered “important” and smaller for obser-
vations considered less “important”. If ddof=0 the array of weights can be used to assign
probabilities to observation vectors. It is required that aweights >= 0. However, the function
will not error when aweights < 0 for performance reasons.

5.3. Routines (NumPy) 297

https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html#numpy.corrcoef
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.correlate.html#numpy.correlate
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• dtype – Data type specifier. By default, the return data-type will have at least numpy.float64
precision.

Returns
The covariance matrix of the input array.

Return type
cupy.ndarray

See also:
numpy.cov()

Histograms

histogram(x[, bins, range, weights, density]) Computes the histogram of a set of data.
histogram2d(x, y[, bins, range, weights, ...]) Compute the bi-dimensional histogram of two data sam-

ples.
histogramdd(sample[, bins, range, weights, ...]) Compute the multidimensional histogram of some data.
bincount(x[, weights, minlength]) Count number of occurrences of each value in array of

non-negative ints.
digitize(x, bins[, right]) Finds the indices of the bins to which each value in input

array belongs.

cupy.histogram

cupy.histogram(x, bins=10, range=None, weights=None, density=False)
Computes the histogram of a set of data.

Parameters
• x (cupy.ndarray) – Input array.

• bins (int or cupy.ndarray) – If bins is an int, it represents the number of bins. If bins
is an ndarray, it represents a bin edges.

• range (2-tuple of float, optional) – The lower and upper range of the bins. If not
provided, range is simply (x.min(), x.max()). Values outside the range are ignored. The
first element of the range must be less than or equal to the second. range affects the automatic
bin computation as well. While bin width is computed to be optimal based on the actual data
within range, the bin count will fill the entire range including portions containing no data.

• density (bool, optional) – If False, the default, returns the number of samples in
each bin. If True, returns the probability density function at the bin, bin_count /
sample_count / bin_volume.

• weights (cupy.ndarray, optional) – An array of weights, of the same shape as x. Each
value in x only contributes its associated weight towards the bin count (instead of 1).

Returns
(hist, bin_edges) where hist is a cupy.ndarray storing the values of the histogram, and
bin_edges is a cupy.ndarray storing the bin edges.

Return type
tuple

298 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.cov.html#numpy.cov
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Warning: This function may synchronize the device.

See also:
numpy.histogram()

cupy.histogram2d

cupy.histogram2d(x, y, bins=10, range=None, weights=None, density=None)
Compute the bi-dimensional histogram of two data samples.

Parameters
• x (cupy.ndarray) – The first array of samples to be histogrammed.

• y (cupy.ndarray) – The second array of samples to be histogrammed.

• bins (int or tuple of int or cupy.ndarray) – The bin specification:

– A sequence of arrays describing the monotonically increasing bin edges along each di-
mension.

– The number of bins for each dimension (nx, ny)

– The number of bins for all dimensions (nx=ny=bins).

• range (sequence, optional) – A sequence of length two, each an optional (lower, upper)
tuple giving the outer bin edges to be used if the edges are not given explicitly in bins. An
entry of None in the sequence results in the minimum and maximum values being used for
the corresponding dimension. The default, None, is equivalent to passing a tuple of two
None values.

• weights (cupy.ndarray) – An array of values w_i weighing each sample (x_i, y_i). The
values of the returned histogram are equal to the sum of the weights belonging to the samples
falling into each bin.

• density (bool, optional) – If False, the default, returns the number of samples in
each bin. If True, returns the probability density function at the bin, bin_count /
sample_count / bin_volume.

Returns
H (cupy.ndarray):

The multidimensional histogram of sample x. See normed and weights for the different
possible semantics.

edges0 (tuple of cupy.ndarray):
A list of D arrays describing the bin edges for the first dimension.

edges1 (tuple of cupy.ndarray):
A list of D arrays describing the bin edges for the second dimension.

Return type
tuple

Warning: This function may synchronize the device.

5.3. Routines (NumPy) 299

https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

See also:
numpy.histogram2d()

cupy.histogramdd

cupy.histogramdd(sample, bins=10, range=None, weights=None, density=False)
Compute the multidimensional histogram of some data.

Parameters
• sample (cupy.ndarray) – The data to be histogrammed. (N, D) or (D, N) array

Note the unusual interpretation of sample when an array_like:

– When an array, each row is a coordinate in a D-dimensional space - such as
histogramdd(cupy.array([p1, p2, p3])).

– When an array_like, each element is the list of values for single coordinate - such as
histogramdd((X, Y, Z)).

The first form should be preferred.

• bins (int or tuple of int or cupy.ndarray) – The bin specification:

– A sequence of arrays describing the monotonically increasing bin edges along each di-
mension.

– The number of bins for each dimension (nx, ny, . . . =bins)

– The number of bins for all dimensions (nx=ny=. . .=bins).

• range (sequence, optional) – A sequence of length D, each an optional (lower, upper)
tuple giving the outer bin edges to be used if the edges are not given explicitly in bins. An
entry of None in the sequence results in the minimum and maximum values being used for
the corresponding dimension. The default, None, is equivalent to passing a tuple of D None
values.

• weights (cupy.ndarray) – An array of values w_i weighing each sample (x_i, y_i, z_i,
. . .). The values of the returned histogram are equal to the sum of the weights belonging to
the samples falling into each bin.

• density (bool, optional) – If False, the default, returns the number of samples in
each bin. If True, returns the probability density function at the bin, bin_count /
sample_count / bin_volume.

Returns
H (cupy.ndarray):

The multidimensional histogram of sample x. See normed and weights for the different
possible semantics.

edges (list of cupy.ndarray):
A list of D arrays describing the bin edges for each dimension.

Return type
tuple

Warning: This function may synchronize the device.

300 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.histogram2d.html#numpy.histogram2d
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

See also:
numpy.histogramdd()

cupy.bincount

cupy.bincount(x, weights=None, minlength=None)
Count number of occurrences of each value in array of non-negative ints.

Parameters
• x (cupy.ndarray) – Input array.

• weights (cupy.ndarray) – Weights array which has the same shape as x.

• minlength (int) – A minimum number of bins for the output array.

Returns
The result of binning the input array. The length of output is equal to max(cupy.max(x) + 1,
minlength).

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
numpy.bincount()

cupy.digitize

cupy.digitize(x, bins, right=False)
Finds the indices of the bins to which each value in input array belongs.

Note: In order to avoid device synchronization, digitize does not raise an exception when the array is not
monotonic

Parameters
• x (cupy.ndarray) – Input array.

• bins (cupy.ndarray) – Array of bins. It has to be 1-dimensional and monotonic increasing
or decreasing.

• right (bool) – Indicates whether the intervals include the right or the left bin edge.

Returns
Output array of indices, of same shape as x.

Return type
cupy.ndarray

See also:
numpy.digitize()

5.3. Routines (NumPy) 301

https://numpy.org/doc/stable/reference/generated/numpy.histogramdd.html#numpy.histogramdd
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.bincount.html#numpy.bincount
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.digitize.html#numpy.digitize

CuPy Documentation, Release 13.0.0

5.3.19 Test support (cupy.testing)

Hint: NumPy API Reference: Test support (numpy.testing)

Asserts

Hint: These APIs can accept both numpy.ndarray and cupy.ndarray.

assert_array_almost_equal(x, y[, decimal, ...]) Raises an AssertionError if objects are not equal up to
desired precision.

assert_allclose(actual, desired[, rtol, ...]) Raises an AssertionError if objects are not equal up to
desired tolerance.

assert_array_almost_equal_nulp(x, y[, nulp]) Compare two arrays relatively to their spacing.
assert_array_max_ulp(a, b[, maxulp, dtype]) Check that all items of arrays differ in at most N Units in

the Last Place.
assert_array_equal(x, y[, err_msg, verbose, ...]) Raises an AssertionError if two array_like objects are

not equal.
assert_array_less(x, y[, err_msg, verbose]) Raises an AssertionError if array_like objects are not or-

dered by less than.

cupy.testing.assert_array_almost_equal

cupy.testing.assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True)
Raises an AssertionError if objects are not equal up to desired precision.

Parameters
• x (numpy.ndarray or cupy.ndarray) – The actual object to check.

• y (numpy.ndarray or cupy.ndarray) – The desired, expected object.

• decimal (int) – Desired precision.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

See also:
numpy.testing.assert_array_almost_equal()

302 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/routines.testing.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_almost_equal.html#numpy.testing.assert_array_almost_equal

CuPy Documentation, Release 13.0.0

cupy.testing.assert_allclose

cupy.testing.assert_allclose(actual, desired, rtol=1e-07, atol=0, err_msg='', verbose=True)
Raises an AssertionError if objects are not equal up to desired tolerance.

Parameters
• actual (numpy.ndarray or cupy.ndarray) – The actual object to check.

• desired (numpy.ndarray or cupy.ndarray) – The desired, expected object.

• rtol (float) – Relative tolerance.

• atol (float) – Absolute tolerance.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

See also:
numpy.testing.assert_allclose()

cupy.testing.assert_array_almost_equal_nulp

cupy.testing.assert_array_almost_equal_nulp(x, y, nulp=1)
Compare two arrays relatively to their spacing.

Parameters
• x (numpy.ndarray or cupy.ndarray) – The actual object to check.

• y (numpy.ndarray or cupy.ndarray) – The desired, expected object.

• nulp (int) – The maximum number of unit in the last place for tolerance.

See also:
numpy.testing.assert_array_almost_equal_nulp()

cupy.testing.assert_array_max_ulp

cupy.testing.assert_array_max_ulp(a, b, maxulp=1, dtype=None)
Check that all items of arrays differ in at most N Units in the Last Place.

Parameters
• a (numpy.ndarray or cupy.ndarray) – The actual object to check.

• b (numpy.ndarray or cupy.ndarray) – The desired, expected object.

• maxulp (int) – The maximum number of units in the last place that elements of a and b
can differ.

• dtype (numpy.dtype) – Data-type to convert a and b to if given.

See also:
numpy.testing.assert_array_max_ulp()

5.3. Routines (NumPy) 303

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_almost_equal_nulp.html#numpy.testing.assert_array_almost_equal_nulp
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_max_ulp.html#numpy.testing.assert_array_max_ulp

CuPy Documentation, Release 13.0.0

cupy.testing.assert_array_equal

cupy.testing.assert_array_equal(x, y, err_msg='', verbose=True, strides_check=False, **kwargs)
Raises an AssertionError if two array_like objects are not equal.

Parameters
• x (numpy.ndarray or cupy.ndarray) – The actual object to check.

• y (numpy.ndarray or cupy.ndarray) – The desired, expected object.

• strides_check (bool) – If True, consistency of strides is also checked.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

• strict (bool) – If True, raise an AssertionError when either the shape or the data type of
the array_like objects does not match. Requires NumPy version 1.24 or above.

See also:
numpy.testing.assert_array_equal()

cupy.testing.assert_array_less

cupy.testing.assert_array_less(x, y, err_msg='', verbose=True)
Raises an AssertionError if array_like objects are not ordered by less than.

Parameters
• x (numpy.ndarray or cupy.ndarray) – The smaller object to check.

• y (numpy.ndarray or cupy.ndarray) – The larger object to compare.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

See also:
numpy.testing.assert_array_less()

CuPy-specific APIs

Asserts

assert_array_list_equal(xlist, ylist[, ...]) Compares lists of arrays pairwise with
assert_array_equal.

304 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_equal.html#numpy.testing.assert_array_equal
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_less.html#numpy.testing.assert_array_less

CuPy Documentation, Release 13.0.0

cupy.testing.assert_array_list_equal

cupy.testing.assert_array_list_equal(xlist, ylist, err_msg='', verbose=True)
Compares lists of arrays pairwise with assert_array_equal.

Parameters
• x (array_like) – Array of the actual objects.

• y (array_like) – Array of the desired, expected objects.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

Each element of x and y must be either numpy.ndarray or cupy.ndarray. x and y must have same
length. Otherwise, this function raises AssertionError. It compares elements of x and y pairwise with
assert_array_equal() and raises error if at least one pair is not equal.

See also:
numpy.testing.assert_array_equal()

NumPy-CuPy Consistency Check

The following decorators are for testing consistency between CuPy’s functions and corresponding NumPy’s ones.

numpy_cupy_allclose([rtol, atol, err_msg, ...]) Decorator that checks NumPy results and CuPy ones are
close.

numpy_cupy_array_almost_equal([decimal, ...]) Decorator that checks NumPy results and CuPy ones are
almost equal.

numpy_cupy_array_almost_equal_nulp([nulp, ...]) Decorator that checks results of NumPy and CuPy are
equal w.r.t.

numpy_cupy_array_max_ulp([maxulp, dtype, ...]) Decorator that checks results of NumPy and CuPy ones
are equal w.r.t.

numpy_cupy_array_equal([err_msg, verbose, ...]) Decorator that checks NumPy results and CuPy ones are
equal.

numpy_cupy_array_list_equal([err_msg, ...]) Decorator that checks the resulting lists of NumPy and
CuPy's one are equal.

numpy_cupy_array_less([err_msg, verbose, ...]) Decorator that checks the CuPy result is less than NumPy
result.

cupy.testing.numpy_cupy_allclose

cupy.testing.numpy_cupy_allclose(rtol=1e-07, atol=0, err_msg='', verbose=True, name='xp',
type_check=True, accept_error=False, sp_name=None,
scipy_name=None, contiguous_check=True, *,
_check_sparse_format=True)

Decorator that checks NumPy results and CuPy ones are close.

Parameters
• rtol (float or dict) – Relative tolerance. Besides a float value, a dictionary that maps

a dtypes to a float value can be supplied to adjust tolerance per dtype. If the dictionary has

5.3. Routines (NumPy) 305

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_array_equal.html#numpy.testing.assert_array_equal
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

CuPy Documentation, Release 13.0.0

'default' string as its key, its value is used as the default tolerance in case any dtype keys
do not match.

• atol (float or dict) – Absolute tolerance. Besides a float value, a dictionary can be
supplied as rtol.

• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool, Exception or tuple of Exception) – Specify acceptable er-
rors. When both NumPy test and CuPy test raises the same type of errors, and the type of
the errors is specified with this argument, the errors are ignored and not raised. If it is True
all error types are acceptable. If it is False no error is acceptable.

• sp_name (str or None) – Argument name whose value is either scipy.sparse or
cupyx.scipy.sparse module. If None, no argument is given for the modules.

• scipy_name (str or None) – Argument name whose value is either scipy or cupyx.
scipy module. If None, no argument is given for the modules.

• contiguous_check (bool) – If True, consistency of contiguity is also checked.

Decorated test fixture is required to return the arrays whose values are close between numpy case and cupy case.
For example, this test case checks numpy.zeros and cupy.zeros should return same value.

>>> import unittest
>>> from cupy import testing
>>> class TestFoo(unittest.TestCase):
...
... @testing.numpy_cupy_allclose()
... def test_foo(self, xp):
... # ...
... # Prepare data with xp
... # ...
...
... xp_result = xp.zeros(10)
... return xp_result

See also:
cupy.testing.assert_allclose()

cupy.testing.numpy_cupy_array_almost_equal

cupy.testing.numpy_cupy_array_almost_equal(decimal=6, err_msg='', verbose=True, name='xp',
type_check=True, accept_error=False, sp_name=None,
scipy_name=None)

Decorator that checks NumPy results and CuPy ones are almost equal.

Parameters
• decimal (int) – Desired precision.

• err_msg (str) – The error message to be printed in case of failure.

306 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• verbose (bool) – If True, the conflicting values are appended to the error message.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool, Exception or tuple of Exception) – Specify acceptable er-
rors. When both NumPy test and CuPy test raises the same type of errors, and the type of
the errors is specified with this argument, the errors are ignored and not raised. If it is True
all error types are acceptable. If it is False no error is acceptable.

• sp_name (str or None) – Argument name whose value is either scipy.sparse or
cupyx.scipy.sparse module. If None, no argument is given for the modules.

• scipy_name (str or None) – Argument name whose value is either scipy or cupyx.
scipy module. If None, no argument is given for the modules.

Decorated test fixture is required to return the same arrays in the sense of cupy.testing.
assert_array_almost_equal() (except the type of array module) even if xp is numpy or cupy.

See also:
cupy.testing.assert_array_almost_equal()

cupy.testing.numpy_cupy_array_almost_equal_nulp

cupy.testing.numpy_cupy_array_almost_equal_nulp(nulp=1, name='xp', type_check=True,
accept_error=False, sp_name=None,
scipy_name=None)

Decorator that checks results of NumPy and CuPy are equal w.r.t. spacing.

Parameters
• nulp (int) – The maximum number of unit in the last place for tolerance.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool, Exception or tuple of Exception) – Specify acceptable er-
rors. When both NumPy test and CuPy test raises the same type of errors, and the type of
the errors is specified with this argument, the errors are ignored and not raised. If it is True,
all error types are acceptable. If it is False, no error is acceptable.

• sp_name (str or None) – Argument name whose value is either scipy.sparse or
cupyx.scipy.sparse module. If None, no argument is given for the modules.

• scipy_name (str or None) – Argument name whose value is either scipy or cupyx.
scipy module. If None, no argument is given for the modules.

Decorated test fixture is required to return the same arrays in the sense of cupy.testing.
assert_array_almost_equal_nulp() (except the type of array module) even if xp is numpy or cupy.

See also:
cupy.testing.assert_array_almost_equal_nulp()

5.3. Routines (NumPy) 307

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

cupy.testing.numpy_cupy_array_max_ulp

cupy.testing.numpy_cupy_array_max_ulp(maxulp=1, dtype=None, name='xp', type_check=True,
accept_error=False, sp_name=None, scipy_name=None)

Decorator that checks results of NumPy and CuPy ones are equal w.r.t. ulp.

Parameters
• maxulp (int) – The maximum number of units in the last place that elements of resulting

two arrays can differ.

• dtype (numpy.dtype) – Data-type to convert the resulting two array to if given.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool, Exception or tuple of Exception) – Specify acceptable er-
rors. When both NumPy test and CuPy test raises the same type of errors, and the type of
the errors is specified with this argument, the errors are ignored and not raised. If it is True
all error types are acceptable. If it is False no error is acceptable.

• sp_name (str or None) – Argument name whose value is either scipy.sparse or
cupyx.scipy.sparse module. If None, no argument is given for the modules.

• scipy_name (str or None) – Argument name whose value is either scipy or cupyx.
scipy module. If None, no argument is given for the modules.

Decorated test fixture is required to return the same arrays in the sense of assert_array_max_ulp() (except
the type of array module) even if xp is numpy or cupy.

See also:
cupy.testing.assert_array_max_ulp()

cupy.testing.numpy_cupy_array_equal

cupy.testing.numpy_cupy_array_equal(err_msg='', verbose=True, name='xp', type_check=True,
accept_error=False, sp_name=None, scipy_name=None,
strides_check=False)

Decorator that checks NumPy results and CuPy ones are equal.

Parameters
• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool, Exception or tuple of Exception) – Specify acceptable er-
rors. When both NumPy test and CuPy test raises the same type of errors, and the type of
the errors is specified with this argument, the errors are ignored and not raised. If it is True
all error types are acceptable. If it is False no error is acceptable.

• sp_name (str or None) – Argument name whose value is either scipy.sparse or
cupyx.scipy.sparse module. If None, no argument is given for the modules.

• scipy_name (str or None) – Argument name whose value is either scipy or cupyx.
scipy module. If None, no argument is given for the modules.

308 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• strides_check (bool) – If True, consistency of strides is also checked.

Decorated test fixture is required to return the same arrays in the sense of numpy_cupy_array_equal() (except
the type of array module) even if xp is numpy or cupy.

See also:
cupy.testing.assert_array_equal()

cupy.testing.numpy_cupy_array_list_equal

cupy.testing.numpy_cupy_array_list_equal(err_msg='', verbose=True, name='xp', sp_name=None,
scipy_name=None)

Decorator that checks the resulting lists of NumPy and CuPy’s one are equal.

Parameters
• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

• name (str) – Argument name whose value is either numpy or cupy module.

• sp_name (str or None) – Argument name whose value is either scipy.sparse or
cupyx.scipy.sparse module. If None, no argument is given for the modules.

• scipy_name (str or None) – Argument name whose value is either scipy or cupyx.
scipy module. If None, no argument is given for the modules.

Decorated test fixture is required to return the same list of arrays (except the type of array module) even if xp is
numpy or cupy.

See also:
cupy.testing.assert_array_list_equal()

cupy.testing.numpy_cupy_array_less

cupy.testing.numpy_cupy_array_less(err_msg='', verbose=True, name='xp', type_check=True,
accept_error=False, sp_name=None, scipy_name=None)

Decorator that checks the CuPy result is less than NumPy result.

Parameters
• err_msg (str) – The error message to be printed in case of failure.

• verbose (bool) – If True, the conflicting values are appended to the error message.

• name (str) – Argument name whose value is either numpy or cupy module.

• type_check (bool) – If True, consistency of dtype is also checked.

• accept_error (bool, Exception or tuple of Exception) – Specify acceptable er-
rors. When both NumPy test and CuPy test raises the same type of errors, and the type of
the errors is specified with this argument, the errors are ignored and not raised. If it is True
all error types are acceptable. If it is False no error is acceptable.

• sp_name (str or None) – Argument name whose value is either scipy.sparse or
cupyx.scipy.sparse module. If None, no argument is given for the modules.

5.3. Routines (NumPy) 309

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• scipy_name (str or None) – Argument name whose value is either scipy or cupyx.
scipy module. If None, no argument is given for the modules.

Decorated test fixture is required to return the smaller array when xp is cupy than the one when xp is numpy.

See also:
cupy.testing.assert_array_less()

Parameterized dtype Test

The following decorators offer the standard way for parameterized test with respect to single or the combination of
dtype(s).

for_dtypes(dtypes[, name]) Decorator for parameterized dtype test.
for_all_dtypes([name, no_float16, no_bool, ...]) Decorator that checks the fixture with all dtypes.
for_float_dtypes([name, no_float16]) Decorator that checks the fixture with float dtypes.
for_signed_dtypes([name]) Decorator that checks the fixture with signed dtypes.
for_unsigned_dtypes([name]) Decorator that checks the fixture with unsinged dtypes.
for_int_dtypes([name, no_bool]) Decorator that checks the fixture with integer and option-

ally bool dtypes.
for_complex_dtypes([name]) Decorator that checks the fixture with complex dtypes.
for_dtypes_combination(types[, names, full]) Decorator that checks the fixture with a product set of

dtypes.
for_all_dtypes_combination([names, ...]) Decorator that checks the fixture with a product set of all

dtypes.
for_signed_dtypes_combination([names, full]) Decorator for parameterized test w.r.t.
for_unsigned_dtypes_combination([names, full]) Decorator for parameterized test w.r.t.
for_int_dtypes_combination([names, no_bool,
...])

Decorator for parameterized test w.r.t.

cupy.testing.for_dtypes

cupy.testing.for_dtypes(dtypes, name='dtype')
Decorator for parameterized dtype test.

Parameters
• dtypes (list of dtypes) – dtypes to be tested.

• name (str) – Argument name to which specified dtypes are passed.

This decorator adds a keyword argument specified by name to the test fixture. Then, it runs the fixtures in parallel
by passing the each element of dtypes to the named argument.

310 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

cupy.testing.for_all_dtypes

cupy.testing.for_all_dtypes(name='dtype', no_float16=False, no_bool=False, no_complex=False)
Decorator that checks the fixture with all dtypes.

Parameters
• name (str) – Argument name to which specified dtypes are passed.

• no_float16 (bool) – If True, numpy.float16 is omitted from candidate dtypes.

• no_bool (bool) – If True, numpy.bool_ is omitted from candidate dtypes.

• no_complex (bool) – If True, numpy.complex64 and numpy.complex128 are omitted
from candidate dtypes.

dtypes to be tested: numpy.complex64 (optional), numpy.complex128 (optional), numpy.float16 (optional),
numpy.float32, numpy.float64, numpy.dtype('b'), numpy.dtype('h'), numpy.dtype('i'), numpy.
dtype('l'), numpy.dtype('q'), numpy.dtype('B'), numpy.dtype('H'), numpy.dtype('I'), numpy.
dtype('L'), numpy.dtype('Q'), and numpy.bool_ (optional).

The usage is as follows. This test fixture checks if cPickle successfully reconstructs cupy.ndarray for various
dtypes. dtype is an argument inserted by the decorator.

>>> import unittest
>>> from cupy import testing
>>> class TestNpz(unittest.TestCase):
...
... @testing.for_all_dtypes()
... def test_pickle(self, dtype):
... a = testing.shaped_arange((2, 3, 4), dtype=dtype)
... s = pickle.dumps(a)
... b = pickle.loads(s)
... testing.assert_array_equal(a, b)

Typically, we use this decorator in combination with decorators that check consistency between NumPy and
CuPy like cupy.testing.numpy_cupy_allclose(). The following is such an example.

>>> import unittest
>>> from cupy import testing
>>> class TestMean(unittest.TestCase):
...
... @testing.for_all_dtypes()
... @testing.numpy_cupy_allclose()
... def test_mean_all(self, xp, dtype):
... a = testing.shaped_arange((2, 3), xp, dtype)
... return a.mean()

See also:
cupy.testing.for_dtypes()

5.3. Routines (NumPy) 311

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

cupy.testing.for_float_dtypes

cupy.testing.for_float_dtypes(name='dtype', no_float16=False)
Decorator that checks the fixture with float dtypes.

Parameters
• name (str) – Argument name to which specified dtypes are passed.

• no_float16 (bool) – If True, numpy.float16 is omitted from candidate dtypes.

dtypes to be tested are numpy.float16 (optional), numpy.float32, and numpy.float64.

See also:
cupy.testing.for_dtypes(), cupy.testing.for_all_dtypes()

cupy.testing.for_signed_dtypes

cupy.testing.for_signed_dtypes(name='dtype')
Decorator that checks the fixture with signed dtypes.

Parameters
name (str) – Argument name to which specified dtypes are passed.

dtypes to be tested are numpy.dtype('b'), numpy.dtype('h'), numpy.dtype('i'), numpy.dtype('l'),
and numpy.dtype('q').

See also:
cupy.testing.for_dtypes(), cupy.testing.for_all_dtypes()

cupy.testing.for_unsigned_dtypes

cupy.testing.for_unsigned_dtypes(name='dtype')
Decorator that checks the fixture with unsinged dtypes.

Parameters
name (str) – Argument name to which specified dtypes are passed.

dtypes to be tested are numpy.dtype('B'), numpy.dtype('H'),

numpy.dtype('I'), numpy.dtype('L'), and numpy.dtype('Q').

See also:
cupy.testing.for_dtypes(), cupy.testing.for_all_dtypes()

cupy.testing.for_int_dtypes

cupy.testing.for_int_dtypes(name='dtype', no_bool=False)
Decorator that checks the fixture with integer and optionally bool dtypes.

Parameters
• name (str) – Argument name to which specified dtypes are passed.

• no_bool (bool) – If True, numpy.bool_ is omitted from candidate dtypes.

312 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

dtypes to be tested are numpy.dtype('b'), numpy.dtype('h'), numpy.dtype('i'), numpy.dtype('l'),
numpy.dtype('q'), numpy.dtype('B'), numpy.dtype('H'), numpy.dtype('I'), numpy.dtype('L'),
numpy.dtype('Q'), and numpy.bool_ (optional).

See also:
cupy.testing.for_dtypes(), cupy.testing.for_all_dtypes()

cupy.testing.for_complex_dtypes

cupy.testing.for_complex_dtypes(name='dtype')
Decorator that checks the fixture with complex dtypes.

Parameters
name (str) – Argument name to which specified dtypes are passed.

dtypes to be tested are numpy.complex64 and numpy.complex128.

See also:
cupy.testing.for_dtypes(), cupy.testing.for_all_dtypes()

cupy.testing.for_dtypes_combination

cupy.testing.for_dtypes_combination(types, names=('dtype',), full=None)
Decorator that checks the fixture with a product set of dtypes.

Parameters
• types (list of dtypes) – dtypes to be tested.

• names (list of str) – Argument names to which dtypes are passed.

• full (bool) – If True, then all combinations of dtypes will be tested. Otherwise, the subset
of combinations will be tested (see the description below).

Decorator adds the keyword arguments specified by names to the test fixture. Then, it runs the fixtures in parallel
with passing (possibly a subset of) the product set of dtypes. The range of dtypes is specified by types.

The combination of dtypes to be tested changes depending on the option full. If full is True, all combinations
of types are tested. Sometimes, such an exhaustive test can be costly. So, if full is False, only a subset of
possible combinations is randomly sampled. If full is None, the behavior is determined by an environment
variable CUPY_TEST_FULL_COMBINATION. If the value is set to '1', it behaves as if full=True, and otherwise
full=False.

cupy.testing.for_all_dtypes_combination

cupy.testing.for_all_dtypes_combination(names=('dtyes',), no_float16=False, no_bool=False, full=None,
no_complex=False)

Decorator that checks the fixture with a product set of all dtypes.

Parameters
• names (list of str) – Argument names to which dtypes are passed.

• no_float16 (bool) – If True, numpy.float16 is omitted from candidate dtypes.

• no_bool (bool) – If True, numpy.bool_ is omitted from candidate dtypes.

5.3. Routines (NumPy) 313

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• full (bool) – If True, then all combinations of dtypes will be tested. Other-
wise, the subset of combinations will be tested (see description in cupy.testing.
for_dtypes_combination()).

• no_complex (bool) – If, True, numpy.complex64 and numpy.complex128 are omitted
from candidate dtypes.

See also:
cupy.testing.for_dtypes_combination()

cupy.testing.for_signed_dtypes_combination

cupy.testing.for_signed_dtypes_combination(names=('dtype',), full=None)
Decorator for parameterized test w.r.t. the product set of signed dtypes.

Parameters
• names (list of str) – Argument names to which dtypes are passed.

• full (bool) – If True, then all combinations of dtypes will be tested. Other-
wise, the subset of combinations will be tested (see description in cupy.testing.
for_dtypes_combination()).

See also:
cupy.testing.for_dtypes_combination()

cupy.testing.for_unsigned_dtypes_combination

cupy.testing.for_unsigned_dtypes_combination(names=('dtype',), full=None)
Decorator for parameterized test w.r.t. the product set of unsigned dtypes.

Parameters
• names (list of str) – Argument names to which dtypes are passed.

• full (bool) – If True, then all combinations of dtypes will be tested. Other-
wise, the subset of combinations will be tested (see description in cupy.testing.
for_dtypes_combination()).

See also:
cupy.testing.for_dtypes_combination()

cupy.testing.for_int_dtypes_combination

cupy.testing.for_int_dtypes_combination(names=('dtype',), no_bool=False, full=None)
Decorator for parameterized test w.r.t. the product set of int and boolean.

Parameters
• names (list of str) – Argument names to which dtypes are passed.

• no_bool (bool) – If True, numpy.bool_ is omitted from candidate dtypes.

• full (bool) – If True, then all combinations of dtypes will be tested. Other-
wise, the subset of combinations will be tested (see description in cupy.testing.
for_dtypes_combination()).

314 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

See also:
cupy.testing.for_dtypes_combination()

Parameterized order Test

The following decorators offer the standard way to parameterize tests with orders.

for_orders(orders[, name]) Decorator to parameterize tests with order.
for_CF_orders([name]) Decorator that checks the fixture with orders 'C' and 'F'.

cupy.testing.for_orders

cupy.testing.for_orders(orders, name='order')
Decorator to parameterize tests with order.

Parameters
• orders (list of order) – orders to be tested.

• name (str) – Argument name to which the specified order is passed.

This decorator adds a keyword argument specified by name to the test fixtures. Then, the fixtures run by passing
each element of orders to the named argument.

cupy.testing.for_CF_orders

cupy.testing.for_CF_orders(name='order')
Decorator that checks the fixture with orders ‘C’ and ‘F’.

Parameters
name (str) – Argument name to which the specified order is passed.

See also:
cupy.testing.for_all_dtypes()

5.3.20 Window functions

Hint: NumPy API Reference: Window functions

5.3. Routines (NumPy) 315

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/routines.window.html

CuPy Documentation, Release 13.0.0

Various windows

bartlett(M) Returns the Bartlett window.
blackman(M) Returns the Blackman window.
hamming(M) Returns the Hamming window.
hanning(M) Returns the Hanning window.
kaiser(M, beta) Return the Kaiser window.

cupy.bartlett

cupy.bartlett(M)

Returns the Bartlett window.

The Bartlett window is defined as

𝑤(𝑛) =
2

𝑀 − 1

(︂
𝑀 − 1

2
−
⃒⃒⃒⃒
𝑛− 𝑀 − 1

2

⃒⃒⃒⃒)︂
Parameters
M (int) – Number of points in the output window. If zero or less, an empty array is returned.

Returns
Output ndarray.

Return type
ndarray

See also:
numpy.bartlett()

cupy.blackman

cupy.blackman(M)

Returns the Blackman window.

The Blackman window is defined as

𝑤(𝑛) = 0.42− 0.5 cos

(︂
2𝜋𝑛

𝑀 − 1

)︂
+ 0.08 cos

(︂
4𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

Parameters
M (int) – Number of points in the output window. If zero or less, an empty array is returned.

Returns
Output ndarray.

Return type
ndarray

See also:
numpy.blackman()

316 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman

CuPy Documentation, Release 13.0.0

cupy.hamming

cupy.hamming(M)

Returns the Hamming window.

The Hamming window is defined as

𝑤(𝑛) = 0.54− 0.46 cos

(︂
2𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

Parameters
M (int) – Number of points in the output window. If zero or less, an empty array is returned.

Returns
Output ndarray.

Return type
ndarray

See also:
numpy.hamming()

cupy.hanning

cupy.hanning(M)

Returns the Hanning window.

The Hanning window is defined as

𝑤(𝑛) = 0.5− 0.5 cos

(︂
2𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

Parameters
M (int) – Number of points in the output window. If zero or less, an empty array is returned.

Returns
Output ndarray.

Return type
ndarray

See also:
numpy.hanning()

cupy.kaiser

cupy.kaiser(M, beta)
Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function.

𝑤(𝑛) = 𝐼0

(︃
𝛽

√︃
1− 4𝑛2

(𝑀 − 1)2

)︃
/𝐼0(𝛽)

with

−𝑀 − 1

2
≤ 𝑛 ≤ 𝑀 − 1

2

where 𝐼0 is the modified zeroth-order Bessel function.

5.3. Routines (NumPy) 317

https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.hanning.html#numpy.hanning

CuPy Documentation, Release 13.0.0

Args:
M (int):

Number of points in the output window. If zero or less, an empty array is returned.

beta (float):
Shape parameter for window

Returns
The window, with the maximum value normalized to one (the value one appears only if the
number of samples is odd).

Return type
ndarray

See also:
numpy.kaiser()

5.4 Routines (SciPy)

The following pages describe SciPy-compatible routines. These functions cover a subset of SciPy routines.

5.4.1 Discrete Fourier transforms (cupyx.scipy.fft)

Hint: SciPy API Reference: Discrete Fourier transforms (scipy.fft)

See also:
Fast Fourier Transform with CuPy

318 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.kaiser.html#numpy.kaiser
https://docs.scipy.org/doc/scipy/reference/#api-reference
https://docs.scipy.org/doc/scipy/reference/fft.html

CuPy Documentation, Release 13.0.0

Fast Fourier Transforms (FFTs)

fft(x[, n, axis, norm, overwrite_x, plan]) Compute the one-dimensional FFT.
ifft(x[, n, axis, norm, overwrite_x, plan]) Compute the one-dimensional inverse FFT.
fft2(x[, s, axes, norm, overwrite_x, plan]) Compute the two-dimensional FFT.
ifft2(x[, s, axes, norm, overwrite_x, plan]) Compute the two-dimensional inverse FFT.
fftn(x[, s, axes, norm, overwrite_x, plan]) Compute the N-dimensional FFT.
ifftn(x[, s, axes, norm, overwrite_x, plan]) Compute the N-dimensional inverse FFT.
rfft(x[, n, axis, norm, overwrite_x, plan]) Compute the one-dimensional FFT for real input.
irfft(x[, n, axis, norm, overwrite_x, plan]) Compute the one-dimensional inverse FFT for real input.
rfft2(x[, s, axes, norm, overwrite_x, plan]) Compute the two-dimensional FFT for real input.
irfft2(x[, s, axes, norm, overwrite_x, plan]) Compute the two-dimensional inverse FFT for real input.
rfftn(x[, s, axes, norm, overwrite_x, plan]) Compute the N-dimensional FFT for real input.
irfftn(x[, s, axes, norm, overwrite_x, plan]) Compute the N-dimensional inverse FFT for real input.
hfft(x[, n, axis, norm, overwrite_x, plan]) Compute the FFT of a signal that has Hermitian symme-

try.
ihfft(x[, n, axis, norm, overwrite_x, plan]) Compute the FFT of a signal that has Hermitian symme-

try.
hfft2(x[, s, axes, norm, overwrite_x, plan]) Compute the FFT of a two-dimensional signal that has

Hermitian symmetry.
ihfft2(x[, s, axes, norm, overwrite_x, plan]) Compute the Inverse FFT of a two-dimensional signal

that has Hermitian symmetry.
hfftn(x[, s, axes, norm, overwrite_x, plan]) Compute the FFT of a N-dimensional signal that has

Hermitian symmetry.
ihfftn(x[, s, axes, norm, overwrite_x, plan]) Compute the Inverse FFT of a N-dimensional signal that

has Hermitian symmetry.

cupyx.scipy.fft.fft

cupyx.scipy.fft.fft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)
Compute the one-dimensional FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• n (None or int) – Length of the transformed axis of the output. If n is not given, the length
of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for transforming x over axis,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, n, axis)

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

5.4. Routines (SciPy) 319

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Returns
The transformed array which shape is specified by n and type will convert to complex if that of
the input is another.

Return type
cupy.ndarray

See also:
scipy.fft.fft()

cupyx.scipy.fft.ifft

cupyx.scipy.fft.ifft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)
Compute the one-dimensional inverse FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• n (None or int) – Length of the transformed axis of the output. If n is not given, the length
of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for transforming x over axis,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, n, axis)

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array which shape is specified by n and type will convert to complex if that of
the input is another.

Return type
cupy.ndarray

See also:
scipy.fft.ifft()

cupyx.scipy.fft.fft2

cupyx.scipy.fft.fft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)
Compute the two-dimensional FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• s (None or tuple of ints) – Shape of the transformed axes of the output. If s is not
given, the lengths of the input along the axes specified by axes are used.

320 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft.html#scipy.fft.fft
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft.html#scipy.fft.ifft
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes)

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array which shape is specified by s and type will convert to complex if that of
the input is another.

Return type
cupy.ndarray

See also:
scipy.fft.fft2()

cupyx.scipy.fft.ifft2

cupyx.scipy.fft.ifft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)
Compute the two-dimensional inverse FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• s (None or tuple of ints) – Shape of the transformed axes of the output. If s is not
given, the lengths of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes)

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array which shape is specified by s and type will convert to complex if that of
the input is another.

Return type
cupy.ndarray

5.4. Routines (SciPy) 321

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft2.html#scipy.fft.fft2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

See also:
scipy.fft.ifft2()

cupyx.scipy.fft.fftn

cupyx.scipy.fft.fftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)
Compute the N-dimensional FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• s (None or tuple of ints) – Shape of the transformed axes of the output. If s is not
given, the lengths of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes)

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array which shape is specified by s and type will convert to complex if that of
the input is another.

Return type
cupy.ndarray

See also:
scipy.fft.fftn()

cupyx.scipy.fft.ifftn

cupyx.scipy.fft.ifftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)
Compute the N-dimensional inverse FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• s (None or tuple of ints) – Shape of the transformed axes of the output. If s is not
given, the lengths of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

322 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft2.html#scipy.fft.ifft2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftn.html#scipy.fft.fftn
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes)

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array which shape is specified by s and type will convert to complex if that of
the input is another.

Return type
cupy.ndarray

See also:
scipy.fft.ifftn()

cupyx.scipy.fft.rfft

cupyx.scipy.fft.rfft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)
Compute the one-dimensional FFT for real input.

The returned array contains the positive frequency components of the corresponding fft(), up to and including
the Nyquist frequency.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• n (None or int) – Length of the transformed axis of the output. If n is not given, the length
of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for transforming x over axis,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, n, axis,
value_type='R2C')

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array.

Return type
cupy.ndarray

See also:
scipy.fft.rfft()

5.4. Routines (SciPy) 323

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifftn.html#scipy.fft.ifftn
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft.html#scipy.fft.rfft

CuPy Documentation, Release 13.0.0

cupyx.scipy.fft.irfft

cupyx.scipy.fft.irfft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)
Compute the one-dimensional inverse FFT for real input.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• n (None or int) – Length of the transformed axis of the output. If n is not given, the length
of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for transforming x over axis,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, n, axis,
value_type='C2R')

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array.

Return type
cupy.ndarray

See also:
scipy.fft.irfft()

cupyx.scipy.fft.rfft2

cupyx.scipy.fft.rfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)
Compute the two-dimensional FFT for real input.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape to use from the input. If s is not given, the lengths
of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

324 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft.html#scipy.fft.irfft
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes,
value_type='R2C')

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other. The length of the last axis transformed will be s[-1]//2+1.

Return type
cupy.ndarray

See also:
scipy.fft.rfft2()

cupyx.scipy.fft.irfft2

cupyx.scipy.fft.irfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)
Compute the two-dimensional inverse FFT for real input.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape of the output. If s is not given, they are determined
from the lengths of the input along the axes specified by axes.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes,
value_type='C2R')

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other. If s is not given, the length of final transformed axis of output will be 2*(m-1) where m
is the length of the final transformed axis of the input.

Return type
cupy.ndarray

See also:
scipy.fft.irfft2()

5.4. Routines (SciPy) 325

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft2.html#scipy.fft.rfft2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft2.html#scipy.fft.irfft2

CuPy Documentation, Release 13.0.0

cupyx.scipy.fft.rfftn

cupyx.scipy.fft.rfftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)
Compute the N-dimensional FFT for real input.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape to use from the input. If s is not given, the lengths
of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes,
value_type='R2C')

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other. The length of the last axis transformed will be s[-1]//2+1.

Return type
cupy.ndarray

See also:
scipy.fft.rfftn()

cupyx.scipy.fft.irfftn

cupyx.scipy.fft.irfftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)
Compute the N-dimensional inverse FFT for real input.

Parameters
• a (cupy.ndarray) – Array to be transform.

• s (None or tuple of ints) – Shape of the output. If s is not given, they are determined
from the lengths of the input along the axes specified by axes.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

326 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfftn.html#scipy.fft.rfftn
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

plan = cupyx.scipy.fftpack.get_fft_plan(x, s, axes,
value_type='C2R')

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array which shape is specified by s and type will convert to complex if the input
is other. If s is not given, the length of final transformed axis of output will be 2*(m-1) where
m is the length of the final transformed axis of the input.

Return type
cupy.ndarray

See also:
scipy.fft.irfftn()

cupyx.scipy.fft.hfft

cupyx.scipy.fft.hfft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)
Compute the FFT of a signal that has Hermitian symmetry.

Parameters
• a (cupy.ndarray) – Array to be transform.

• n (None or int) – Length of the transformed axis of the output. For n output points, n//
2+1 input points are necessary. If n is not given, it is determined from the length of the input
along the axis specified by axis.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (None) – This argument is currently not supported.

Returns
The transformed array which shape is specified by n and type will convert to complex if the input
is other. If n is not given, the length of the transformed axis is 2*(m-1) where m is the length of
the transformed axis of the input.

Return type
cupy.ndarray

See also:
scipy.fft.hfft()

5.4. Routines (SciPy) 327

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfftn.html#scipy.fft.irfftn
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfft.html#scipy.fft.hfft

CuPy Documentation, Release 13.0.0

cupyx.scipy.fft.ihfft

cupyx.scipy.fft.ihfft(x, n=None, axis=-1, norm=None, overwrite_x=False, *, plan=None)
Compute the FFT of a signal that has Hermitian symmetry.

Parameters
• a (cupy.ndarray) – Array to be transform.

• n (None or int) – Number of points along transformation axis in the input to use. If n is
not given, the length of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (None) – This argument is currently not supported.

Returns
The transformed array which shape is specified by n and type will convert to complex if the input
is other. The length of the transformed axis is n//2+1.

Return type
cupy.ndarray

See also:
scipy.fft.ihfft()

cupyx.scipy.fft.hfft2

cupyx.scipy.fft.hfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)
Compute the FFT of a two-dimensional signal that has Hermitian symmetry.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• s (None or tuple of ints) – Shape of the real output.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed. (This argument is cur-
rently not supported)

• plan (None) – This argument is currently not supported.

Returns
The real result of the 2-D Hermitian complex real FFT.

Return type
cupy.ndarray

See also:
scipy.fft.hfft2()

328 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfft.html#scipy.fft.ihfft
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfft2.html#scipy.fft.hfft2

CuPy Documentation, Release 13.0.0

cupyx.scipy.fft.ihfft2

cupyx.scipy.fft.ihfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, *, plan=None)
Compute the Inverse FFT of a two-dimensional signal that has Hermitian symmetry.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• s (None or tuple of ints) – Shape of the real output.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed. (This argument is cur-
rently not supported)

• plan (None) – This argument is currently not supported.

Returns
The real result of the 2-D Hermitian inverse complex real FFT.

Return type
cupy.ndarray

See also:
scipy.fft.ihfft2()

cupyx.scipy.fft.hfftn

cupyx.scipy.fft.hfftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)
Compute the FFT of a N-dimensional signal that has Hermitian symmetry.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• s (None or tuple of ints) – Shape of the real output.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed. (This argument is cur-
rently not supported)

• plan (None) – This argument is currently not supported.

Returns
The real result of the N-D Hermitian complex real FFT.

Return type
cupy.ndarray

See also:
scipy.fft.hfftn()

5.4. Routines (SciPy) 329

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfft2.html#scipy.fft.ihfft2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfftn.html#scipy.fft.hfftn

CuPy Documentation, Release 13.0.0

cupyx.scipy.fft.ihfftn

cupyx.scipy.fft.ihfftn(x, s=None, axes=None, norm=None, overwrite_x=False, *, plan=None)
Compute the Inverse FFT of a N-dimensional signal that has Hermitian symmetry.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• s (None or tuple of ints) – Shape of the real output.

• axes (tuple of ints) – Axes over which to compute the FFT.

• norm ("backward", "ortho", or "forward") – Optional keyword to specify the normal-
ization mode. Default is None, which is an alias of "backward".

• overwrite_x (bool) – If True, the contents of x can be destroyed. (This argument is cur-
rently not supported)

• plan (None) – This argument is currently not supported.

Returns
The real result of the N-D Hermitian inverse complex real FFT.

Return type
cupy.ndarray

See also:
scipy.fft.ihfftn()

Discrete Cosine and Sine Transforms (DST and DCT)

dct(x[, type, n, axis, norm, overwrite_x]) Return the Discrete Cosine Transform of an array, x.
idct(x[, type, n, axis, norm, overwrite_x]) Return the Inverse Discrete Cosine Transform of an ar-

ray, x.
dctn(x[, type, s, axes, norm, overwrite_x]) Compute a multidimensional Discrete Cosine Trans-

form.
idctn(x[, type, s, axes, norm, overwrite_x]) Compute a multidimensional Discrete Cosine Trans-

form.
dst(x[, type, n, axis, norm, overwrite_x]) Return the Discrete Sine Transform of an array, x.
idst(x[, type, n, axis, norm, overwrite_x]) Return the Inverse Discrete Sine Transform of an array,

x.
dstn(x[, type, s, axes, norm, overwrite_x]) Compute a multidimensional Discrete Sine Transform.
idstn(x[, type, s, axes, norm, overwrite_x]) Compute a multidimensional Discrete Sine Transform.

cupyx.scipy.fft.dct

cupyx.scipy.fft.dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Discrete Cosine Transform of an array, x.

Parameters
• x (cupy.ndarray) – The input array.

• type ({1, 2, 3, 4}, optional) – Type of the DCT (see Notes). Default type is 2. Cur-
rently CuPy only supports types 2 and 3.

330 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfftn.html#scipy.fft.ihfftn

CuPy Documentation, Release 13.0.0

• n (int, optional:) – Length of the transform. If n < x.shape[axis], x is truncated.
If n > x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].

• axis (int, optional) – Axis along which the dct is computed; the default is over the last
axis (i.e., axis=-1).

• norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see
Notes). Default is “backward”.

• overwrite_x (bool, optional) – If True, the contents of x can be destroyed; the default
is False.

Returns
y – The transformed input array.

Return type
cupy.ndarray of real

See also:
scipy.fft.dct()

Notes

For a single dimension array x, dct(x, norm='ortho') is equal to MATLAB dct(x).

For norm="ortho" both the dct and idct are scaled by the same overall factor in both directions. By default, the
transform is also orthogonalized which for types 1, 2 and 3 means the transform definition is modified to give
orthogonality of the DCT matrix (see below).

For norm="backward", there is no scaling on dct and the idct is scaled by 1/N where N is the “logical” size
of the DCT. For norm="forward" the 1/N normalization is applied to the forward dct instead and the idct is
unnormalized.

CuPy currently only supports DCT types 2 and 3. ‘The’ DCT generally refers to DCT type 2, and ‘the’ Inverse
DCT generally refers to DCT type 31. See the scipy.fft.dct() documentation for a full description of each
type.

References

cupyx.scipy.fft.idct

cupyx.scipy.fft.idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Inverse Discrete Cosine Transform of an array, x.

Parameters
• x (cupy.ndarray) – The input array.

• type ({1, 2, 3, 4}, optional) – Type of the DCT (see Notes). Default type is 2.

• n (int, optional) – Length of the transform. If n < x.shape[axis], x is truncated. If
n > x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].

• axis (int, optional) – Axis along which the idct is computed; the default is over the last
axis (i.e., axis=-1).

• norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see
Notes). Default is “backward”.

1 Wikipedia, “Discrete cosine transform”, https://en.wikipedia.org/wiki/Discrete_cosine_transform

5.4. Routines (SciPy) 331

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dct.html#scipy.fft.dct
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dct.html#scipy.fft.dct
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Discrete_cosine_transform

CuPy Documentation, Release 13.0.0

• overwrite_x (bool, optional) – If True, the contents of x can be destroyed; the default
is False.

Returns
idct – The transformed input array.

Return type
cupy.ndarray of real

See also:
scipy.fft.idct()

Notes

For a single dimension array x, idct(x, norm='ortho') is equal to MATLAB idct(x).

For norm="ortho" both the dct and idct are scaled by the same overall factor in both directions. By default, the
transform is also orthogonalized which for types 1, 2 and 3 means the transform definition is modified to give
orthogonality of the IDCT matrix (see dct for the full definitions).

‘The’ IDCT is the IDCT-II, which is the same as the normalized DCT-III1. See the scipy.fft.dct() docu-
mentation for a full description of each type. CuPy currently only supports DCT types 2 and 3.

References

cupyx.scipy.fft.dctn

cupyx.scipy.fft.dctn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False)
Compute a multidimensional Discrete Cosine Transform.

Parameters
• x (cupy.ndarray) – The input array.

• type ({1, 2, 3, 4}, optional) – Type of the DCT (see Notes). Default type is 2.

• s (int or array_like of ints or None, optional) – The shape of the result. If
both s and axes (see below) are None, s is x.shape; if s is None but axes is not None, then s
is numpy.take(x.shape, axes, axis=0). If s[i] > x.shape[i], the ith dimension
is padded with zeros. If s[i] < x.shape[i], the ith dimension is truncated to length s[i].
If any element of s is -1, the size of the corresponding dimension of x is used.

• axes (int or array_like of ints or None, optional) – Axes over which the
DCT is computed. If not given, the last len(s) axes are used, or all axes if s is also not
specified.

• norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see
Notes). Default is “backward”.

• overwrite_x (bool, optional) – If True, the contents of x can be destroyed; the default
is False.

Returns
y – The transformed input array.

Return type
cupy.ndarray of real

1 Wikipedia, “Discrete sine transform”, https://en.wikipedia.org/wiki/Discrete_sine_transform

332 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idct.html#scipy.fft.idct
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dct.html#scipy.fft.dct
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/Discrete_sine_transform

CuPy Documentation, Release 13.0.0

See also:
scipy.fft.dctn()

Notes

For full details of the DCT types and normalization modes, as well as references, see dct.

cupyx.scipy.fft.idctn

cupyx.scipy.fft.idctn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False)
Compute a multidimensional Discrete Cosine Transform.

Parameters
• x (cupy.ndarray) – The input array.

• type ({1, 2, 3, 4}, optional) – Type of the DCT (see Notes). Default type is 2.

• s (int or array_like of ints or None, optional) – The shape of the result. If
both s and axes (see below) are None, s is x.shape; if s is None but axes is not None, then s
is numpy.take(x.shape, axes, axis=0). If s[i] > x.shape[i], the ith dimension
is padded with zeros. If s[i] < x.shape[i], the ith dimension is truncated to length s[i].
If any element of s is -1, the size of the corresponding dimension of x is used.

• axes (int or array_like of ints or None, optional) – Axes over which the
IDCT is computed. If not given, the last len(s) axes are used, or all axes if s is also not
specified.

• norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see
Notes). Default is “backward”.

• overwrite_x (bool, optional) – If True, the contents of x can be destroyed; the default
is False.

Returns
y – The transformed input array.

Return type
cupy.ndarray of real

See also:
scipy.fft.idctn()

Notes

For full details of the IDCT types and normalization modes, as well as references, see scipy.fft.idct().

5.4. Routines (SciPy) 333

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dctn.html#scipy.fft.dctn
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idctn.html#scipy.fft.idctn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idct.html#scipy.fft.idct

CuPy Documentation, Release 13.0.0

cupyx.scipy.fft.dst

cupyx.scipy.fft.dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Discrete Sine Transform of an array, x.

Parameters
• x (cupy.ndarray) – The input array.

• type ({1, 2, 3, 4}, optional) – Type of the DST (see Notes). Default type is 2.

• n (int, optional) – Length of the transform. If n < x.shape[axis], x is truncated. If
n > x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].

• axis (int, optional) – Axis along which the dst is computed; the default is over the last
axis (i.e., axis=-1).

• norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see
Notes). Default is “backward”.

• overwrite_x (bool, optional) – If True, the contents of x can be destroyed; the default
is False.

Returns
dst – The transformed input array.

Return type
cupy.ndarray of real

See also:
scipy.fft.dst()

Notes

For norm="ortho" both the dst and idst are scaled by the same overall factor in both directions. By default,
the transform is also orthogonalized which for types 2 and 3 means the transform definition is modified to give
orthogonality of the DST matrix (see below).

For norm="backward", there is no scaling on the dst and the idst is scaled by 1/N where N is the “logical” size
of the DST.

See the scipy.fft.dst() documentation for a full description of each type. CuPy currently only supports DST
types 2 and 3.

cupyx.scipy.fft.idst

cupyx.scipy.fft.idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False)
Return the Inverse Discrete Sine Transform of an array, x.

Parameters
• x (cupy.ndarray) – The input array.

• type ({1, 2, 3, 4}, optional) – Type of the DST (see Notes). Default type is 2.

• n (int, optional) – Length of the transform. If n < x.shape[axis], x is truncated. If
n > x.shape[axis], x is zero-padded. The default results in n = x.shape[axis].

334 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html#scipy.fft.dst
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html#scipy.fft.dst
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• axis (int, optional) – Axis along which the idst is computed; the default is over the last
axis (i.e., axis=-1).

• norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see
Notes). Default is “backward”.

• overwrite_x (bool, optional) – If True, the contents of x can be destroyed; the default
is False.

Returns
idst – The transformed input array.

Return type
cupy.ndarray of real

See also:
scipy.fft.idst()

Notes

For full details of the DST types and normalization modes, as well as references, see scipy.fft.dst().

cupyx.scipy.fft.dstn

cupyx.scipy.fft.dstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False)
Compute a multidimensional Discrete Sine Transform.

Parameters
• x (cupy.ndarray) – The input array.

• type ({1, 2, 3, 4}, optional) – Type of the DST (see Notes). Default type is 2.

• s (int or array_like of ints or None, optional) – The shape of the result. If
both s and axes (see below) are None, s is x.shape; if s is None but axes is not None, then s
is numpy.take(x.shape, axes, axis=0). If s[i] > x.shape[i], the ith dimension
is padded with zeros. If s[i] < x.shape[i], the ith dimension is truncated to length s[i].
If any element of s is -1, the size of the corresponding dimension of x is used.

• axes (int or array_like of ints or None, optional) – Axes over which the
DST is computed. If not given, the last len(s) axes are used, or all axes if s is also not
specified.

• norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see
Notes). Default is “backward”.

• overwrite_x (bool, optional) – If True, the contents of x can be destroyed; the default
is False.

Returns
y – The transformed input array.

Return type
cupy.ndarray of real

See also:
scipy.fft.dstn()

5.4. Routines (SciPy) 335

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idst.html#scipy.fft.idst
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html#scipy.fft.dst
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dstn.html#scipy.fft.dstn

CuPy Documentation, Release 13.0.0

Notes

For full details of the DST types and normalization modes, as well as references, see scipy.fft.dst().

cupyx.scipy.fft.idstn

cupyx.scipy.fft.idstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False)
Compute a multidimensional Discrete Sine Transform.

Parameters
• x (cupy.ndarray) – The input array.

• type ({1, 2, 3, 4}, optional) – Type of the DST (see Notes). Default type is 2.

• s (int or array_like of ints or None, optional) – The shape of the result. If
both s and axes (see below) are None, s is x.shape; if s is None but axes is not None, then s
is numpy.take(x.shape, axes, axis=0). If s[i] > x.shape[i], the ith dimension
is padded with zeros. If s[i] < x.shape[i], the ith dimension is truncated to length s[i].
If any element of s is -1, the size of the corresponding dimension of x is used.

• axes (int or array_like of ints or None, optional) – Axes over which the
IDST is computed. If not given, the last len(s) axes are used, or all axes if s is also not
specified.

• norm ({"backward", "ortho", "forward"}, optional) – Normalization mode (see
Notes). Default is “backward”.

• overwrite_x (bool, optional) – If True, the contents of x can be destroyed; the default
is False.

Returns
y – The transformed input array.

Return type
cupy.ndarray of real

See also:
scipy.fft.idstn()

Notes

For full details of the IDST types and normalization modes, as well as references, see scipy.fft.idst().

Fast Hankel Transforms

fht(a, dln, mu[, offset, bias]) Compute the fast Hankel transform.
ifht(A, dln, mu[, offset, bias]) Compute the inverse fast Hankel transform.

336 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html#scipy.fft.dst
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idstn.html#scipy.fft.idstn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idst.html#scipy.fft.idst

CuPy Documentation, Release 13.0.0

cupyx.scipy.fft.fht

cupyx.scipy.fft.fht(a, dln, mu, offset=0.0, bias=0.0)
Compute the fast Hankel transform.

Computes the discrete Hankel transform of a logarithmically spaced periodic sequence using the FFTLog algo-
rithm1,2.

Parameters
• a (cupy.ndarray (..., n)) – Real periodic input array, uniformly logarithmically

spaced. For multidimensional input, the transform is performed over the last axis.

• dln (float) – Uniform logarithmic spacing of the input array.

• mu (float) – Order of the Hankel transform, any positive or negative real number.

• offset (float, optional) – Offset of the uniform logarithmic spacing of the output array.

• bias (float, optional) – Exponent of power law bias, any positive or negative real num-
ber.

Returns
A – The transformed output array, which is real, periodic, uniformly logarithmically spaced, and
of the same shape as the input array.

Return type
cupy.ndarray (. . . , n)

See also:
scipy.special.fht()

scipy.special.fhtoffset()
Return an optimal offset for fht.

References

cupyx.scipy.fft.ifht

cupyx.scipy.fft.ifht(A, dln, mu, offset=0.0, bias=0.0)
Compute the inverse fast Hankel transform.

Computes the discrete inverse Hankel transform of a logarithmically spaced periodic sequence. This is the inverse
operation to fht.

Parameters
• A (cupy.ndarray (..., n)) – Real periodic input array, uniformly logarithmically

spaced. For multidimensional input, the transform is performed over the last axis.

• dln (float) – Uniform logarithmic spacing of the input array.

• mu (float) – Order of the Hankel transform, any positive or negative real number.

• offset (float, optional) – Offset of the uniform logarithmic spacing of the output array.

• bias (float, optional) – Exponent of power law bias, any positive or negative real num-
ber.

1 Talman J. D., 1978, J. Comp. Phys., 29, 35
2 Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)

5.4. Routines (SciPy) 337

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

Returns
a – The transformed output array, which is real, periodic, uniformly logarithmically spaced, and
of the same shape as the input array.

Return type
cupy.ndarray (. . . , n)

See also:
scipy.special.ifht()

scipy.special.fhtoffset()
Return an optimal offset for fht.

Helper functions

fftshift(x[, axes]) Shift the zero-frequency component to the center of the
spectrum.

ifftshift(x[, axes]) The inverse of fftshift().
fftfreq(n[, d]) Return the FFT sample frequencies.
rfftfreq(n[, d]) Return the FFT sample frequencies for real input.
next_fast_len(target[, real]) Find the next fast size to fft.

cupyx.scipy.fft.fftshift

cupyx.scipy.fft.fftshift(x, axes=None)
Shift the zero-frequency component to the center of the spectrum.

Parameters
• x (cupy.ndarray) – Input array.

• axes (int or tuple of ints) – Axes over which to shift. Default is None, which shifts
all axes.

Returns
The shifted array.

Return type
cupy.ndarray

See also:
numpy.fft.fftshift()

cupyx.scipy.fft.ifftshift

cupyx.scipy.fft.ifftshift(x, axes=None)
The inverse of fftshift().

Parameters
• x (cupy.ndarray) – Input array.

• axes (int or tuple of ints) – Axes over which to shift. Default is None, which shifts
all axes.

338 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.fft.fftshift.html#numpy.fft.fftshift
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Returns
The shifted array.

Return type
cupy.ndarray

See also:
numpy.fft.ifftshift()

cupyx.scipy.fft.fftfreq

cupyx.scipy.fft.fftfreq(n, d=1.0)
Return the FFT sample frequencies.

Parameters
• n (int) – Window length.

• d (scalar) – Sample spacing.

Returns
Array of length n containing the sample frequencies.

Return type
cupy.ndarray

See also:
numpy.fft.fftfreq()

cupyx.scipy.fft.rfftfreq

cupyx.scipy.fft.rfftfreq(n, d=1.0)
Return the FFT sample frequencies for real input.

Parameters
• n (int) – Window length.

• d (scalar) – Sample spacing.

Returns
Array of length n//2+1 containing the sample frequencies.

Return type
cupy.ndarray

See also:
numpy.fft.rfftfreq()

5.4. Routines (SciPy) 339

https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftshift.html#numpy.fft.ifftshift
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.fft.fftfreq.html#numpy.fft.fftfreq
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftfreq.html#numpy.fft.rfftfreq

CuPy Documentation, Release 13.0.0

cupyx.scipy.fft.next_fast_len

cupyx.scipy.fft.next_fast_len(target, real=False)
Find the next fast size to fft.

Parameters
• target (int) – The size of input array.

• real (bool) – True if the FFT involves real input or output. This parameter is of no use,
and only for compatibility to SciPy’s interface.

Returns
The smallest fast length greater than or equal to the input value.

Return type
int

See also:
scipy.fft.next_fast_len()

Note: It may return a different value to scipy.fft.next_fast_len() as pocketfft’s prime factors are different
from cuFFT’s factors. For details, see the cuFFT documentation.

Code compatibility features

1. As with other FFT modules in CuPy, FFT functions in this module can take advantage of an existing cuFFT plan
(returned by get_fft_plan()) to accelerate the computation. The plan can be either passed in explicitly via
the keyword-only plan argument or used as a context manager. One exception to this are the DCT and DST
transforms, which do not currently support a plan argument.

2. The boolean switch cupy.fft.config.enable_nd_planning also affects the FFT functions in this mod-
ule, see Discrete Fourier Transform (cupy.fft). This switch is neglected when planning manually using
get_fft_plan().

3. Like in scipy.fft, all FFT functions in this module have an optional argument overwrite_x (default is
False), which has the same semantics as in scipy.fft: when it is set to True, the input array x can (not
will) be overwritten arbitrarily. For this reason, when an in-place FFT is desired, the user should always reassign
the input in the following manner: x = cupyx.scipy.fftpack.fft(x, ..., overwrite_x=True, ...).

4. The cupyx.scipy.fft module can also be used as a backend for scipy.fft e.g. by installing with scipy.
fft.set_backend(cupyx.scipy.fft). This can allow scipy.fft to work with both numpy and cupy ar-
rays. For more information, see SciPy FFT backend.

5. The boolean switch cupy.fft.config.use_multi_gpus also affects the FFT functions in this module,
see Discrete Fourier Transform (cupy.fft). Moreover, this switch is honored when planning manually using
get_fft_plan().

6. Both type II and III DCT and DST transforms are implemented. Type I and IV transforms are currently unavail-
able.

340 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.next_fast_len.html#scipy.fft.next_fast_len
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.next_fast_len.html#scipy.fft.next_fast_len
https://docs.nvidia.com/cuda/cufft/index.html#accuracy-and-performance

CuPy Documentation, Release 13.0.0

5.4.2 Legacy discrete fourier transforms (cupyx.scipy.fftpack)

Note: As of SciPy version 1.4.0, scipy.fft is recommended over scipy.fftpack. Consider using cupyx.scipy.
fft instead.

Hint: SciPy API Reference: Legacy discrete Fourier transforms (scipy.fftpack)

Fast Fourier Transforms (FFTs)

fft(x[, n, axis, overwrite_x, plan]) Compute the one-dimensional FFT.
ifft(x[, n, axis, overwrite_x, plan]) Compute the one-dimensional inverse FFT.
fft2(x[, shape, axes, overwrite_x, plan]) Compute the two-dimensional FFT.
ifft2(x[, shape, axes, overwrite_x, plan]) Compute the two-dimensional inverse FFT.
fftn(x[, shape, axes, overwrite_x, plan]) Compute the N-dimensional FFT.
ifftn(x[, shape, axes, overwrite_x, plan]) Compute the N-dimensional inverse FFT.
rfft(x[, n, axis, overwrite_x, plan]) Compute the one-dimensional FFT for real input.
irfft(x[, n, axis, overwrite_x]) Compute the one-dimensional inverse FFT for real input.
get_fft_plan(a[, shape, axes, value_type]) Generate a CUDA FFT plan for transforming up to three

axes.

cupyx.scipy.fftpack.fft

cupyx.scipy.fftpack.fft(x, n=None, axis=-1, overwrite_x=False, plan=None)
Compute the one-dimensional FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• n (None or int) – Length of the transformed axis of the output. If n is not given, the length
of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for transforming x over axis,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axis)

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array which shape is specified by n and type will convert to complex if that of
the input is another.

Return type
cupy.ndarray

5.4. Routines (SciPy) 341

https://docs.scipy.org/doc/scipy/reference/fft.html#module-scipy.fft
https://docs.scipy.org/doc/scipy/reference/fftpack.html#module-scipy.fftpack
https://docs.scipy.org/doc/scipy/reference/fftpack.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Note: The argument plan is currently experimental and the interface may be changed in the future version.

See also:
scipy.fftpack.fft()

cupyx.scipy.fftpack.ifft

cupyx.scipy.fftpack.ifft(x, n=None, axis=-1, overwrite_x=False, plan=None)
Compute the one-dimensional inverse FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• n (None or int) – Length of the transformed axis of the output. If n is not given, the length
of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for transforming x over axis,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axis)

Note that plan is defaulted to None, meaning CuPy will use an auto-generated plan behind
the scene.

Returns
The transformed array which shape is specified by n and type will convert to complex if that of
the input is another.

Return type
cupy.ndarray

Note: The argument plan is currently experimental and the interface may be changed in the future version.

See also:
scipy.fftpack.ifft()

cupyx.scipy.fftpack.fft2

cupyx.scipy.fftpack.fft2(x, shape=None, axes=(-2, -1), overwrite_x=False, plan=None)
Compute the two-dimensional FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• shape (None or tuple of ints) – Shape of the transformed axes of the output. If shape
is not given, the lengths of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

342 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft.html#scipy.fftpack.fft
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft.html#scipy.fftpack.ifft
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axes)

Note that plan is defaulted to None, meaning CuPy will either use an auto-generated plan
behind the scene if cupy.fft.config. enable_nd_planning = True, or use no cuFFT plan if it is
set to False.

Returns
The transformed array which shape is specified by shape and type will convert to complex if that
of the input is another.

Return type
cupy.ndarray

See also:
scipy.fftpack.fft2()

Note: The argument plan is currently experimental and the interface may be changed in the future version.

cupyx.scipy.fftpack.ifft2

cupyx.scipy.fftpack.ifft2(x, shape=None, axes=(-2, -1), overwrite_x=False, plan=None)
Compute the two-dimensional inverse FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• shape (None or tuple of ints) – Shape of the transformed axes of the output. If shape
is not given, the lengths of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axes)

Note that plan is defaulted to None, meaning CuPy will either use an auto-generated plan
behind the scene if cupy.fft.config. enable_nd_planning = True, or use no cuFFT plan if it is
set to False.

Returns
The transformed array which shape is specified by shape and type will convert to complex if that
of the input is another.

Return type
cupy.ndarray

See also:
scipy.fftpack.ifft2()

5.4. Routines (SciPy) 343

https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft2.html#scipy.fftpack.fft2
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft2.html#scipy.fftpack.ifft2

CuPy Documentation, Release 13.0.0

Note: The argument plan is currently experimental and the interface may be changed in the future version.

cupyx.scipy.fftpack.fftn

cupyx.scipy.fftpack.fftn(x, shape=None, axes=None, overwrite_x=False, plan=None)
Compute the N-dimensional FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• shape (None or tuple of ints) – Shape of the transformed axes of the output. If shape
is not given, the lengths of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axes)

Note that plan is defaulted to None, meaning CuPy will either use an auto-generated plan
behind the scene if cupy.fft.config. enable_nd_planning = True, or use no cuFFT plan if it is
set to False.

Returns
The transformed array which shape is specified by shape and type will convert to complex if that
of the input is another.

Return type
cupy.ndarray

See also:
scipy.fftpack.fftn()

Note: The argument plan is currently experimental and the interface may be changed in the future version.

cupyx.scipy.fftpack.ifftn

cupyx.scipy.fftpack.ifftn(x, shape=None, axes=None, overwrite_x=False, plan=None)
Compute the N-dimensional inverse FFT.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• shape (None or tuple of ints) – Shape of the transformed axes of the output. If shape
is not given, the lengths of the input along the axes specified by axes are used.

• axes (tuple of ints) – Axes over which to compute the FFT.

• overwrite_x (bool) – If True, the contents of x can be destroyed.

344 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftn.html#scipy.fftpack.fftn
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• plan (cupy.cuda.cufft.PlanNd or None) – a cuFFT plan for transforming x over axes,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(x, axes)

Note that plan is defaulted to None, meaning CuPy will either use an auto-generated plan
behind the scene if cupy.fft.config. enable_nd_planning = True, or use no cuFFT plan if it is
set to False.

Returns
The transformed array which shape is specified by shape and type will convert to complex if that
of the input is another.

Return type
cupy.ndarray

See also:
scipy.fftpack.ifftn()

Note: The argument plan is currently experimental and the interface may be changed in the future version.

cupyx.scipy.fftpack.rfft

cupyx.scipy.fftpack.rfft(x, n=None, axis=-1, overwrite_x=False, plan=None)
Compute the one-dimensional FFT for real input.

The returned real array contains

[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] # if n is even
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] # if n is odd

Parameters
• x (cupy.ndarray) – Array to be transformed.

• n (None or int) – Length of the transformed axis of the output. If n is not given, the length
of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• overwrite_x (bool) – If True, the contents of x can be destroyed.

• plan (cupy.cuda.cufft.Plan1d or None) – a cuFFT plan for transforming x over axis,
which can be obtained using:

plan = cupyx.scipy.fftpack.get_fft_plan(
x, axes, value_type='R2C')

Note that plan is defaulted to None, meaning CuPy will either use an auto-generated plan
behind the scene if cupy.fft.config. enable_nd_planning = True, or use no cuFFT plan if it is
set to False.

Returns
The transformed array.

5.4. Routines (SciPy) 345

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifftn.html#scipy.fftpack.ifftn
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
scipy.fftpack.rfft()

Note: The argument plan is currently experimental and the interface may be changed in the future version.

cupyx.scipy.fftpack.irfft

cupyx.scipy.fftpack.irfft(x, n=None, axis=-1, overwrite_x=False)
Compute the one-dimensional inverse FFT for real input.

Parameters
• x (cupy.ndarray) – Array to be transformed.

• n (None or int) – Length of the transformed axis of the output. If n is not given, the length
of the input along the axis specified by axis is used.

• axis (int) – Axis over which to compute the FFT.

• overwrite_x (bool) – If True, the contents of x can be destroyed.

Returns
The transformed array.

Return type
cupy.ndarray

See also:
scipy.fftpack.irfft()

Note: This function does not support a precomputed plan. If you need this capability, please consider using
cupy.fft.irfft() or :func:` cupyx.scipy.fft.irfft`.

cupyx.scipy.fftpack.get_fft_plan

cupyx.scipy.fftpack.get_fft_plan(a, shape=None, axes=None, value_type='C2C')
Generate a CUDA FFT plan for transforming up to three axes.

Parameters
• a (cupy.ndarray) – Array to be transform, assumed to be either C- or F- contiguous.

• shape (None or tuple of ints) – Shape of the transformed axes of the output. If shape
is not given, the lengths of the input along the axes specified by axes are used.

• axes (None or int or tuple of int) – The axes of the array to transform. If None, it
is assumed that all axes are transformed.

Currently, for performing N-D transform these must be a set of up to three adjacent axes, and
must include either the first or the last axis of the array.

346 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfft.html#scipy.fftpack.rfft
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.irfft.html#scipy.fftpack.irfft
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• value_type (str) – The FFT type to perform. Acceptable values are:

– ’C2C’: complex-to-complex transform (default)

– ’R2C’: real-to-complex transform

– ’C2R’: complex-to-real transform

Returns
a cuFFT plan for either 1D transform (cupy.cuda.cufft.Plan1d) or N-D transform (cupy.
cuda.cufft.PlanNd).

Note: The returned plan can not only be passed as one of the arguments of the functions in cupyx.scipy.
fftpack, but also be used as a context manager for both cupy.fft and cupyx.scipy.fftpack functions:

x = cupy.random.random(16).reshape(4, 4).astype(complex)
plan = cupyx.scipy.fftpack.get_fft_plan(x)
with plan:

y = cupy.fft.fftn(x)
alternatively:
y = cupyx.scipy.fftpack.fftn(x) # no explicit plan is given!

alternatively:
y = cupyx.scipy.fftpack.fftn(x, plan=plan) # pass plan explicitly

In the first case, no cuFFT plan will be generated automatically, even if cupy.fft.config.
enable_nd_planning = True is set.

Note: If this function is called under the context of set_cufft_callbacks(), the generated plan will have
callbacks enabled.

Warning: This API is a deviation from SciPy’s, is currently experimental, and may be changed in the future
version.

Code compatibility features

1. As with other FFT modules in CuPy, FFT functions in this module can take advantage of an existing cuFFT plan
(returned by get_fft_plan()) to accelarate the computation. The plan can be either passed in explicitly via
the plan argument or used as a context manager. The argument plan is currently experimental and the interface
may be changed in the future version. The get_fft_plan() function has no counterpart in scipy.fftpack.

2. The boolean switch cupy.fft.config.enable_nd_planning also affects the FFT functions in this mod-
ule, see Discrete Fourier Transform (cupy.fft). This switch is neglected when planning manually using
get_fft_plan().

3. Like in scipy.fftpack, all FFT functions in this module have an optional argument overwrite_x (default is
False), which has the same semantics as in scipy.fftpack: when it is set to True, the input array x can (not
will) be overwritten arbitrarily. For this reason, when an in-place FFT is desired, the user should always reassign
the input in the following manner: x = cupyx.scipy.fftpack.fft(x, ..., overwrite_x=True, ...).

4. The boolean switch cupy.fft.config.use_multi_gpus also affects the FFT functions in this module,
see Discrete Fourier Transform (cupy.fft). Moreover, this switch is honored when planning manually using
get_fft_plan().

5.4. Routines (SciPy) 347

https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

5.4.3 Interpolation (cupyx.scipy.interpolate)

Hint: SciPy API Reference: Interpolation functions (scipy.interpolate)

Univariate interpolation

BarycentricInterpolator(xi[, yi, axis]) The interpolating polynomial for a set of points.
KroghInterpolator(xi, yi[, axis]) Interpolating polynomial for a set of points.
barycentric_interpolate(xi, yi, x[, axis]) Convenience function for polynomial interpolation.
krogh_interpolate(xi, yi, x[, der, axis]) Convenience function for polynomial interpolation
pchip_interpolate(xi, yi, x[, der, axis]) Convenience function for pchip interpolation.
CubicHermiteSpline(x, y, dydx[, axis, ...]) Piecewise-cubic interpolator matching values and first

derivatives.
PchipInterpolator(x, y[, axis, extrapolate]) PCHIP 1-D monotonic cubic interpolation.
Akima1DInterpolator(x, y[, axis]) Akima interpolator
PPoly(c, x[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and break-

points The polynomial between x[i] and x[i + 1] is
written in the local power basis.

BPoly(c, x[, extrapolate, axis]) Piecewise polynomial in terms of coefficients and break-
points.

cupyx.scipy.interpolate.BarycentricInterpolator

class cupyx.scipy.interpolate.BarycentricInterpolator(xi, yi=None, axis=0)
The interpolating polynomial for a set of points.

Constructs a polynomial that passes through a given set of points. Allows evaluation of the polynomial, efficient
changing of the y values to be interpolated, and updating by adding more x values. For reasons of numerical
stability, this function does not compute the coefficients of the polynomial. The value yi need to be provided
before the function is evaluated, but none of the preprocessing depends on them, so rapid updates are possible.

Parameters
• xi (cupy.ndarray) – 1-D array of x-coordinates of the points the polynomial should pass

through

• yi (cupy.ndarray, optional) – The y-coordinates of the points the polynomial should
pass through. If None, the y values will be supplied later via the set_y method

• axis (int, optional) – Axis in the yi array corresponding to the x-coordinate values

See also:
scipy.interpolate.BarycentricInterpolator

348 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BarycentricInterpolator.html#scipy.interpolate.BarycentricInterpolator

CuPy Documentation, Release 13.0.0

Methods

__call__(x)
Evaluate the interpolating polynomial at the points x.

Parameters
x (cupy.ndarray) – Points to evaluate the interpolant at

Returns
y – Interpolated values. Shape is determined by replacing the interpolation axis in the original
array with the shape of x

Return type
cupy.ndarray

Notes

Currently the code computes an outer product between x and the weights, that is, it constructs an interme-
diate array of size N by len(x), where N is the degree of the polynomial.

add_xi(xi, yi=None)
Add more x values to the set to be interpolated.

The barycentric interpolation algorithm allows easy updating by adding more points for the polynomial to
pass through.

Parameters
• xi (cupy.ndarray) – The x-coordinates of the points that the polynomial should pass

through

• yi (cupy.ndarray, optional) – The y-coordinates of the points the polynomial should
pass through. Should have shape (xi.size, R); if R > 1 then the polynomial is vector-
valued If yi is not given, the y values will be supplied later. yi should be given if and only
if the interpolator has y values specified

set_yi(yi, axis=None)
Update the y values to be interpolated.

The barycentric interpolation algorithm requires the calculation of weights, but these depend only on the
xi. The yi can be changed at any time.

Parameters
• yi (cupy.ndarray) – The y-coordinates of the points the polynomial should pass through.

If None, the y values will be supplied later.

• axis (int, optional) – Axis in the yi array corresponding to the x-coordinate values

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

5.4. Routines (SciPy) 349

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

cupyx.scipy.interpolate.KroghInterpolator

class cupyx.scipy.interpolate.KroghInterpolator(xi, yi, axis=0)
Interpolating polynomial for a set of points.

The polynomial passes through all the pairs (xi,yi). One may additionally specify a number of derivatives at
each point xi; this is done by repeating the value xi and specifying the derivatives as successive yi values Allows
evaluation of the polynomial and all its derivatives. For reasons of numerical stability, this function does not
compute the coefficients of the polynomial, although they can be obtained by evaluating all the derivatives.

Parameters
• xi (cupy.ndarray, length N) – x-coordinate, must be sorted in increasing order

• yi (cupy.ndarray) – y-coordinate, when a xi occurs two or more times in a row, the cor-
responding yi’s represent derivative values

• axis (int, optional) – Axis in the yi array corresponding to the x-coordinate values.

Methods

__call__(x)
Evaluate the interpolant

Parameters
x (cupy.ndarray) – The points to evaluate the interpolant

Returns
y – Interpolated values. Shape is determined by replacing the interpolation axis in the original
array with the shape of x

Return type
cupy.ndarray

Notes

Input values x must be convertible to float values like int or float.

derivative(x, der=1)
Evaluate one derivative of the polynomial at the point x

Parameters
• x (cupy.ndarray) – Point or points at which to evaluate the derivatives

• der (integer, optional) – Which derivative to extract. This number includes the func-
tion value as 0th derivative

Returns
d – Derivative interpolated at the x-points. Shape of d is determined by replacing the inter-
polation axis in the original array with the shape of x

350 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

Notes

This is computed by evaluating all derivatives up to the desired one (using self.derivatives()) and then
discarding the rest.

derivatives(x, der=None)
Evaluate many derivatives of the polynomial at the point x.

The function produce an array of all derivative values at the point x.

Parameters
• x (cupy.ndarray) – Point or points at which to evaluate the derivatives

• der (int or None, optional) – How many derivatives to extract; None for all poten-
tially nonzero derivatives (that is a number equal to the number of points). This number
includes the function value as 0th derivative

Returns
d – Array with derivatives; d[j] contains the jth derivative. Shape of d[j] is determined by
replacing the interpolation axis in the original array with the shape of x

Return type
cupy.ndarray

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

cupyx.scipy.interpolate.barycentric_interpolate

cupyx.scipy.interpolate.barycentric_interpolate(xi, yi, x, axis=0)
Convenience function for polynomial interpolation.

Constructs a polynomial that passes through a given set of points, then evaluates the polynomial. For reasons of
numerical stability, this function does not compute the coefficients of the polynomial.

Parameters
• xi (cupy.ndarray) – 1-D array of coordinates of the points the polynomial should pass

through

5.4. Routines (SciPy) 351

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• yi (cupy.ndarray) – y-coordinates of the points the polynomial should pass through

• x (scalar or cupy.ndarray) – Points to evaluate the interpolator at

• axis (int, optional) – Axis in the yi array corresponding to the x-coordinate values

Returns
y – Interpolated values. Shape is determined by replacing the interpolation axis in the original
array with the shape x

Return type
scalar or cupy.ndarray

See also:
scipy.interpolate.barycentric_interpolate

cupyx.scipy.interpolate.krogh_interpolate

cupyx.scipy.interpolate.krogh_interpolate(xi, yi, x, der=0, axis=0)
Convenience function for polynomial interpolation

Parameters
• xi (cupy.ndarray) – x-coordinate

• yi (cupy.ndarray) – y-coordinates, of shape (xi.size, R). Interpreted as vectors of
length R, or scalars if R=1

• x (cupy.ndarray) – Point or points at which to evaluate the derivatives

• der (int or list, optional) – How many derivatives to extract; None for all potentially
nonzero derivatives (that is a number equal to the number of points), or a list of derivatives
to extract. This number includes the function value as 0th derivative

• axis (int, optional) – Axis in the yi array corresponding to the x-coordinate values

Returns
d – If the interpolator’s values are R-D then the returned array will be the number of derivatives
by N by R. If x is a scalar, the middle dimension will be dropped; if the yi are scalars then the
last dimension will be dropped

Return type
cupy.ndarray

See also:
scipy.interpolate.krogh_interpolate

cupyx.scipy.interpolate.pchip_interpolate

cupyx.scipy.interpolate.pchip_interpolate(xi, yi, x, der=0, axis=0)
Convenience function for pchip interpolation.

xi and yi are arrays of values used to approximate some function f, with yi = f(xi). The inter-
polant uses monotonic cubic splines to find the value of new points x and the derivatives there. See
scipy.interpolate.PchipInterpolator for details.

Parameters
• xi (array_like) – A sorted list of x-coordinates, of length N.

352 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.barycentric_interpolate.html#scipy.interpolate.barycentric_interpolate
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.krogh_interpolate.html#scipy.interpolate.krogh_interpolate

CuPy Documentation, Release 13.0.0

• yi (array_like) – A 1-D array of real values. yi’s length along the interpolation axis must
be equal to the length of xi. If N-D array, use axis parameter to select correct axis.

• x (scalar or array_like) – Of length M.

• der (int or list, optional) – Derivatives to extract. The 0th derivative can be in-
cluded to return the function value.

• axis (int, optional) – Axis in the yi array corresponding to the x-coordinate values.

See also:

PchipInterpolator
PCHIP 1-D monotonic cubic interpolator.

Returns
y – The result, of length R or length M or M by R.

Return type
scalar or array_like

cupyx.scipy.interpolate.CubicHermiteSpline

class cupyx.scipy.interpolate.CubicHermiteSpline(x, y, dydx, axis=0, extrapolate=None)
Piecewise-cubic interpolator matching values and first derivatives.

The result is represented as a PPoly instance.1

Parameters
• x (array_like, shape (n,)) – 1-D array containing values of the independent variable.

Values must be real, finite and in strictly increasing order.

• y (array_like) – Array containing values of the dependent variable. It can have arbitrary
number of dimensions, but the length along axis (see below) must match the length of x.
Values must be finite.

• dydx (array_like) – Array containing derivatives of the dependent variable. It can have
arbitrary number of dimensions, but the length along axis (see below) must match the length
of x. Values must be finite.

• axis (int, optional) – Axis along which y is assumed to be varying. Meaning that for
x[i] the corresponding values are cupy.take(y, i, axis=axis). Default is 0.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If
‘periodic’, periodic extrapolation is used. If None (default), it is set to True.

Variables
• x (ndarray, shape (n,)) – Breakpoints. The same xwhich was passed to the constructor.

• c (ndarray, shape (4, n-1, ...)) – Coefficients of the polynomials on each segment.
The trailing dimensions match the dimensions of y, excluding axis. For example, if y is 1-
D, then c[k, i] is a coefficient for (x-x[i])**(3-k) on the segment between x[i] and
x[i+1].

• axis (int) – Interpolation axis. The same axis which was passed to the constructor.

See also:
1 Cubic Hermite spline on Wikipedia.

5.4. Routines (SciPy) 353

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Cubic_Hermite_spline

CuPy Documentation, Release 13.0.0

Akima1DInterpolator
Akima 1D interpolator.

PchipInterpolator
PCHIP 1-D monotonic cubic interpolator.

PPoly
Piecewise polynomial in terms of coefficients and breakpoints

Notes

If you want to create a higher-order spline matching higher-order derivatives, use BPoly.from_derivatives.

References

Methods

__call__(x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative.

Parameters
• x (array_like) – Points to evaluate the interpolant at.

• nu (int, optional) – Order of derivative to evaluate. Must be non-negative.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns
y – Interpolated values. Shape is determined by replacing the interpolation axis in the original
array with the shape of x.

Return type
array_like

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

antiderivative(nu=1)
Construct a new piecewise polynomial representing the antiderivative. Antiderivative is also the indefinite
integral of the function, and derivative is its inverse operation.

Parameters
nu (int, optional) – Order of antiderivative to evaluate. Default is 1, i.e., compute the
first integral. If negative, the derivative is returned.

Returns
pp – Piecewise polynomial of order k2 = k + n representing the antiderivative of this polyno-
mial.

Return type
PPoly

354 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up
to floating point rounding error.

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the returned
instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of
the initially given x interval is difficult.

classmethod construct_fast(c, x, extrapolate=None, axis=0)
Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor.
Input arguments c and x must be arrays of the correct shape and type. The c array can only be of dtypes
float and complex, and x array must have dtype float.

derivative(nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters
nu (int, optional) – Order of derivative to evaluate. Default is 1, i.e., compute the first
derivative. If negative, the antiderivative is returned.

Returns
pp – Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial.

Return type
PPoly

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

extend(c, x)
Add additional breakpoints and coefficients to the polynomial.

Parameters
• c (ndarray, size (k, m, ...)) – Additional coefficients for polynomials in intervals.

Note that the first additional interval will be formed using one of the self.x end points.

• x (ndarray, size (m,)) – Additional breakpoints. Must be sorted in the same order as
self.x and either to the right or to the left of the current breakpoints.

classmethod from_bernstein_basis(bp, extrapolate=None)
Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis.

Parameters
• bp (BPoly) – A Bernstein basis polynomial, as created by BPoly

• extrapolate (bool or 'periodic', optional) – If bool, determines whether to ex-
trapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If
‘periodic’, periodic extrapolation is used. Default is True.

classmethod from_spline(tck, extrapolate=None)
Construct a piecewise polynomial from a spline

Parameters
• tck – A spline, as a (knots, coefficients, degree) tuple or a BSpline object.

5.4. Routines (SciPy) 355

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• extrapolate (bool or 'periodic', optional) – If bool, determines whether to ex-
trapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If
‘periodic’, periodic extrapolation is used. Default is True.

integrate(a, b, extrapolate=None)
Compute a definite integral over a piecewise polynomial.

Parameters
• a (float) – Lower integration bound

• b (float) – Upper integration bound

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns
ig – Definite integral of the piecewise polynomial over [a, b]

Return type
array_like

roots(discontinuity=True, extrapolate=None)
Find real roots of the piecewise polynomial.

Parameters
• discontinuity (bool, optional) – Whether to report sign changes across discontinu-

ities at breakpoints as roots.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’
works the same as False. If None (default), use self.extrapolate.

Returns
roots – Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an ndarray containing the roots.

Return type
ndarray

See also:
PPoly.solve

solve(y=0.0, discontinuity=True, extrapolate=None)
Find real solutions of the equation pp(x) == y.

Parameters
• y (float, optional) – Right-hand side. Default is zero.

• discontinuity (bool, optional) – Whether to report sign changes across discontinu-
ities at breakpoints as roots.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’
works the same as False. If None (default), use self.extrapolate.

Returns
roots – Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an ndarray containing the roots.

356 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Return type
ndarray

Notes

This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that
are identically zero, the root list will contain the start point of the corresponding interval, followed by a
nan value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the
breakpoint, this is reported if the discont parameter is True.

At the moment, there is not an actual implementation.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

c

x

extrapolate

axis

cupyx.scipy.interpolate.PchipInterpolator

class cupyx.scipy.interpolate.PchipInterpolator(x, y, axis=0, extrapolate=None)
PCHIP 1-D monotonic cubic interpolation.

x and y are arrays of values used to approximate some function f, with y = f(x). The interpolant uses mono-
tonic cubic splines to find the value of new points. (PCHIP stands for Piecewise Cubic Hermite Interpolating
Polynomial).

Parameters
• x (ndarray) – A 1-D array of monotonically increasing real values. x cannot include dupli-

cate values (otherwise f is overspecified)

• y (ndarray) – A 1-D array of real values. y’s length along the interpolation axis must be
equal to the length of x. If N-D array, use axis parameter to select correct axis.

5.4. Routines (SciPy) 357

CuPy Documentation, Release 13.0.0

• axis (int, optional) – Axis in the y array corresponding to the x-coordinate values.

• extrapolate (bool, optional) – Whether to extrapolate to out-of-bounds points based
on first and last intervals, or to return NaNs.

See also:

CubicHermiteSpline
Piecewise-cubic interpolator.

Akima1DInterpolator
Akima 1D interpolator.

PPoly
Piecewise polynomial in terms of coefficients and breakpoints.

Notes

The interpolator preserves monotonicity in the interpolation data and does not overshoot if the data is not smooth.

The first derivatives are guaranteed to be continuous, but the second derivatives may jump at 𝑥𝑘.

Determines the derivatives at the points 𝑥𝑘, 𝑓 ′
𝑘, by using PCHIP algorithm1.

Let ℎ𝑘 = 𝑥𝑘+1 − 𝑥𝑘, and 𝑑𝑘 = (𝑦𝑘+1 − 𝑦𝑘)/ℎ𝑘 are the slopes at internal points 𝑥𝑘. If the signs of 𝑑𝑘 and 𝑑𝑘−1

are different or either of them equals zero, then 𝑓 ′
𝑘 = 0. Otherwise, it is given by the weighted harmonic mean

𝑤1 + 𝑤2

𝑓 ′
𝑘

=
𝑤1

𝑑𝑘−1
+

𝑤2

𝑑𝑘

where 𝑤1 = 2ℎ𝑘 + ℎ𝑘−1 and 𝑤2 = ℎ𝑘 + 2ℎ𝑘−1.

The end slopes are set using a one-sided scheme2.

References

Methods

__call__(x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative.

Parameters
• x (array_like) – Points to evaluate the interpolant at.

• nu (int, optional) – Order of derivative to evaluate. Must be non-negative.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns
y – Interpolated values. Shape is determined by replacing the interpolation axis in the original
array with the shape of x.

Return type
array_like

1 F. N. Fritsch and J. Butland, A method for constructing local monotone piecewise cubic interpolants, SIAM J. Sci. Comput., 5(2), 300-304
(1984). 10.1137/0905021.

2 see, e.g., C. Moler, Numerical Computing with Matlab, 2004. 10.1137/1.9780898717952

358 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://doi.org/10.1137/0905021
https://doi.org/10.1137/1.9780898717952

CuPy Documentation, Release 13.0.0

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

antiderivative(nu=1)
Construct a new piecewise polynomial representing the antiderivative. Antiderivative is also the indefinite
integral of the function, and derivative is its inverse operation.

Parameters
nu (int, optional) – Order of antiderivative to evaluate. Default is 1, i.e., compute the
first integral. If negative, the derivative is returned.

Returns
pp – Piecewise polynomial of order k2 = k + n representing the antiderivative of this polyno-
mial.

Return type
PPoly

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up
to floating point rounding error.

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the returned
instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of
the initially given x interval is difficult.

classmethod construct_fast(c, x, extrapolate=None, axis=0)
Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor.
Input arguments c and x must be arrays of the correct shape and type. The c array can only be of dtypes
float and complex, and x array must have dtype float.

derivative(nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters
nu (int, optional) – Order of derivative to evaluate. Default is 1, i.e., compute the first
derivative. If negative, the antiderivative is returned.

Returns
pp – Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial.

Return type
PPoly

5.4. Routines (SciPy) 359

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

extend(c, x)
Add additional breakpoints and coefficients to the polynomial.

Parameters
• c (ndarray, size (k, m, ...)) – Additional coefficients for polynomials in intervals.

Note that the first additional interval will be formed using one of the self.x end points.

• x (ndarray, size (m,)) – Additional breakpoints. Must be sorted in the same order as
self.x and either to the right or to the left of the current breakpoints.

classmethod from_bernstein_basis(bp, extrapolate=None)
Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis.

Parameters
• bp (BPoly) – A Bernstein basis polynomial, as created by BPoly

• extrapolate (bool or 'periodic', optional) – If bool, determines whether to ex-
trapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If
‘periodic’, periodic extrapolation is used. Default is True.

classmethod from_spline(tck, extrapolate=None)
Construct a piecewise polynomial from a spline

Parameters
• tck – A spline, as a (knots, coefficients, degree) tuple or a BSpline object.

• extrapolate (bool or 'periodic', optional) – If bool, determines whether to ex-
trapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If
‘periodic’, periodic extrapolation is used. Default is True.

integrate(a, b, extrapolate=None)
Compute a definite integral over a piecewise polynomial.

Parameters
• a (float) – Lower integration bound

• b (float) – Upper integration bound

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns
ig – Definite integral of the piecewise polynomial over [a, b]

Return type
array_like

roots(discontinuity=True, extrapolate=None)
Find real roots of the piecewise polynomial.

Parameters

360 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• discontinuity (bool, optional) – Whether to report sign changes across discontinu-
ities at breakpoints as roots.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’
works the same as False. If None (default), use self.extrapolate.

Returns
roots – Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an ndarray containing the roots.

Return type
ndarray

See also:
PPoly.solve

solve(y=0.0, discontinuity=True, extrapolate=None)
Find real solutions of the equation pp(x) == y.

Parameters
• y (float, optional) – Right-hand side. Default is zero.

• discontinuity (bool, optional) – Whether to report sign changes across discontinu-
ities at breakpoints as roots.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’
works the same as False. If None (default), use self.extrapolate.

Returns
roots – Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an ndarray containing the roots.

Return type
ndarray

Notes

This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that
are identically zero, the root list will contain the start point of the corresponding interval, followed by a
nan value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the
breakpoint, this is reported if the discont parameter is True.

At the moment, there is not an actual implementation.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

5.4. Routines (SciPy) 361

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

c

x

extrapolate

axis

cupyx.scipy.interpolate.Akima1DInterpolator

class cupyx.scipy.interpolate.Akima1DInterpolator(x, y, axis=0)
Akima interpolator

Fit piecewise cubic polynomials, given vectors x and y. The interpolation method by Akima uses a continuously
differentiable sub-spline built from piecewise cubic polynomials. The resultant curve passes through the given
data points and will appear smooth and natural1.

Parameters
• x (ndarray, shape (m,)) – 1-D array of monotonically increasing real values.

• y (ndarray, shape (m, ...)) – N-D array of real values. The length of y along the first
axis must be equal to the length of x.

• axis (int, optional) – Specifies the axis of y along which to interpolate. Interpolation
defaults to the first axis of y.

See also:

CubicHermiteSpline
Piecewise-cubic interpolator.

PchipInterpolator
PCHIP 1-D monotonic cubic interpolator.

PPoly
Piecewise polynomial in terms of coefficients and breakpoints

1 A new method of interpolation and smooth curve fitting based on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4), 589-602.

362 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

Use only for precise data, as the fitted curve passes through the given points exactly. This routine is useful for
plotting a pleasingly smooth curve through a few given points for purposes of plotting.

References

Methods

__call__(x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative.

Parameters
• x (array_like) – Points to evaluate the interpolant at.

• nu (int, optional) – Order of derivative to evaluate. Must be non-negative.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns
y – Interpolated values. Shape is determined by replacing the interpolation axis in the original
array with the shape of x.

Return type
array_like

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

antiderivative(nu=1)
Construct a new piecewise polynomial representing the antiderivative. Antiderivative is also the indefinite
integral of the function, and derivative is its inverse operation.

Parameters
nu (int, optional) – Order of antiderivative to evaluate. Default is 1, i.e., compute the
first integral. If negative, the derivative is returned.

Returns
pp – Piecewise polynomial of order k2 = k + n representing the antiderivative of this polyno-
mial.

Return type
PPoly

5.4. Routines (SciPy) 363

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up
to floating point rounding error.

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the returned
instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of
the initially given x interval is difficult.

classmethod construct_fast(c, x, extrapolate=None, axis=0)
Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor.
Input arguments c and x must be arrays of the correct shape and type. The c array can only be of dtypes
float and complex, and x array must have dtype float.

derivative(nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters
nu (int, optional) – Order of derivative to evaluate. Default is 1, i.e., compute the first
derivative. If negative, the antiderivative is returned.

Returns
pp – Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial.

Return type
PPoly

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

extend(c, x, right=True)
Add additional breakpoints and coefficients to the polynomial.

Parameters
• c (ndarray, size (k, m, ...)) – Additional coefficients for polynomials in intervals.

Note that the first additional interval will be formed using one of the self.x end points.

• x (ndarray, size (m,)) – Additional breakpoints. Must be sorted in the same order as
self.x and either to the right or to the left of the current breakpoints.

classmethod from_bernstein_basis(bp, extrapolate=None)
Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis.

Parameters
• bp (BPoly) – A Bernstein basis polynomial, as created by BPoly

• extrapolate (bool or 'periodic', optional) – If bool, determines whether to ex-
trapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If
‘periodic’, periodic extrapolation is used. Default is True.

classmethod from_spline(tck, extrapolate=None)
Construct a piecewise polynomial from a spline

Parameters
• tck – A spline, as a (knots, coefficients, degree) tuple or a BSpline object.

364 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• extrapolate (bool or 'periodic', optional) – If bool, determines whether to ex-
trapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If
‘periodic’, periodic extrapolation is used. Default is True.

integrate(a, b, extrapolate=None)
Compute a definite integral over a piecewise polynomial.

Parameters
• a (float) – Lower integration bound

• b (float) – Upper integration bound

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns
ig – Definite integral of the piecewise polynomial over [a, b]

Return type
array_like

roots(discontinuity=True, extrapolate=None)
Find real roots of the piecewise polynomial.

Parameters
• discontinuity (bool, optional) – Whether to report sign changes across discontinu-

ities at breakpoints as roots.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’
works the same as False. If None (default), use self.extrapolate.

Returns
roots – Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an ndarray containing the roots.

Return type
ndarray

See also:
PPoly.solve

solve(y=0.0, discontinuity=True, extrapolate=None)
Find real solutions of the equation pp(x) == y.

Parameters
• y (float, optional) – Right-hand side. Default is zero.

• discontinuity (bool, optional) – Whether to report sign changes across discontinu-
ities at breakpoints as roots.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’
works the same as False. If None (default), use self.extrapolate.

Returns
roots – Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an ndarray containing the roots.

5.4. Routines (SciPy) 365

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Return type
ndarray

Notes

This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that
are identically zero, the root list will contain the start point of the corresponding interval, followed by a
nan value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the
breakpoint, this is reported if the discont parameter is True.

At the moment, there is not an actual implementation.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

c

x

extrapolate

axis

cupyx.scipy.interpolate.PPoly

class cupyx.scipy.interpolate.PPoly(c, x, extrapolate=None, axis=0)
Piecewise polynomial in terms of coefficients and breakpoints The polynomial between x[i] and x[i + 1] is
written in the local power basis:

S = sum(c[m, i] * (xp - x[i]) ** (k - m) for m in range(k + 1))

where k is the degree of the polynomial.

Parameters
• c (ndarray, shape (k, m, ...)) – Polynomial coefficients, order k and m intervals.

• x (ndarray, shape (m+1,)) – Polynomial breakpoints. Must be sorted in either increas-
ing or decreasing order.

366 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

• extrapolate (bool or 'periodic', optional) – If bool, determines whether to extrap-
olate to out-of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’,
periodic extrapolation is used. Default is True.

• axis (int, optional) – Interpolation axis. Default is zero.

Variables
• x (ndarray) – Breakpoints.

• c (ndarray) – Coefficients of the polynomials. They are reshaped to a 3-D array with the
last dimension representing the trailing dimensions of the original coefficient array.

• axis (int) – Interpolation axis.

See also:

BPoly
piecewise polynomials in the Bernstein basis

Notes

High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear
for orders larger than 20-30.

See also:
scipy.interpolate.BSpline

Methods

__call__(x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative.

Parameters
• x (array_like) – Points to evaluate the interpolant at.

• nu (int, optional) – Order of derivative to evaluate. Must be non-negative.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns
y – Interpolated values. Shape is determined by replacing the interpolation axis in the original
array with the shape of x.

Return type
array_like

5.4. Routines (SciPy) 367

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

antiderivative(nu=1)
Construct a new piecewise polynomial representing the antiderivative. Antiderivative is also the indefinite
integral of the function, and derivative is its inverse operation.

Parameters
nu (int, optional) – Order of antiderivative to evaluate. Default is 1, i.e., compute the
first integral. If negative, the derivative is returned.

Returns
pp – Piecewise polynomial of order k2 = k + n representing the antiderivative of this polyno-
mial.

Return type
PPoly

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up
to floating point rounding error.

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the returned
instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of
the initially given x interval is difficult.

classmethod construct_fast(c, x, extrapolate=None, axis=0)
Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor.
Input arguments c and x must be arrays of the correct shape and type. The c array can only be of dtypes
float and complex, and x array must have dtype float.

derivative(nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters
nu (int, optional) – Order of derivative to evaluate. Default is 1, i.e., compute the first
derivative. If negative, the antiderivative is returned.

Returns
pp – Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial.

Return type
PPoly

368 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

extend(c, x)
Add additional breakpoints and coefficients to the polynomial.

Parameters
• c (ndarray, size (k, m, ...)) – Additional coefficients for polynomials in intervals.

Note that the first additional interval will be formed using one of the self.x end points.

• x (ndarray, size (m,)) – Additional breakpoints. Must be sorted in the same order as
self.x and either to the right or to the left of the current breakpoints.

classmethod from_bernstein_basis(bp, extrapolate=None)
Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis.

Parameters
• bp (BPoly) – A Bernstein basis polynomial, as created by BPoly

• extrapolate (bool or 'periodic', optional) – If bool, determines whether to ex-
trapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If
‘periodic’, periodic extrapolation is used. Default is True.

classmethod from_spline(tck, extrapolate=None)
Construct a piecewise polynomial from a spline

Parameters
• tck – A spline, as a (knots, coefficients, degree) tuple or a BSpline object.

• extrapolate (bool or 'periodic', optional) – If bool, determines whether to ex-
trapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If
‘periodic’, periodic extrapolation is used. Default is True.

integrate(a, b, extrapolate=None)
Compute a definite integral over a piecewise polynomial.

Parameters
• a (float) – Lower integration bound

• b (float) – Upper integration bound

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns
ig – Definite integral of the piecewise polynomial over [a, b]

Return type
array_like

roots(discontinuity=True, extrapolate=None)
Find real roots of the piecewise polynomial.

Parameters

5.4. Routines (SciPy) 369

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• discontinuity (bool, optional) – Whether to report sign changes across discontinu-
ities at breakpoints as roots.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’
works the same as False. If None (default), use self.extrapolate.

Returns
roots – Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an ndarray containing the roots.

Return type
ndarray

See also:
PPoly.solve

solve(y=0.0, discontinuity=True, extrapolate=None)
Find real solutions of the equation pp(x) == y.

Parameters
• y (float, optional) – Right-hand side. Default is zero.

• discontinuity (bool, optional) – Whether to report sign changes across discontinu-
ities at breakpoints as roots.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to return roots from the polynomial extrapolated based on first and last intervals, ‘periodic’
works the same as False. If None (default), use self.extrapolate.

Returns
roots – Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the
return value is an object array whose each element is an ndarray containing the roots.

Return type
ndarray

Notes

This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that
are identically zero, the root list will contain the start point of the corresponding interval, followed by a
nan value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the
breakpoint, this is reported if the discont parameter is True.

At the moment, there is not an actual implementation.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

370 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

c

x

extrapolate

axis

cupyx.scipy.interpolate.BPoly

class cupyx.scipy.interpolate.BPoly(c, x, extrapolate=None, axis=0)
Piecewise polynomial in terms of coefficients and breakpoints.

The polynomial between x[i] and x[i + 1] is written in the

Bernstein polynomial basis:

S = sum(c[a, i] * b(a, k; x) for a in range(k+1)),

where k is the degree of the polynomial, and:

b(a, k; x) = binom(k, a) * t**a * (1 - t)**(k - a),

with t = (x - x[i]) / (x[i+1] - x[i]) and binom is the binomial coefficient.

Parameters
• c (ndarray, shape (k, m, ...)) – Polynomial coefficients, order k and m intervals

• x (ndarray, shape (m+1,)) – Polynomial breakpoints. Must be sorted in either increas-
ing or decreasing order.

• extrapolate (bool, optional) – If bool, determines whether to extrapolate to out-of-
bounds points based on first and last intervals, or to return NaNs. If ‘periodic’, periodic
extrapolation is used. Default is True.

• axis (int, optional) – Interpolation axis. Default is zero.

Variables
• x (ndarray) – Breakpoints.

• c (ndarray) – Coefficients of the polynomials. They are reshaped to a 3-D array with the
last dimension representing the trailing dimensions of the original coefficient array.

• axis (int) – Interpolation axis.

See also:

PPoly
piecewise polynomials in the power basis

5.4. Routines (SciPy) 371

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

Properties of Bernstein polynomials are well documented in the literature, see for example123.

References

Examples

>>> from cupyx.scipy.interpolate import BPoly
>>> x = [0, 1]
>>> c = [[1], [2], [3]]
>>> bp = BPoly(c, x)

This creates a 2nd order polynomial

𝐵(𝑥) = 1× 𝑏0,2(𝑥) + 2× 𝑏1,2(𝑥) + 3× 𝑏2,2(𝑥)

= 1× (1− 𝑥)2 + 2× 2𝑥(1− 𝑥) + 3× 𝑥2

Methods

__call__(x, nu=0, extrapolate=None)
Evaluate the piecewise polynomial or its derivative.

Parameters
• x (array_like) – Points to evaluate the interpolant at.

• nu (int, optional) – Order of derivative to evaluate. Must be non-negative.

• extrapolate ({bool, 'periodic', None}, optional) – If bool, determines whether
to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs.
If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns
y – Interpolated values. Shape is determined by replacing the interpolation axis in the original
array with the shape of x.

Return type
array_like

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

antiderivative(nu=1)
Construct a new piecewise polynomial representing the antiderivative.

Parameters
nu (int, optional) – Order of antiderivative to evaluate. Default is 1, i.e., compute the
first integral. If negative, the derivative is returned.

1 https://en.wikipedia.org/wiki/Bernstein_polynomial
2 Kenneth I. Joy, Bernstein polynomials, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf
3 E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, vol 2011, article ID 829546, 10.1155/2011/829543.

372 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Bernstein_polynomial
http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf
https://doi.org/10.1155/2011/829543

CuPy Documentation, Release 13.0.0

Returns
bp – Piecewise polynomial of order k + nu representing the antiderivative of this polynomial.

Return type
BPoly

Notes

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the returned
instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of
the initially given x interval is difficult.

classmethod construct_fast(c, x, extrapolate=None, axis=0)
Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor.
Input arguments c and x must be arrays of the correct shape and type. The c array can only be of dtypes
float and complex, and x array must have dtype float.

derivative(nu=1)
Construct a new piecewise polynomial representing the derivative.

Parameters
nu (int, optional) – Order of derivative to evaluate. Default is 1, i.e., compute the first
derivative. If negative, the antiderivative is returned.

Returns
bp – Piecewise polynomial of order k - nu representing the derivative of this polynomial.

Return type
BPoly

extend(c, x)
Add additional breakpoints and coefficients to the polynomial.

Parameters
• c (ndarray, size (k, m, ...)) – Additional coefficients for polynomials in intervals.

Note that the first additional interval will be formed using one of the self.x end points.

• x (ndarray, size (m,)) – Additional breakpoints. Must be sorted in the same order as
self.x and either to the right or to the left of the current breakpoints.

classmethod from_derivatives(xi, yi, orders=None, extrapolate=None)
Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and deriva-
tives at breakpoints.

Parameters
• xi (array_like) – sorted 1-D array of x-coordinates

• yi (array_like or list of array_likes) – yi[i][j] is the j th derivative known
at xi[i]

• orders (None or int or array_like of ints. Default: None.) – Specifies
the degree of local polynomials. If not None, some derivatives are ignored.

• extrapolate (bool or 'periodic', optional) – If bool, determines whether to ex-
trapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If
‘periodic’, periodic extrapolation is used. Default is True.

5.4. Routines (SciPy) 373

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

If k derivatives are specified at a breakpoint x, the constructed polynomial is exactly k times continuously
differentiable at x, unless the order is provided explicitly. In the latter case, the smoothness of the poly-
nomial at the breakpoint is controlled by the order.

Deduces the number of derivatives to match at each end from order and the number of derivatives available.
If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the
extra one from y2. In any case if not enough derivatives are available at one end or another it draws enough
to make up the total from the other end.

If the order is too high and not enough derivatives are available, an exception is raised.

Examples

>>> from cupyx.scipy.interpolate import BPoly
>>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]])

Creates a polynomial f(x) of degree 3, defined on [0, 1] such that f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1)
= 4

>>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]])

Creates a piecewise polynomial f(x), such that f(0) = f(1) = 0, f(2) = 2, and df/dx(0) = 1. Based on the
number of derivatives provided, the order of the local polynomials is 2 on [0, 1] and 1 on [1, 2]. Notice
that no restriction is imposed on the derivatives at x = 1 and x = 2.

Indeed, the explicit form of the polynomial is:

f(x) = | x * (1 - x), 0 <= x < 1
| 2 * (x - 1), 1 <= x <= 2

So that f’(1-0) = -1 and f’(1+0) = 2

classmethod from_power_basis(pp, extrapolate=None)
Construct a piecewise polynomial in Bernstein basis from a power basis polynomial.

Parameters
• pp (PPoly) – A piecewise polynomial in the power basis

• extrapolate (bool or 'periodic', optional) – If bool, determines whether to ex-
trapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If
‘periodic’, periodic extrapolation is used. Default is True.

integrate(a, b, extrapolate=None)
Compute a definite integral over a piecewise polynomial.

Parameters
• a (float) – Lower integration bound

• b (float) – Upper integration bound

• extrapolate ({bool, 'periodic', None}, optional) – Whether to extrapolate to
out-of-bounds points based on first and last intervals, or to return NaNs. If ‘periodic’,
periodic extrapolation is used. If None (default), use self.extrapolate.

374 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

Returns
Definite integral of the piecewise polynomial over [a, b]

Return type
array_like

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

c

x

extrapolate

axis

1-D Splines

BSpline(t, c, k[, extrapolate, axis]) Univariate spline in the B-spline basis.
make_interp_spline(x, y[, k, t, bc_type, ...]) Compute the (coefficients of) interpolating B-spline.
splder(tck[, n]) Compute the spline representation of the derivative of a

given spline
splantider(tck[, n]) Compute the spline for the antiderivative (integral) of a

given spline.

cupyx.scipy.interpolate.BSpline

class cupyx.scipy.interpolate.BSpline(t, c, k, extrapolate=True, axis=0)
Univariate spline in the B-spline basis.

𝑆(𝑥) =

𝑛−1∑︁
𝑗=0

𝑐𝑗𝐵𝑗,𝑘;𝑡(𝑥)

where 𝐵𝑗,𝑘;𝑡 are B-spline basis functions of degree k and knots t.

5.4. Routines (SciPy) 375

CuPy Documentation, Release 13.0.0

Parameters
• t (ndarray, shape (n+k+1,)) – knots

• c (ndarray, shape (>=n, ...)) – spline coefficients

• k (int) – B-spline degree

• extrapolate (bool or 'periodic', optional) – whether to extrapolate beyond the
base interval, t[k] .. t[n], or to return nans. If True, extrapolates the first and last poly-
nomial pieces of b-spline functions active on the base interval. If ‘periodic’, periodic extrap-
olation is used. Default is True.

• axis (int, optional) – Interpolation axis. Default is zero.

Variables
• t (ndarray) – knot vector

• c (ndarray) – spline coefficients

• k (int) – spline degree

• extrapolate (bool) – If True, extrapolates the first and last polynomial pieces of b-spline
functions active on the base interval.

• axis (int) – Interpolation axis.

• tck (tuple) – A read-only equivalent of (self.t, self.c, self.k)

Notes

B-spline basis elements are defined via

𝐵𝑖,0(𝑥) = 1, if 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1, otherwise 0,

𝐵𝑖,𝑘(𝑥) =
𝑥− 𝑡𝑖

𝑡𝑖+𝑘 − 𝑡𝑖
𝐵𝑖,𝑘−1(𝑥) +

𝑡𝑖+𝑘+1 − 𝑥

𝑡𝑖+𝑘+1 − 𝑡𝑖+1
𝐵𝑖+1,𝑘−1(𝑥)

Implementation details
• At least k+1 coefficients are required for a spline of degree k, so that n >= k+1. Additional coefficients,
c[j] with j > n, are ignored.

• B-spline basis elements of degree k form a partition of unity on the base interval, t[k] <= x <= t[n].

• Based on1 and2

See also:
scipy.interpolate.BSpline

1 Tom Lyche and Knut Morken, Spline methods, http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340/v05/undervisningsmateriale/
2 Carl de Boor, A practical guide to splines, Springer, 2001.

376 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline
http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340/v05/undervisningsmateriale/

CuPy Documentation, Release 13.0.0

References

Methods

__call__(x, nu=0, extrapolate=None)
Evaluate a spline function.

Parameters
• x (array_like) – points to evaluate the spline at.

• nu (int, optional) – derivative to evaluate (default is 0).

• extrapolate (bool or 'periodic', optional) – whether to extrapolate based on the
first and last intervals or return nans. If ‘periodic’, periodic extrapolation is used. Default
is self.extrapolate.

Returns
y – Shape is determined by replacing the interpolation axis in the coefficient array with the
shape of x.

Return type
array_like

antiderivative(nu=1)
Return a B-spline representing the antiderivative.

Parameters
nu (int, optional) – Antiderivative order. Default is 1.

Returns
b – A new instance representing the antiderivative.

Return type
BSpline object

Notes

If antiderivative is computed and self.extrapolate='periodic', it will be set to False for the returned
instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of
the initially given x interval is difficult.

See also:
splder, splantider

classmethod basis_element(t, extrapolate=True)
Return a B-spline basis element B(x | t[0], ..., t[k+1]).

Parameters
• t (ndarray, shape (k+2,)) – internal knots

• extrapolate (bool or 'periodic', optional) – whether to extrapolate beyond the
base interval, t[0] .. t[k+1], or to return nans. If ‘periodic’, periodic extrapolation is
used. Default is True.

Returns
basis_element – A callable representing a B-spline basis element for the knot vector t.

Return type
callable

5.4. Routines (SciPy) 377

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

The degree of the B-spline, k, is inferred from the length of t as len(t)-2. The knot vector is constructed
by appending and prepending k+1 elements to internal knots t.

See also:
scipy.interpolate.BSpline

classmethod construct_fast(t, c, k, extrapolate=True, axis=0)
Construct a spline without making checks. Accepts same parameters as the regular constructor. Input arrays
t and c must of correct shape and dtype.

derivative(nu=1)
Return a B-spline representing the derivative.

Parameters
nu (int, optional) – Derivative order. Default is 1.

Returns
b – A new instance representing the derivative.

Return type
BSpline object

See also:
splder, splantider

classmethod design_matrix(x, t, k, extrapolate=False)
Returns a design matrix as a CSR format sparse array.

Parameters
• x (array_like, shape (n,)) – Points to evaluate the spline at.

• t (array_like, shape (nt,)) – Sorted 1D array of knots.

• k (int) – B-spline degree.

• extrapolate (bool or 'periodic', optional) – Whether to extrapolate based on the
first and last intervals or raise an error. If ‘periodic’, periodic extrapolation is used. Default
is False.

Returns
design_matrix – Sparse matrix in CSR format where each row contains all the basis elements
of the input row (first row = basis elements of x[0], . . . , last row = basis elements x[-1]).

Return type
csr_matrix object

Notes

In each row of the design matrix all the basis elements are evaluated at the certain point (first row - x[0],
. . . , last row - x[-1]). nt is a length of the vector of knots: as far as there are nt - k - 1 basis elements, nt
should be not less than 2 * k + 2 to have at least k + 1 basis element.

Out of bounds x raises a ValueError.

Note: This method returns a csr_matrix instance as CuPy still does not have csr_array.

378 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

See also:
scipy.interpolate.BSpline

integrate(a, b, extrapolate=None)
Compute a definite integral of the spline.

Parameters
• a (float) – Lower limit of integration.

• b (float) – Upper limit of integration.

• extrapolate (bool or 'periodic', optional) – whether to extrapolate beyond the
base interval, t[k] .. t[-k-1], or take the spline to be zero outside of the base interval.
If ‘periodic’, periodic extrapolation is used. If None (default), use self.extrapolate.

Returns
I – Definite integral of the spline over the interval [a, b].

Return type
array_like

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

tck

Equivalent to (self.t, self.c, self.k) (read-only).

cupyx.scipy.interpolate.make_interp_spline

cupyx.scipy.interpolate.make_interp_spline(x, y, k=3, t=None, bc_type=None, axis=0,
check_finite=True)

Compute the (coefficients of) interpolating B-spline.

Parameters
• x (array_like, shape (n,)) – Abscissas.

• y (array_like, shape (n, ...)) – Ordinates.

• k (int, optional) – B-spline degree. Default is cubic, k = 3.

5.4. Routines (SciPy) 379

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• t (array_like, shape (nt + k + 1,), optional.) – Knots. The number of knots
needs to agree with the number of data points and the number of derivatives at the edges.
Specifically, nt - n must equal len(deriv_l) + len(deriv_r).

• bc_type (2-tuple or None) – Boundary conditions. Default is None, which means
choosing the boundary conditions automatically. Otherwise, it must be a length-two tuple
where the first element (deriv_l) sets the boundary conditions at x[0] and the second ele-
ment (deriv_r) sets the boundary conditions at x[-1]. Each of these must be an iterable of
pairs (order, value) which gives the values of derivatives of specified orders at the given
edge of the interpolation interval. Alternatively, the following string aliases are recognized:

– "clamped": The first derivatives at the ends are zero. This is
equivalent to bc_type=([(1, 0.0)], [(1, 0.0)]).

– "natural": The second derivatives at ends are zero. This is equivalent to
bc_type=([(2, 0.0)], [(2, 0.0)]).

– "not-a-knot" (default): The first and second segments are the same polynomial. This
is equivalent to having bc_type=None.

– "periodic": The values and the first k-1 derivatives at the ends are equivalent.

• axis (int, optional) – Interpolation axis. Default is 0.

• check_finite (bool, optional) – Whether to check that the input arrays contain only
finite numbers. Disabling may give a performance gain, but may result in problems (crashes,
non-termination) if the inputs do contain infinities or NaNs. Default is True.

Returns
b

Return type
a BSpline object of the degree k and with knots t.

cupyx.scipy.interpolate.splder

cupyx.scipy.interpolate.splder(tck, n=1)
Compute the spline representation of the derivative of a given spline

Parameters
• tck (tuple of (t, c, k)) – Spline whose derivative to compute

• n (int, optional) – Order of derivative to evaluate. Default: 1

Returns
tck_der – Spline of order k2=k-n representing the derivative of the input spline.

Return type
tuple of (t2, c2, k2)

380 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Notes

See also:
scipy.interpolate.splder

See also:
splantider, splev, spalde

cupyx.scipy.interpolate.splantider

cupyx.scipy.interpolate.splantider(tck, n=1)
Compute the spline for the antiderivative (integral) of a given spline.

Parameters
• tck (tuple of (t, c, k)) – Spline whose antiderivative to compute

• n (int, optional) – Order of antiderivative to evaluate. Default: 1

Returns
tck_ader – Spline of order k2=k+n representing the antiderivative of the input spline.

Return type
tuple of (t2, c2, k2)

See also:
splder, splev, spalde

Notes

The splder function is the inverse operation of this function. Namely, splder(splantider(tck)) is identical
to tck, modulo rounding error.

See also:
scipy.interpolate.splantider

Multivariate interpolation

Unstructured data:

RBFInterpolator(y, d[, neighbors, ...]) Radial basis function (RBF) interpolation in N dimen-
sions.

5.4. Routines (SciPy) 381

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

cupyx.scipy.interpolate.RBFInterpolator

class cupyx.scipy.interpolate.RBFInterpolator(y, d, neighbors=None, smoothing=0.0,
kernel='thin_plate_spline', epsilon=None,
degree=None)

Radial basis function (RBF) interpolation in N dimensions.

Parameters
• y ((P, N) array_like) – Data point coordinates.

• d ((P, ...) array_like) – Data values at y.

• neighbors (int, optional) – If specified, the value of the interpolant at each evaluation
point will be computed using only this many nearest data points. All the data points are used
by default.

• smoothing (float or (P,) array_like, optional) – Smoothing parameter. The in-
terpolant perfectly fits the data when this is set to 0. For large values, the interpolant ap-
proaches a least squares fit of a polynomial with the specified degree. Default is 0.

• kernel (str, optional) – Type of RBF. This should be one of

– ’linear’ : -r

– ’thin_plate_spline’ : r**2 * log(r)

– ’cubic’ : r**3

– ’quintic’ : -r**5

– ’multiquadric’ : -sqrt(1 + r**2)

– ’inverse_multiquadric’ : 1/sqrt(1 + r**2)

– ’inverse_quadratic’ : 1/(1 + r**2)

– ’gaussian’ : exp(-r**2)

Default is ‘thin_plate_spline’.

• epsilon (float, optional) – Shape parameter that scales the input to the RBF. If kernel
is ‘linear’, ‘thin_plate_spline’, ‘cubic’, or ‘quintic’, this defaults to 1 and can be ignored
because it has the same effect as scaling the smoothing parameter. Otherwise, this must be
specified.

• degree (int, optional) – Degree of the added polynomial. For some RBFs the inter-
polant may not be well-posed if the polynomial degree is too small. Those RBFs and their
corresponding minimum degrees are

– ’multiquadric’ : 0

– ’linear’ : 0

– ’thin_plate_spline’ : 1

– ’cubic’ : 1

– ’quintic’ : 2

The default value is the minimum degree for kernel or 0 if there is no minimum degree. Set
this to -1 for no added polynomial.

382 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

An RBF is a scalar valued function in N-dimensional space whose value at 𝑥 can be expressed in terms of
𝑟 = ||𝑥− 𝑐||, where 𝑐 is the center of the RBF.

An RBF interpolant for the vector of data values 𝑑, which are from locations 𝑦, is a linear combination of RBFs
centered at 𝑦 plus a polynomial with a specified degree. The RBF interpolant is written as

𝑓(𝑥) = 𝐾(𝑥, 𝑦)𝑎+ 𝑃 (𝑥)𝑏,

where𝐾(𝑥, 𝑦) is a matrix of RBFs with centers at 𝑦 evaluated at the points 𝑥, and𝑃 (𝑥) is a matrix of monomials,
which span polynomials with the specified degree, evaluated at 𝑥. The coefficients 𝑎 and 𝑏 are the solution to the
linear equations

(𝐾(𝑦, 𝑦) + 𝜆𝐼)𝑎+ 𝑃 (𝑦)𝑏 = 𝑑

and

𝑃 (𝑦)𝑇𝑎 = 0,

where 𝜆 is a non-negative smoothing parameter that controls how well we want to fit the data. The data are fit
exactly when the smoothing parameter is 0.

The above system is uniquely solvable if the following requirements are met:

• 𝑃 (𝑦) must have full column rank. 𝑃 (𝑦) always has full column rank when degree is -1 or 0. When degree
is 1, 𝑃 (𝑦) has full column rank if the data point locations are not all collinear (N=2), coplanar (N=3), etc.

• If kernel is ‘multiquadric’, ‘linear’, ‘thin_plate_spline’, ‘cubic’, or ‘quintic’, then degree must not be lower
than the minimum value listed above.

• If smoothing is 0, then each data point location must be distinct.

When using an RBF that is not scale invariant (‘multiquadric’, ‘inverse_multiquadric’, ‘inverse_quadratic’, or
‘gaussian’), an appropriate shape parameter must be chosen (e.g., through cross validation). Smaller values for
the shape parameter correspond to wider RBFs. The problem can become ill-conditioned or singular when the
shape parameter is too small.

The memory required to solve for the RBF interpolation coefficients increases quadratically with the number of
data points, which can become impractical when interpolating more than about a thousand data points. To over-
come memory limitations for large interpolation problems, the neighbors argument can be specified to compute
an RBF interpolant for each evaluation point using only the nearest data points.

See also:
scipy.interpolate.RBFInterpolator

Methods

__call__(x)
Evaluate the interpolant at x.

Parameters
x ((Q, N) array_like) – Evaluation point coordinates.

Returns
Values of the interpolant at x.

Return type
(Q, . . .) ndarray

5.4. Routines (SciPy) 383

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RBFInterpolator.html#scipy.interpolate.RBFInterpolator

CuPy Documentation, Release 13.0.0

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

For data on a grid:

interpn(points, values, xi[, method, ...]) Multidimensional interpolation on regular or rectilinear
grids.

RegularGridInterpolator(points, values[, ...]) Interpolation on a regular or rectilinear grid in arbitrary
dimensions.

cupyx.scipy.interpolate.interpn

cupyx.scipy.interpolate.interpn(points, values, xi, method='linear', bounds_error=True, fill_value=nan)
Multidimensional interpolation on regular or rectilinear grids.

Strictly speaking, not all regular grids are supported - this function works on rectilinear grids, that is, a rectan-
gular grid with even or uneven spacing.

Parameters
• points (tuple of cupy.ndarray of float, with shapes (m1,), ..., (mn,
)) – The points defining the regular grid in n dimensions. The points in each dimension
(i.e. every elements of the points tuple) must be strictly ascending or descending.

• values (cupy.ndarray of shape (m1, ..., mn, ...)) – The data on the regular
grid in n dimensions. Complex data can be acceptable.

• xi (cupy.ndarray of shape (..., ndim)) – The coordinates to sample the gridded
data at

• method (str, optional) – The method of interpolation to perform. Supported are “lin-
ear”, “nearest”, “slinear”, “cubic”, “quintic” and “pchip”.

• bounds_error (bool, optional) – If True, when interpolated values are requested out-
side of the domain of the input data, a ValueError is raised. If False, then fill_value is used.

• fill_value (number, optional) – If provided, the value to use for points outside of the
interpolation domain. If None, values outside the domain are extrapolated.

Returns
values_x – Interpolated values at xi. See notes for behaviour when xi.ndim == 1.

Return type
ndarray, shape xi.shape[:-1] + values.shape[ndim:]

384 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

In the case that xi.ndim == 1 a new axis is inserted into the 0 position of the returned array, values_x, so its
shape is instead (1,) + values.shape[ndim:].

If the input data is such that input dimensions have incommensurate units and differ by many orders of magnitude,
the interpolant may have numerical artifacts. Consider rescaling the data before interpolation.

Examples

Evaluate a simple example function on the points of a regular 3-D grid:

>>> import cupy as cp
>>> from cupyx.scipy.interpolate import interpn
>>> def value_func_3d(x, y, z):
... return 2 * x + 3 * y - z
>>> x = cp.linspace(0, 4, 5)
>>> y = cp.linspace(0, 5, 6)
>>> z = cp.linspace(0, 6, 7)
>>> points = (x, y, z)
>>> values = value_func_3d(*cp.meshgrid(*points, indexing='ij'))

Evaluate the interpolating function at a point

>>> point = cp.array([2.21, 3.12, 1.15])
>>> print(interpn(points, values, point))
[12.63]

See also:

RegularGridInterpolator
interpolation on a regular or rectilinear grid in arbitrary dimensions (interpn wraps this class).

cupyx.scipy.ndimage.map_coordinates
interpolation on grids with equal spacing (suitable for e.g., N-D image resampling)

cupyx.scipy.interpolate.RegularGridInterpolator

class cupyx.scipy.interpolate.RegularGridInterpolator(points, values, method='linear',
bounds_error=True, fill_value=nan)

Interpolation on a regular or rectilinear grid in arbitrary dimensions.

The data must be defined on a rectilinear grid; that is, a rectangular grid with even or uneven spacing. Linear and
nearest-neighbor interpolations are supported. After setting up the interpolator object, the interpolation method
may be chosen at each evaluation.

Parameters
• points (tuple of ndarray of float, with shapes (m1,), ..., (mn,)) –

The points defining the regular grid in n dimensions. The points in each dimension (i.e.
every elements of the points tuple) must be strictly ascending or descending.

• values (ndarray, shape (m1, ..., mn, ...)) – The data on the regular grid in n
dimensions. Complex data can be acceptable.

5.4. Routines (SciPy) 385

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• method (str, optional) – The method of interpolation to perform. Supported are “lin-
ear”, “nearest”, “slinear”, “cubic”, “quintic” and “pchip”. This parameter will become the
default for the object’s __call__ method. Default is “linear”.

• bounds_error (bool, optional) – If True, when interpolated values are requested out-
side of the domain of the input data, a ValueError is raised. If False, then fill_value is used.
Default is True.

• fill_value (float or None, optional) – The value to use for points outside of the
interpolation domain. If None, values outside the domain are extrapolated. Default is cp.
nan.

Notes

Contrary to scipy’s LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation
of the input data by taking advantage of the regular grid structure.

In other words, this class assumes that the data is defined on a rectilinear grid.

If the input data is such that dimensions have incommensurate units and differ by many orders of magnitude, the
interpolant may have numerical artifacts. Consider rescaling the data before interpolating.

Examples

Evaluate a function on the points of a 3-D grid
As a first example, we evaluate a simple example function on the points of a 3-D grid:

>>> from cupyx.scipy.interpolate import RegularGridInterpolator
>>> import cupy as cp
>>> def f(x, y, z):
... return 2 * x**3 + 3 * y**2 - z
>>> x = cp.linspace(1, 4, 11)
>>> y = cp.linspace(4, 7, 22)
>>> z = cp.linspace(7, 9, 33)
>>> xg, yg ,zg = cp.meshgrid(x, y, z, indexing='ij', sparse=True)
>>> data = f(xg, yg, zg)

data is now a 3-D array with data[i, j, k] = f(x[i], y[j], z[k]). Next, define an interpolating func-
tion from this data:

>>> interp = RegularGridInterpolator((x, y, z), data)

Evaluate the interpolating function at the two points (x,y,z) = (2.1, 6.2, 8.3) and (3.3, 5.2, 7.1):

>>> pts = cp.array([[2.1, 6.2, 8.3],
... [3.3, 5.2, 7.1]])
>>> interp(pts)
array([125.80469388, 146.30069388])

which is indeed a close approximation to

>>> f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)
(125.54200000000002, 145.894)

386 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

Interpolate and extrapolate a 2D dataset
As a second example, we interpolate and extrapolate a 2D data set:

>>> x, y = cp.array([-2, 0, 4]), cp.array([-2, 0, 2, 5])
>>> def ff(x, y):
... return x**2 + y**2

>>> xg, yg = cp.meshgrid(x, y, indexing='ij')
>>> data = ff(xg, yg)
>>> interp = RegularGridInterpolator((x, y), data,
... bounds_error=False, fill_value=None)

>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(projection='3d')
>>> ax.scatter(xg.ravel().get(), yg.ravel().get(), data.ravel().get(),
... s=60, c='k', label='data')

Evaluate and plot the interpolator on a finer grid

>>> xx = cp.linspace(-4, 9, 31)
>>> yy = cp.linspace(-4, 9, 31)
>>> X, Y = cp.meshgrid(xx, yy, indexing='ij')

>>> # interpolator
>>> ax.plot_wireframe(X.get(), Y.get(), interp((X, Y)).get(),

rstride=3, cstride=3, alpha=0.4, color='m',
label='linear interp')

>>> # ground truth
>>> ax.plot_wireframe(X.get(), Y.get(), ff(X, Y).get(),

rstride=3, cstride=3,
... alpha=0.4, label='ground truth')
>>> plt.legend()
>>> plt.show()

See also:

interpn
a convenience function which wraps RegularGridInterpolator

scipy.ndimage.map_coordinates
interpolation on grids with equal spacing (suitable for e.g., N-D image resampling)

5.4. Routines (SciPy) 387

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates

CuPy Documentation, Release 13.0.0

References

[1] Python package regulargrid by Johannes Buchner, see
https://pypi.python.org/pypi/regulargrid/

[2] Wikipedia, “Trilinear interpolation”,
https://en.wikipedia.org/wiki/Trilinear_interpolation

[3] Weiser, Alan, and Sergio E. Zarantonello. “A note on piecewise
linear and multilinear table interpolation in many dimensions.” MATH. COMPUT. 50.181
(1988): 189-196. https://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/
S0025-5718-1988-0917826-0.pdf

Methods

__call__(xi, method=None)
Interpolation at coordinates.

Parameters
• xi (cupy.ndarray of shape (..., ndim)) – The coordinates to evaluate the inter-

polator at.

• method (str, optional) – The method of interpolation to perform. Supported are “lin-
ear” and “nearest”. Default is the method chosen when the interpolator was created.

Returns
values_x – Interpolated values at xi. See notes for behaviour when xi.ndim == 1.

Return type
cupy.ndarray, shape xi.shape[:-1] + values.shape[ndim:]

Notes

In the case that xi.ndim == 1 a new axis is inserted into the 0 position of the returned array, values_x, so
its shape is instead (1,) + values.shape[ndim:].

Examples

Here we define a nearest-neighbor interpolator of a simple function

>>> import cupy as cp
>>> x, y = cp.array([0, 1, 2]), cp.array([1, 3, 7])
>>> def f(x, y):
... return x**2 + y**2
>>> data = f(*cp.meshgrid(x, y, indexing='ij', sparse=True))
>>> from cupyx.scipy.interpolate import RegularGridInterpolator
>>> interp = RegularGridInterpolator((x, y), data, method='nearest')

By construction, the interpolator uses the nearest-neighbor interpolation

>>> interp([[1.5, 1.3], [0.3, 4.5]])
array([2., 9.])

We can however evaluate the linear interpolant by overriding the method parameter

388 Chapter 5. API Reference

https://pypi.python.org/pypi/regulargrid/
https://en.wikipedia.org/wiki/Trilinear_interpolation
https://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf
https://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

>>> interp([[1.5, 1.3], [0.3, 4.5]], method='linear')
array([4.7, 24.3])

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Tensor product polynomials:

NdPPoly(c, x[, extrapolate]) Piecewise tensor product polynomial

cupyx.scipy.interpolate.NdPPoly

class cupyx.scipy.interpolate.NdPPoly(c, x, extrapolate=None)
Piecewise tensor product polynomial

The value at point xp = (x', y', z', ...) is evaluated by first computing the interval indices i such that:

x[0][i[0]] <= x' < x[0][i[0]+1]
x[1][i[1]] <= y' < x[1][i[1]+1]
...

and then computing:

S = sum(c[k0-m0-1,...,kn-mn-1,i[0],...,i[n]]
* (xp[0] - x[0][i[0]])**m0
* ...
* (xp[n] - x[n][i[n]])**mn
for m0 in range(k[0]+1)
...
for mn in range(k[n]+1))

where k[j] is the degree of the polynomial in dimension j. This representation is the piecewise multivariate
power basis.

Parameters
• c (ndarray, shape (k0, ..., kn, m0, ..., mn, ...)) – Polynomial coefficients,

with polynomial order kj and mj+1 intervals for each dimension j.

• x (ndim-tuple of ndarrays, shapes (mj+1,)) – Polynomial breakpoints for each di-
mension. These must be sorted in increasing order.

5.4. Routines (SciPy) 389

CuPy Documentation, Release 13.0.0

• extrapolate (bool, optional) – Whether to extrapolate to out-of-bounds points based
on first and last intervals, or to return NaNs. Default: True.

Variables
• x (tuple of ndarrays) – Breakpoints.

• c (ndarray) – Coefficients of the polynomials.

See also:

PPoly
piecewise polynomials in 1D

Notes

High-order polynomials in the power basis can be numerically unstable.

Methods

__call__(x, nu=None, extrapolate=None)
Evaluate the piecewise polynomial or its derivative

Parameters
• x (array-like) – Points to evaluate the interpolant at.

• nu (tuple, optional) – Orders of derivatives to evaluate. Each must be non-negative.

• extrapolate (bool, optional) – Whether to extrapolate to out-of-bounds points based
on first and last intervals, or to return NaNs.

Returns
y – Interpolated values. Shape is determined by replacing the interpolation axis in the original
array with the shape of x.

Return type
array-like

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals are considered half-open, [a, b), except for the last
interval which is closed [a, b].

antiderivative(nu)
Construct a new piecewise polynomial representing the antiderivative. Antiderivative is also the indefinite
integral of the function, and derivative is its inverse operation.

Parameters
nu (ndim-tuple of int) – Order of derivatives to evaluate for each dimension. If negative,
the derivative is returned.

Returns
pp – Piecewise polynomial of order k2 = k + n representing the antiderivative of this polyno-
mial.

390 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
PPoly

Notes

The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up
to floating point rounding error.

classmethod construct_fast(c, x, extrapolate=None)
Construct the piecewise polynomial without making checks.

Takes the same parameters as the constructor. Input arguments c and x must be arrays of the correct shape
and type. The c array can only be of dtypes float and complex, and x array must have dtype float.

derivative(nu)
Construct a new piecewise polynomial representing the derivative.

Parameters
nu (ndim-tuple of int) – Order of derivatives to evaluate for each dimension. If negative,
the antiderivative is returned.

Returns
pp – Piecewise polynomial of orders (k[0] - nu[0], . . . , k[n] - nu[n]) representing the derivative
of this polynomial.

Return type
NdPPoly

Notes

Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differen-
tiable at the breakpoints. The polynomial intervals in each dimension are considered half-open, [a, b),
except for the last interval which is closed [a, b].

integrate(ranges, extrapolate=None)
Compute a definite integral over a piecewise polynomial.

Parameters
• ranges (ndim-tuple of 2-tuples float) – Sequence of lower and upper bounds for

each dimension, [(a[0], b[0]), ..., (a[ndim-1], b[ndim-1])]

• extrapolate (bool, optional) – Whether to extrapolate to out-of-bounds points based
on first and last intervals, or to return NaNs.

Returns
ig – Definite integral of the piecewise polynomial over [a[0], b[0]] x . . . x [a[ndim-1], b[ndim-
1]]

Return type
array_like

integrate_1d(a, b, axis, extrapolate=None)
Compute NdPPoly representation for one dimensional definite integral The result is a piecewise polynomial
representing the integral:

𝑝(𝑦, 𝑧, ...) =

∫︁ 𝑏

𝑎

𝑑𝑥 𝑝(𝑥, 𝑦, 𝑧, ...)

5.4. Routines (SciPy) 391

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

where the dimension integrated over is specified with the axis parameter.

Parameters
• a (float) – Lower and upper bound for integration.

• b (float) – Lower and upper bound for integration.

• axis (int) – Dimension over which to compute the 1-D integrals

• extrapolate (bool, optional) – Whether to extrapolate to out-of-bounds points based
on first and last intervals, or to return NaNs.

Returns
ig – Definite integral of the piecewise polynomial over [a, b]. If the polynomial was 1D, an
array is returned, otherwise, an NdPPoly object.

Return type
NdPPoly or array-like

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

5.4.4 Linear algebra (cupyx.scipy.linalg)

Hint: SciPy API Reference: Linear algebra (scipy.linalg)

Basics

solve_triangular(a, b[, trans, lower, ...]) Solve the equation a x = b for x, assuming a is a triangular
matrix.

tril(m[, k]) Make a copy of a matrix with elements above the k-th
diagonal zeroed.

triu(m[, k]) Make a copy of a matrix with elements below the k-th
diagonal zeroed.

392 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/linalg.html

CuPy Documentation, Release 13.0.0

cupyx.scipy.linalg.solve_triangular

cupyx.scipy.linalg.solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, overwrite_b=False,
check_finite=False)

Solve the equation a x = b for x, assuming a is a triangular matrix.

Parameters
• a (cupy.ndarray) – The matrix with dimension (M, M).

• b (cupy.ndarray) – The matrix with dimension (M,) or (M, N).

• lower (bool) – Use only data contained in the lower triangle of a. Default is to use upper
triangle.

• trans (0, 1, 2, 'N', 'T' or 'C') – Type of system to solve:

– ’0’ or ‘N’ – 𝑎𝑥 = 𝑏

– ’1’ or ‘T’ – 𝑎𝑇𝑥 = 𝑏

– ’2’ or ‘C’ – 𝑎𝐻𝑥 = 𝑏

• unit_diagonal (bool) – If True, diagonal elements of a are assumed to be 1 and will not
be referenced.

• overwrite_b (bool) – Allow overwriting data in b (may enhance performance)

• check_finite (bool) – Whether to check that the input matrices contain only finite num-
bers. Disabling may give a performance gain, but may result in problems (crashes, non-
termination) if the inputs do contain infinities or NaNs.

Returns
The matrix with dimension (M,) or (M, N).

Return type
cupy.ndarray

See also:
scipy.linalg.solve_triangular()

cupyx.scipy.linalg.tril

cupyx.scipy.linalg.tril(m, k=0)
Make a copy of a matrix with elements above the k-th diagonal zeroed.

Parameters
• m (cupy.ndarray) – Matrix whose elements to return

• k (int, optional) – Diagonal above which to zero elements. k == 0 is the main diagonal,
k < 0 subdiagonal and k > 0 superdiagonal.

Returns
Return is the same shape and type as m.

Return type
(cupy.ndarray)

See also:
scipy.linalg.tril()

5.4. Routines (SciPy) 393

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_triangular.html#scipy.linalg.solve_triangular
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tril.html#scipy.linalg.tril

CuPy Documentation, Release 13.0.0

cupyx.scipy.linalg.triu

cupyx.scipy.linalg.triu(m, k=0)
Make a copy of a matrix with elements below the k-th diagonal zeroed.

Parameters
• m (cupy.ndarray) – Matrix whose elements to return

• k (int, optional) – Diagonal above which to zero elements. k == 0 is the main diagonal,
k < 0 subdiagonal and k > 0 superdiagonal.

Returns
Return matrix with zeroed elements below the kth diagonal and has same shape and type as m.

Return type
(cupy.ndarray)

See also:
scipy.linalg.triu()

Matrix Functions

expm(a) Compute the matrix exponential.

cupyx.scipy.linalg.expm

cupyx.scipy.linalg.expm(a)
Compute the matrix exponential.

Parameters
a (ndarray, 2D) –

Return type
matrix exponential of a

Notes

Uses (a simplified) version of Algorithm 2.3 of1: a [13 / 13] Pade approximant with scaling and squaring.

Simplifications:

• we always use a [13/13] approximate

• no matrix balancing
1 N. Higham, SIAM J. MATRIX ANAL. APPL. Vol. 26(4), p. 1179 (2005) https://doi.org/10.1137/04061101X

394 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.triu.html#scipy.linalg.triu
https://doi.org/10.1137/04061101X

CuPy Documentation, Release 13.0.0

References

Decompositions

lu(a[, permute_l, overwrite_a, check_finite]) LU decomposition.
lu_factor(a[, overwrite_a, check_finite]) LU decomposition.
lu_solve(lu_and_piv, b[, trans, ...]) Solve an equation system, a * x = b, given the LU fac-

torization of a

cupyx.scipy.linalg.lu

cupyx.scipy.linalg.lu(a, permute_l=False, overwrite_a=False, check_finite=True)
LU decomposition.

Decomposes a given two-dimensional matrix into P @ L @ U, where P is a permutation matrix, L is a lower
triangular or trapezoidal matrix with unit diagonal, and U is a upper triangular or trapezoidal matrix.

Parameters
• a (cupy.ndarray) – The input matrix with dimension (M, N).

• permute_l (bool) – If True, perform the multiplication P @ L.

• overwrite_a (bool) – Allow overwriting data in a (may enhance performance)

• check_finite (bool) – Whether to check that the input matrices contain only finite num-
bers. Disabling may give a performance gain, but may result in problems (crashes, non-
termination) if the inputs do contain infinities or NaNs.

Returns
(P, L, U) if permute_l == False, otherwise (PL, U). P is a cupy.ndarray storing per-
mutation matrix with dimension (M, M). L is a cupy.ndarray storing lower triangular or trape-
zoidal matrix with unit diagonal with dimension (M, K) where K = min(M, N). U is a cupy.
ndarray storing upper triangular or trapezoidal matrix with dimension (K, N). PL is a cupy.
ndarray storing permuted L matrix with dimension (M, K).

Return type
tuple

See also:
scipy.linalg.lu()

cupyx.scipy.linalg.lu_factor

cupyx.scipy.linalg.lu_factor(a, overwrite_a=False, check_finite=True)
LU decomposition.

Decompose a given two-dimensional square matrix into P * L * U, where P is a permutation matrix, L lower-
triangular with unit diagonal elements, and U upper-triangular matrix.

Parameters
• a (cupy.ndarray) – The input matrix with dimension (M, N)

• overwrite_a (bool) – Allow overwriting data in a (may enhance performance)

5.4. Routines (SciPy) 395

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu.html#scipy.linalg.lu
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• check_finite (bool) – Whether to check that the input matrices contain only finite num-
bers. Disabling may give a performance gain, but may result in problems (crashes, non-
termination) if the inputs do contain infinities or NaNs.

Returns
(lu, piv) where lu is a cupy.ndarray storing U in its upper triangle, and L without unit
diagonal elements in its lower triangle, and piv is a cupy.ndarray storing pivot indices repre-
senting permutation matrix P. For 0 <= i < min(M,N), row i of the matrix was interchanged
with row piv[i]

Return type
tuple

See also:
scipy.linalg.lu_factor()

cupyx.scipy.linalg.lu_solve

cupyx.scipy.linalg.lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True)
Solve an equation system, a * x = b, given the LU factorization of a

Parameters
• lu_and_piv (tuple) – LU factorization of matrix a ((M, M)) together with pivot indices.

• b (cupy.ndarray) – The matrix with dimension (M,) or (M, N).

• trans ({0, 1, 2}) – Type of system to solve:

trans system
0 a x = b
1 a^T x = b
2 a^H x = b

• overwrite_b (bool) – Allow overwriting data in b (may enhance performance)

• check_finite (bool) – Whether to check that the input matrices contain only finite num-
bers. Disabling may give a performance gain, but may result in problems (crashes, non-
termination) if the inputs do contain infinities or NaNs.

Returns
The matrix with dimension (M,) or (M, N).

Return type
cupy.ndarray

See also:
scipy.linalg.lu_solve()

396 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu_factor.html#scipy.linalg.lu_factor
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu_solve.html#scipy.linalg.lu_solve

CuPy Documentation, Release 13.0.0

Special Matrices

block_diag(*arrs) Create a block diagonal matrix from provided arrays.
circulant(c) Construct a circulant matrix.
companion(a) Create a companion matrix.
convolution_matrix(a, n[, mode]) Construct a convolution matrix.
dft(n[, scale]) Discrete Fourier transform matrix.
fiedler(a) Returns a symmetric Fiedler matrix
fiedler_companion(a) Returns a Fiedler companion matrix
hadamard(n[, dtype]) Construct an Hadamard matrix.
hankel(c[, r]) Construct a Hankel matrix.
helmert(n[, full]) Create an Helmert matrix of order n.
hilbert(n) Create a Hilbert matrix of order n.
kron(a, b) Kronecker product.
leslie(f, s) Create a Leslie matrix.
toeplitz(c[, r]) Construct a Toeplitz matrix.
tri(N[, M, k, dtype]) Construct (N, M) matrix filled with ones at and below the

k-th diagonal.

cupyx.scipy.linalg.block_diag

cupyx.scipy.linalg.block_diag(*arrs)
Create a block diagonal matrix from provided arrays.

Given the inputs A, B, and C, the output will have these arrays arranged on the diagonal:

[A, 0, 0]
[0, B, 0]
[0, 0, C]

Parameters
• A (cupy.ndarray) – Input arrays. A 1-D array of length n is treated as a 2-D array with

shape (1,n).

• B (cupy.ndarray) – Input arrays. A 1-D array of length n is treated as a 2-D array with
shape (1,n).

• C (cupy.ndarray) – Input arrays. A 1-D array of length n is treated as a 2-D array with
shape (1,n).

• ... (cupy.ndarray) – Input arrays. A 1-D array of length n is treated as a 2-D array with
shape (1,n).

Returns
Array with A, B, C, . . . on the diagonal. Output has the same dtype as A.

Return type
(cupy.ndarray)

See also:
scipy.linalg.block_diag()

5.4. Routines (SciPy) 397

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.block_diag.html#scipy.linalg.block_diag

CuPy Documentation, Release 13.0.0

cupyx.scipy.linalg.circulant

cupyx.scipy.linalg.circulant(c)
Construct a circulant matrix.

Parameters
c (cupy.ndarray) – 1-D array, the first column of the matrix.

Returns
A circulant matrix whose first column is c.

Return type
cupy.ndarray

See also:
cupyx.scipy.linalg.toeplitz()

See also:
cupyx.scipy.linalg.hankel()

See also:
cupyx.scipy.linalg.solve_circulant()

See also:
cupyx.scipy.linalg.fiedler()

See also:
scipy.linalg.circulant()

cupyx.scipy.linalg.companion

cupyx.scipy.linalg.companion(a)
Create a companion matrix.

Create the companion matrix associated with the polynomial whose coefficients are given in a.

Parameters
a (cupy.ndarray) – 1-D array of polynomial coefficients. The length of a must be at least two,
and a[0] must not be zero.

Returns
The first row of the output is -a[1:]/a[0], and the first sub-diagonal is all ones. The data-type
of the array is the same as the data-type of -a[1:]/a[0].

Return type
(cupy.ndarray)

See also:
cupyx.scipy.linalg.fiedler_companion()

See also:
scipy.linalg.companion()

398 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.circulant.html#scipy.linalg.circulant
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.companion.html#scipy.linalg.companion

CuPy Documentation, Release 13.0.0

cupyx.scipy.linalg.convolution_matrix

cupyx.scipy.linalg.convolution_matrix(a, n, mode='full')
Construct a convolution matrix.

Constructs the Toeplitz matrix representing one-dimensional convolution.

Parameters
• a (cupy.ndarray) – The 1-D array to convolve.

• n (int) – The number of columns in the resulting matrix. It gives the length of the input to
be convolved with a. This is analogous to the length of v in numpy.convolve(a, v).

• mode (str) – This must be one of ('full', 'valid', 'same'). This is analogous to mode
in numpy.convolve(v, a, mode).

Returns
The convolution matrix whose row count k depends on mode:

mode k
'full' m + n - 1
'same' max(m, n)
'valid' max(m, n) - min(m, n) + 1

Return type
cupy.ndarray

See also:
cupyx.scipy.linalg.toeplitz()

See also:
scipy.linalg.convolution_matrix()

cupyx.scipy.linalg.dft

cupyx.scipy.linalg.dft(n, scale=None)
Discrete Fourier transform matrix.

Create the matrix that computes the discrete Fourier transform of a sequence. The nth primitive root of unity
used to generate the matrix is exp(-2*pi*i/n), where i = sqrt(-1).

Parameters
• n (int) – Size the matrix to create.

• scale (str, optional) – Must be None, ‘sqrtn’, or ‘n’. If scale is ‘sqrtn’, the matrix is
divided by sqrt(n). If scale is ‘n’, the matrix is divided by n. If scale is None (default),
the matrix is not normalized, and the return value is simply the Vandermonde matrix of the
roots of unity.

Returns
The DFT matrix.

Return type
(cupy.ndarray)

5.4. Routines (SciPy) 399

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.convolution_matrix.html#scipy.linalg.convolution_matrix
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Notes

When scale is None, multiplying a vector by the matrix returned by dft is mathematically equivalent to (but
much less efficient than) the calculation performed by scipy.fft.fft.

See also:
scipy.linalg.dft()

cupyx.scipy.linalg.fiedler

cupyx.scipy.linalg.fiedler(a)
Returns a symmetric Fiedler matrix

Given an sequence of numbers a, Fiedler matrices have the structure F[i, j] = np.abs(a[i] - a[j]), and
hence zero diagonals and nonnegative entries. A Fiedler matrix has a dominant positive eigenvalue and other
eigenvalues are negative. Although not valid generally, for certain inputs, the inverse and the determinant can be
derived explicitly.

Parameters
a (cupy.ndarray) – coefficient array

Returns
the symmetric Fiedler matrix

Return type
cupy.ndarray

See also:
cupyx.scipy.linalg.circulant()

See also:
cupyx.scipy.linalg.toeplitz()

See also:
scipy.linalg.fiedler()

cupyx.scipy.linalg.fiedler_companion

cupyx.scipy.linalg.fiedler_companion(a)
Returns a Fiedler companion matrix

Given a polynomial coefficient array a, this function forms a pentadiagonal matrix with a special structure whose
eigenvalues coincides with the roots of a.

Parameters
a (cupy.ndarray) – 1-D array of polynomial coefficients in descending order with a nonzero
leading coefficient. For N < 2, an empty array is returned.

Returns
Resulting companion matrix

Return type
cupy.ndarray

400 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.dft.html#scipy.linalg.dft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fiedler.html#scipy.linalg.fiedler

CuPy Documentation, Release 13.0.0

Notes

Similar to companion the leading coefficient should be nonzero. In the case the leading coefficient is not 1,
other coefficients are rescaled before the array generation. To avoid numerical issues, it is best to provide a
monic polynomial.

See also:
cupyx.scipy.linalg.companion()

See also:
scipy.linalg.fiedler_companion()

cupyx.scipy.linalg.hadamard

cupyx.scipy.linalg.hadamard(n, dtype=<class 'int'>)
Construct an Hadamard matrix.

Constructs an n-by-n Hadamard matrix, using Sylvester’s construction. n must be a power of 2.

Parameters
• n (int) – The order of the matrix. n must be a power of 2.

• dtype (dtype, optional) – The data type of the array to be constructed.

Returns
The Hadamard matrix.

Return type
(cupy.ndarray)

See also:
scipy.linalg.hadamard()

cupyx.scipy.linalg.hankel

cupyx.scipy.linalg.hankel(c, r=None)
Construct a Hankel matrix.

The Hankel matrix has constant anti-diagonals, with c as its first column and r as its last row. If r is not given,
then r = zeros_like(c) is assumed.

Parameters
• c (cupy.ndarray) – First column of the matrix. Whatever the actual shape of c, it will be

converted to a 1-D array.

• r (cupy.ndarray, optionnal) – Last row of the matrix. If None, r = zeros_like(c)
is assumed. r[0] is ignored; the last row of the returned matrix is [c[-1], r[1:]]. What-
ever the actual shape of r, it will be converted to a 1-D array.

Returns
The Hankel matrix. Dtype is the same as (c[0] + r[0]).dtype.

Return type
cupy.ndarray

5.4. Routines (SciPy) 401

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fiedler_companion.html#scipy.linalg.fiedler_companion
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hadamard.html#scipy.linalg.hadamard

CuPy Documentation, Release 13.0.0

See also:
cupyx.scipy.linalg.toeplitz()

See also:
cupyx.scipy.linalg.circulant()

See also:
scipy.linalg.hankel()

cupyx.scipy.linalg.helmert

cupyx.scipy.linalg.helmert(n, full=False)
Create an Helmert matrix of order n.

This has applications in statistics, compositional or simplicial analysis, and in Aitchison geometry.

Parameters
• n (int) – The size of the array to create.

• full (bool, optional) – If True the (n, n) ndarray will be returned. Otherwise, the de-
fault, the submatrix that does not include the first row will be returned.

Returns
The Helmert matrix. The shape is (n, n) or (n-1, n) depending on the full argument.

Return type
cupy.ndarray

See also:
scipy.linalg.helmert()

cupyx.scipy.linalg.hilbert

cupyx.scipy.linalg.hilbert(n)
Create a Hilbert matrix of order n.

Returns the n by n array with entries h[i,j] = 1 / (i + j + 1).

Parameters
n (int) – The size of the array to create.

Returns
The Hilbert matrix.

Return type
cupy.ndarray

See also:
scipy.linalg.hilbert()

402 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hankel.html#scipy.linalg.hankel
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.helmert.html#scipy.linalg.helmert
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hilbert.html#scipy.linalg.hilbert

CuPy Documentation, Release 13.0.0

cupyx.scipy.linalg.kron

cupyx.scipy.linalg.kron(a, b)
Kronecker product.

The result is the block matrix::
a[0,0]*b a[0,1]*b . . . a[0,-1]*b a[1,0]*b a[1,1]*b . . . a[1,-1]*b . . . a[-1,0]*b a[-1,1]*b . . . a[-1,-1]*b

Parameters
• a (cupy.ndarray) – Input array

• b (cupy.ndarray) – Input array

Returns
Kronecker product of a and b.

Return type
cupy.ndarray

See also:
scipy.linalg.kron()

cupyx.scipy.linalg.leslie

cupyx.scipy.linalg.leslie(f, s)
Create a Leslie matrix.

Given the length n array of fecundity coefficients f and the length n-1 array of survival coefficients s, return the
associated Leslie matrix.

Parameters
• f (cupy.ndarray) – The “fecundity” coefficients.

• s (cupy.ndarray) – The “survival” coefficients, has to be 1-D. The length of s must be one
less than the length of f, and it must be at least 1.

Returns
The array is zero except for the first row, which is f, and the first sub-diagonal, which is s. The
data-type of the array will be the data-type of f[0]+s[0].

Return type
cupy.ndarray

See also:
scipy.linalg.leslie()

5.4. Routines (SciPy) 403

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.kron.html#scipy.linalg.kron
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.leslie.html#scipy.linalg.leslie

CuPy Documentation, Release 13.0.0

cupyx.scipy.linalg.toeplitz

cupyx.scipy.linalg.toeplitz(c, r=None)
Construct a Toeplitz matrix.

The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, r
== conjugate(c) is assumed.

Parameters
• c (cupy.ndarray) – First column of the matrix. Whatever the actual shape of c, it will be

converted to a 1-D array.

• r (cupy.ndarray, optional) – First row of the matrix. If None, r = conjugate(c) is
assumed; in this case, if c[0] is real, the result is a Hermitian matrix. r[0] is ignored; the
first row of the returned matrix is [c[0], r[1:]]. Whatever the actual shape of r, it will
be converted to a 1-D array.

Returns
The Toeplitz matrix. Dtype is the same as (c[0] + r[0]).dtype.

Return type
cupy.ndarray

See also:
cupyx.scipy.linalg.circulant()

See also:
cupyx.scipy.linalg.hankel()

See also:
cupyx.scipy.linalg.solve_toeplitz()

See also:
cupyx.scipy.linalg.fiedler()

See also:
scipy.linalg.toeplitz()

cupyx.scipy.linalg.tri

cupyx.scipy.linalg.tri(N, M=None, k=0, dtype=None)
Construct (N, M) matrix filled with ones at and below the k-th diagonal. The matrix has A[i,j] == 1 for i <=
j + k.

Parameters
• N (int) – The size of the first dimension of the matrix.

• M (int, optional) – The size of the second dimension of the matrix. If M is None, M = N
is assumed.

• k (int, optional) – Number of subdiagonal below which matrix is filled with ones. k =
0 is the main diagonal, k < 0 subdiagonal and k > 0 superdiagonal.

• dtype (dtype, optional) – Data type of the matrix.

404 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.toeplitz.html#scipy.linalg.toeplitz
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Returns
Tri matrix.

Return type
cupy.ndarray

See also:
scipy.linalg.tri()

5.4.5 Multidimensional image processing (cupyx.scipy.ndimage)

Hint: SciPy API Reference: Multidimensional image processing (scipy.ndimage)

Filters

convolve(input, weights[, output, mode, ...]) Multi-dimensional convolution.
convolve1d(input, weights[, axis, output, ...]) One-dimensional convolution.
correlate(input, weights[, output, mode, ...]) Multi-dimensional correlate.
correlate1d(input, weights[, axis, output, ...]) One-dimensional correlate.
gaussian_filter(input, sigma[, order, ...]) Multi-dimensional Gaussian filter.
gaussian_filter1d(input, sigma[, axis, ...]) One-dimensional Gaussian filter along the given axis.
gaussian_gradient_magnitude(input, sigma[, ...]) Multi-dimensional gradient magnitude using Gaussian

derivatives.
gaussian_laplace(input, sigma[, output, ...]) Multi-dimensional Laplace filter using Gaussian second

derivatives.
generic_filter(input, function[, size, ...]) Compute a multi-dimensional filter using the provided

raw kernel or reduction kernel.
generic_filter1d(input, function, filter_size) Compute a 1D filter along the given axis using the pro-

vided raw kernel.
generic_gradient_magnitude(input, derivative) Multi-dimensional gradient magnitude filter using a pro-

vided derivative function.
generic_laplace(input, derivative2[, ...]) Multi-dimensional Laplace filter using a provided sec-

ond derivative function.
laplace(input[, output, mode, cval]) Multi-dimensional Laplace filter based on approximate

second derivatives.
maximum_filter(input[, size, footprint, ...]) Multi-dimensional maximum filter.
maximum_filter1d(input, size[, axis, ...]) Compute the maximum filter along a single axis.
median_filter(input[, size, footprint, ...]) Multi-dimensional median filter.
minimum_filter(input[, size, footprint, ...]) Multi-dimensional minimum filter.
minimum_filter1d(input, size[, axis, ...]) Compute the minimum filter along a single axis.
percentile_filter(input, percentile[, size, ...]) Multi-dimensional percentile filter.
prewitt(input[, axis, output, mode, cval]) Compute a Prewitt filter along the given axis.
rank_filter(input, rank[, size, footprint, ...]) Multi-dimensional rank filter.
sobel(input[, axis, output, mode, cval]) Compute a Sobel filter along the given axis.
uniform_filter(input[, size, output, mode, ...]) Multi-dimensional uniform filter.
uniform_filter1d(input, size[, axis, ...]) One-dimensional uniform filter along the given axis.

5.4. Routines (SciPy) 405

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tri.html#scipy.linalg.tri
https://docs.scipy.org/doc/scipy/reference/ndimage.html

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.convolve

cupyx.scipy.ndimage.convolve(input, weights, output=None, mode='reflect', cval=0.0, origin=0)
Multi-dimensional convolution.

The array is convolved with the given kernel.

Parameters
• input (cupy.ndarray) – The input array.

• weights (cupy.ndarray) – Array of weights, same number of dimensions as input

• output (cupy.ndarray, dtype or None) – The array in which to place the output.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is constant. Default is 0.0.

• origin (scalar or tuple of scalar) – The origin parameter controls the placement
of the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of convolution.

Return type
cupy.ndarray

See also:
scipy.ndimage.convolve()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.convolve1d

cupyx.scipy.ndimage.convolve1d(input, weights, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)
One-dimensional convolution.

The array is convolved with the given kernel.

Parameters
• input (cupy.ndarray) – The input array.

• weights (cupy.ndarray) – One-dimensional array of weights

• axis (int) – The axis of input along which to calculate. Default is -1.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

406 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html#scipy.ndimage.convolve
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• origin (int) – The origin parameter controls the placement of the filter, relative to the
center of the current element of the input. Default is 0.

Returns
The result of the 1D convolution.

Return type
cupy.ndarray

See also:
scipy.ndimage.convolve1d()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.correlate

cupyx.scipy.ndimage.correlate(input, weights, output=None, mode='reflect', cval=0.0, origin=0)
Multi-dimensional correlate.

The array is correlated with the given kernel.

Parameters
• input (cupy.ndarray) – The input array.

• weights (cupy.ndarray) – Array of weights, same number of dimensions as input

• output (cupy.ndarray, dtype or None) – The array in which to place the output.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is constant. Default is 0.0.

• origin (scalar or tuple of scalar) – The origin parameter controls the placement
of the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of correlate.

Return type
cupy.ndarray

See also:
scipy.ndimage.correlate()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

5.4. Routines (SciPy) 407

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve1d.html#scipy.ndimage.convolve1d
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.correlate.html#scipy.ndimage.correlate

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.correlate1d

cupyx.scipy.ndimage.correlate1d(input, weights, axis=-1, output=None, mode='reflect', cval=0.0, origin=0)
One-dimensional correlate.

The array is correlated with the given kernel.

Parameters
• input (cupy.ndarray) – The input array.

• weights (cupy.ndarray) – One-dimensional array of weights

• axis (int) – The axis of input along which to calculate. Default is -1.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• origin (int) – The origin parameter controls the placement of the filter, relative to the
center of the current element of the input. Default is 0.

Returns
The result of the 1D correlation.

Return type
cupy.ndarray

See also:
scipy.ndimage.correlate1d()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.gaussian_filter

cupyx.scipy.ndimage.gaussian_filter(input, sigma, order=0, output=None, mode='reflect', cval=0.0,
truncate=4.0)

Multi-dimensional Gaussian filter.

Parameters
• input (cupy.ndarray) – The input array.

• sigma (scalar or sequence of scalar) – Standard deviations for each axis of Gaus-
sian kernel. A single value applies to all axes.

• order (int or sequence of scalar) – An order of 0, the default, corresponds to con-
volution with a Gaussian kernel. A positive order corresponds to convolution with that
derivative of a Gaussian. A single value applies to all axes.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

408 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.correlate1d.html#scipy.ndimage.correlate1d
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• truncate (float) – Truncate the filter at this many standard deviations. Default is 4.0.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.gaussian_filter()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.gaussian_filter1d

cupyx.scipy.ndimage.gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, mode='reflect',
cval=0.0, truncate=4.0)

One-dimensional Gaussian filter along the given axis.

The lines of the array along the given axis are filtered with a Gaussian filter of the given standard deviation.

Parameters
• input (cupy.ndarray) – The input array.

• sigma (scalar) – Standard deviation for Gaussian kernel.

• axis (int) – The axis of input along which to calculate. Default is -1.

• order (int) – An order of 0, the default, corresponds to convolution with a Gaussian kernel.
A positive order corresponds to convolution with that derivative of a Gaussian.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• truncate (float) – Truncate the filter at this many standard deviations. Default is 4.0.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.gaussian_filter1d()

5.4. Routines (SciPy) 409

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter1d.html#scipy.ndimage.gaussian_filter1d

CuPy Documentation, Release 13.0.0

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.gaussian_gradient_magnitude

cupyx.scipy.ndimage.gaussian_gradient_magnitude(input, sigma, output=None, mode='reflect', cval=0.0,
**kwargs)

Multi-dimensional gradient magnitude using Gaussian derivatives.

Parameters
• input (cupy.ndarray) – The input array.

• sigma (scalar or sequence of scalar) – Standard deviations for each axis of Gaus-
sian kernel. A single value applies to all axes.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• kwargs (dict, optional) – dict of extra keyword arguments to pass
gaussian_filter().

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.gaussian_gradient_magnitude()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.gaussian_laplace

cupyx.scipy.ndimage.gaussian_laplace(input, sigma, output=None, mode='reflect', cval=0.0, **kwargs)
Multi-dimensional Laplace filter using Gaussian second derivatives.

Parameters
• input (cupy.ndarray) – The input array.

• sigma (scalar or sequence of scalar) – Standard deviations for each axis of Gaus-
sian kernel. A single value applies to all axes.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

410 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_gradient_magnitude.html#scipy.ndimage.gaussian_gradient_magnitude

CuPy Documentation, Release 13.0.0

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• kwargs (dict, optional) – dict of extra keyword arguments to pass
gaussian_filter().

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.gaussian_laplace()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.generic_filter

cupyx.scipy.ndimage.generic_filter(input, function, size=None, footprint=None, output=None,
mode='reflect', cval=0.0, origin=0)

Compute a multi-dimensional filter using the provided raw kernel or reduction kernel.

Unlike the scipy.ndimage function, this does not support the extra_arguments or extra_keywordsdict ar-
guments and has significant restrictions on the function provided.

Parameters
• input (cupy.ndarray) – The input array.

• function (cupy.ReductionKernel or cupy.RawKernel) – The kernel or function to
apply to each region.

• size (int or sequence of int) – One of size or footprint must be provided. If
footprint is given, size is ignored. Otherwise footprint = cupy.ones(size) with
size automatically made to match the number of dimensions in input.

• footprint (cupy.ndarray) – a boolean array which specifies which of the elements within
this shape will get passed to the filter function.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• origin (scalar or tuple of scalar) – The origin parameter controls the placement
of the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of the filtering.

5.4. Routines (SciPy) 411

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_laplace.html#scipy.ndimage.gaussian_laplace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

Note: If the function is a cupy.RawKernel then it must be for a function that has the following signature.
Unlike most functions, this should not utilize blockDim/blockIdx/threadIdx:

__global__ void func(double *buffer, int filter_size,
double *return_value)

If the function is a cupy.ReductionKernel then it must be for a kernel that takes 1 array input and produces 1
‘scalar’ output.

See also:
scipy.ndimage.generic_filter()

cupyx.scipy.ndimage.generic_filter1d

cupyx.scipy.ndimage.generic_filter1d(input, function, filter_size, axis=-1, output=None, mode='reflect',
cval=0.0, origin=0)

Compute a 1D filter along the given axis using the provided raw kernel.

Unlike the scipy.ndimage function, this does not support the extra_arguments or extra_keywordsdict ar-
guments and has significant restrictions on the function provided.

Parameters
• input (cupy.ndarray) – The input array.

• function (cupy.RawKernel) – The kernel to apply along each axis.

• filter_size (int) – Length of the filter.

• axis (int) – The axis of input along which to calculate. Default is -1.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• origin (int) – The origin parameter controls the placement of the filter, relative to the
center of the current element of the input. Default is 0.

Returns
The result of the filtering.

Return type
cupy.ndarray

Note: The provided function (as a RawKernel) must have the following signature. Unlike most functions, this
should not utilize blockDim/blockIdx/threadIdx:

__global__ void func(double *input_line, ptrdiff_t input_length,
double *output_line, ptrdiff_t output_length)

412 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html#scipy.ndimage.generic_filter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

See also:
scipy.ndimage.generic_filter1d()

cupyx.scipy.ndimage.generic_gradient_magnitude

cupyx.scipy.ndimage.generic_gradient_magnitude(input, derivative, output=None, mode='reflect',
cval=0.0, extra_arguments=(), extra_keywords=None)

Multi-dimensional gradient magnitude filter using a provided derivative function.

Parameters
• input (cupy.ndarray) – The input array.

• derivative (callable) – Function or other callable with the following signature that is
called once per axis:

derivative(input, axis, output, mode, cval,
*extra_arguments, **extra_keywords)

where input and output are cupy.ndarray, axis is an int from 0 to the number of
dimensions, and mode, cval, extra_arguments, extra_keywords are the values given to
this function.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• extra_arguments (sequence, optional) – Sequence of extra positional arguments to
pass to derivative2.

• extra_keywords (dict, optional) – dict of extra keyword arguments to pass
derivative2.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.generic_gradient_magnitude()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

5.4. Routines (SciPy) 413

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter1d.html#scipy.ndimage.generic_filter1d
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_gradient_magnitude.html#scipy.ndimage.generic_gradient_magnitude

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.generic_laplace

cupyx.scipy.ndimage.generic_laplace(input, derivative2, output=None, mode='reflect', cval=0.0,
extra_arguments=(), extra_keywords=None)

Multi-dimensional Laplace filter using a provided second derivative function.

Parameters
• input (cupy.ndarray) – The input array.

• derivative2 (callable) – Function or other callable with the following signature that is
called once per axis:

derivative2(input, axis, output, mode, cval,
*extra_arguments, **extra_keywords)

where input and output are cupy.ndarray, axis is an int from 0 to the number of
dimensions, and mode, cval, extra_arguments, extra_keywords are the values given to
this function.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• extra_arguments (sequence, optional) – Sequence of extra positional arguments to
pass to derivative2.

• extra_keywords (dict, optional) – dict of extra keyword arguments to pass
derivative2.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.generic_laplace()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.laplace

cupyx.scipy.ndimage.laplace(input, output=None, mode='reflect', cval=0.0)
Multi-dimensional Laplace filter based on approximate second derivatives.

Parameters
• input (cupy.ndarray) – The input array.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

414 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_laplace.html#scipy.ndimage.generic_laplace

CuPy Documentation, Release 13.0.0

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.laplace()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.maximum_filter

cupyx.scipy.ndimage.maximum_filter(input, size=None, footprint=None, output=None, mode='reflect',
cval=0.0, origin=0)

Multi-dimensional maximum filter.

Parameters
• input (cupy.ndarray) – The input array.

• size (int or sequence of int) – One of size or footprint must be provided. If
footprint is given, size is ignored. Otherwise footprint = cupy.ones(size) with
size automatically made to match the number of dimensions in input.

• footprint (cupy.ndarray) – a boolean array which specifies which of the elements within
this shape will get passed to the filter function.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• origin (int or sequence of int) – The origin parameter controls the placement of
the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.maximum_filter()

5.4. Routines (SciPy) 415

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.laplace.html#scipy.ndimage.laplace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_filter.html#scipy.ndimage.maximum_filter

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.maximum_filter1d

cupyx.scipy.ndimage.maximum_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0,
origin=0)

Compute the maximum filter along a single axis.

Parameters
• input (cupy.ndarray) – The input array.

• size (int) – Length of the maximum filter.

• axis (int) – The axis of input along which to calculate. Default is -1.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• origin (int) – The origin parameter controls the placement of the filter, relative to the
center of the current element of the input. Default is 0.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.maximum_filter1d()

cupyx.scipy.ndimage.median_filter

cupyx.scipy.ndimage.median_filter(input, size=None, footprint=None, output=None, mode='reflect',
cval=0.0, origin=0)

Multi-dimensional median filter.

Parameters
• input (cupy.ndarray) – The input array.

• size (int or sequence of int) – One of size or footprint must be provided. If
footprint is given, size is ignored. Otherwise footprint = cupy.ones(size) with
size automatically made to match the number of dimensions in input.

• footprint (cupy.ndarray) – a boolean array which specifies which of the elements within
this shape will get passed to the filter function.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

416 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_filter1d.html#scipy.ndimage.maximum_filter1d
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• origin (int or sequence of int) – The origin parameter controls the placement of
the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.median_filter()

cupyx.scipy.ndimage.minimum_filter

cupyx.scipy.ndimage.minimum_filter(input, size=None, footprint=None, output=None, mode='reflect',
cval=0.0, origin=0)

Multi-dimensional minimum filter.

Parameters
• input (cupy.ndarray) – The input array.

• size (int or sequence of int) – One of size or footprint must be provided. If
footprint is given, size is ignored. Otherwise footprint = cupy.ones(size) with
size automatically made to match the number of dimensions in input.

• footprint (cupy.ndarray) – a boolean array which specifies which of the elements within
this shape will get passed to the filter function.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• origin (int or sequence of int) – The origin parameter controls the placement of
the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.minimum_filter()

5.4. Routines (SciPy) 417

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_filter.html#scipy.ndimage.minimum_filter

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.minimum_filter1d

cupyx.scipy.ndimage.minimum_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0,
origin=0)

Compute the minimum filter along a single axis.

Parameters
• input (cupy.ndarray) – The input array.

• size (int) – Length of the minimum filter.

• axis (int) – The axis of input along which to calculate. Default is -1.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• origin (int) – The origin parameter controls the placement of the filter, relative to the
center of the current element of the input. Default is 0.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.minimum_filter1d()

cupyx.scipy.ndimage.percentile_filter

cupyx.scipy.ndimage.percentile_filter(input, percentile, size=None, footprint=None, output=None,
mode='reflect', cval=0.0, origin=0)

Multi-dimensional percentile filter.

Parameters
• input (cupy.ndarray) – The input array.

• percentile (scalar) – The percentile of the element to get (from 0 to 100). Can be
negative, thus -20 equals 80.

• size (int or sequence of int) – One of size or footprint must be provided. If
footprint is given, size is ignored. Otherwise footprint = cupy.ones(size) with
size automatically made to match the number of dimensions in input.

• footprint (cupy.ndarray) – a boolean array which specifies which of the elements within
this shape will get passed to the filter function.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

418 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_filter1d.html#scipy.ndimage.minimum_filter1d
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• origin (int or sequence of int) – The origin parameter controls the placement of
the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.percentile_filter()

cupyx.scipy.ndimage.prewitt

cupyx.scipy.ndimage.prewitt(input, axis=-1, output=None, mode='reflect', cval=0.0)
Compute a Prewitt filter along the given axis.

Parameters
• input (cupy.ndarray) – The input array.

• axis (int) – The axis of input along which to calculate. Default is -1.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.prewitt()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.rank_filter

cupyx.scipy.ndimage.rank_filter(input, rank, size=None, footprint=None, output=None, mode='reflect',
cval=0.0, origin=0)

Multi-dimensional rank filter.

Parameters
• input (cupy.ndarray) – The input array.

• rank (int) – The rank of the element to get. Can be negative to count from the largest value,
e.g. -1 indicates the largest value.

5.4. Routines (SciPy) 419

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.percentile_filter.html#scipy.ndimage.percentile_filter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.prewitt.html#scipy.ndimage.prewitt
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• size (int or sequence of int) – One of size or footprint must be provided. If
footprint is given, size is ignored. Otherwise footprint = cupy.ones(size) with
size automatically made to match the number of dimensions in input.

• footprint (cupy.ndarray) – a boolean array which specifies which of the elements within
this shape will get passed to the filter function.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• origin (int or sequence of int) – The origin parameter controls the placement of
the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.rank_filter()

cupyx.scipy.ndimage.sobel

cupyx.scipy.ndimage.sobel(input, axis=-1, output=None, mode='reflect', cval=0.0)
Compute a Sobel filter along the given axis.

Parameters
• input (cupy.ndarray) – The input array.

• axis (int) – The axis of input along which to calculate. Default is -1.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.sobel()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

420 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.rank_filter.html#scipy.ndimage.rank_filter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.sobel.html#scipy.ndimage.sobel

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.uniform_filter

cupyx.scipy.ndimage.uniform_filter(input, size=3, output=None, mode='reflect', cval=0.0, origin=0)
Multi-dimensional uniform filter.

Parameters
• input (cupy.ndarray) – The input array.

• size (int or sequence of int) – Lengths of the uniform filter for each dimension. A
single value applies to all axes.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

• origin (int or sequence of int) – The origin parameter controls the placement of
the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.uniform_filter()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

cupyx.scipy.ndimage.uniform_filter1d

cupyx.scipy.ndimage.uniform_filter1d(input, size, axis=-1, output=None, mode='reflect', cval=0.0,
origin=0)

One-dimensional uniform filter along the given axis.

The lines of the array along the given axis are filtered with a uniform filter of the given size.

Parameters
• input (cupy.ndarray) – The input array.

• size (int) – Length of the uniform filter.

• axis (int) – The axis of input along which to calculate. Default is -1.

• output (cupy.ndarray, dtype or None) – The array in which to place the output. De-
fault is is same dtype as the input.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is 'constant'. Default is 0.0.

5.4. Routines (SciPy) 421

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter.html#scipy.ndimage.uniform_filter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• origin (int) – The origin parameter controls the placement of the filter, relative to the
center of the current element of the input. Default is 0.

Returns
The result of the filtering.

Return type
cupy.ndarray

See also:
scipy.ndimage.uniform_filter1d()

Note: When the output data type is integral (or when no output is provided and input is integral) the results may
not perfectly match the results from SciPy due to floating-point rounding of intermediate results.

Fourier filters

fourier_ellipsoid(input, size[, n, axis, output]) Multidimensional ellipsoid Fourier filter.
fourier_gaussian(input, sigma[, n, axis, output]) Multidimensional Gaussian shift filter.
fourier_shift(input, shift[, n, axis, output]) Multidimensional Fourier shift filter.
fourier_uniform(input, size[, n, axis, output]) Multidimensional uniform shift filter.

cupyx.scipy.ndimage.fourier_ellipsoid

cupyx.scipy.ndimage.fourier_ellipsoid(input, size, n=-1, axis=-1, output=None)
Multidimensional ellipsoid Fourier filter.

The array is multiplied with the fourier transform of a ellipsoid of given sizes.

Parameters
• input (cupy.ndarray) – The input array.

• size (float or sequence of float) – The size of the box used for filtering. If a float,
size is the same for all axes. If a sequence, size has to contain one value for each axis.

• n (int, optional) – If n is negative (default), then the input is assumed to be the result
of a complex fft. If n is larger than or equal to zero, the input is assumed to be the result of
a real fft, and n gives the length of the array before transformation along the real transform
direction.

• axis (int, optional) – The axis of the real transform (only used when n > -1).

• output (cupy.ndarray, optional) – If given, the result of shifting the input is placed in
this array.

Returns
The filtered output.

Return type
output (cupy.ndarray)

422 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter1d.html#scipy.ndimage.uniform_filter1d
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.fourier_gaussian

cupyx.scipy.ndimage.fourier_gaussian(input, sigma, n=-1, axis=-1, output=None)
Multidimensional Gaussian shift filter.

The array is multiplied with the Fourier transform of a (separable) Gaussian kernel.

Parameters
• input (cupy.ndarray) – The input array.

• sigma (float or sequence of float) – The sigma of the Gaussian kernel. If a float,
sigma is the same for all axes. If a sequence, sigma has to contain one value for each axis.

• n (int, optional) – If n is negative (default), then the input is assumed to be the result
of a complex fft. If n is larger than or equal to zero, the input is assumed to be the result of
a real fft, and n gives the length of the array before transformation along the real transform
direction.

• axis (int, optional) – The axis of the real transform (only used when n > -1).

• output (cupy.ndarray, optional) – If given, the result of shifting the input is placed in
this array.

Returns
The filtered output.

Return type
output (cupy.ndarray)

cupyx.scipy.ndimage.fourier_shift

cupyx.scipy.ndimage.fourier_shift(input, shift, n=-1, axis=-1, output=None)
Multidimensional Fourier shift filter.

The array is multiplied with the Fourier transform of a shift operation.

Parameters
• input (cupy.ndarray) – The input array. This should be in the Fourier domain.

• shift (float or sequence of float) – The size of shift. If a float, shift is the same
for all axes. If a sequence, shift has to contain one value for each axis.

• n (int, optional) – If n is negative (default), then the input is assumed to be the result
of a complex fft. If n is larger than or equal to zero, the input is assumed to be the result of
a real fft, and n gives the length of the array before transformation along the real transform
direction.

• axis (int, optional) – The axis of the real transform (only used when n > -1).

• output (cupy.ndarray, optional) – If given, the result of shifting the input is placed in
this array.

Returns
The shifted output (in the Fourier domain).

Return type
output (cupy.ndarray)

5.4. Routines (SciPy) 423

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.fourier_uniform

cupyx.scipy.ndimage.fourier_uniform(input, size, n=-1, axis=-1, output=None)
Multidimensional uniform shift filter.

The array is multiplied with the Fourier transform of a box of given size.

Parameters
• input (cupy.ndarray) – The input array.

• size (float or sequence of float) – The sigma of the box used for filtering. If a
float, size is the same for all axes. If a sequence, size has to contain one value for each axis.

• n (int, optional) – If n is negative (default), then the input is assumed to be the result
of a complex fft. If n is larger than or equal to zero, the input is assumed to be the result of
a real fft, and n gives the length of the array before transformation along the real transform
direction.

• axis (int, optional) – The axis of the real transform (only used when n > -1).

• output (cupy.ndarray, optional) – If given, the result of shifting the input is placed in
this array.

Returns
The filtered output.

Return type
output (cupy.ndarray)

Interpolation

affine_transform(input, matrix[, offset, ...]) Apply an affine transformation.
map_coordinates(input, coordinates[, ...]) Map the input array to new coordinates by interpolation.
rotate(input, angle[, axes, reshape, ...]) Rotate an array.
shift(input, shift[, output, order, mode, ...]) Shift an array.
spline_filter(input[, order, output, mode]) Multidimensional spline filter.
spline_filter1d(input[, order, axis, ...]) Calculate a 1-D spline filter along the given axis.
zoom(input, zoom[, output, order, mode, ...]) Zoom an array.

cupyx.scipy.ndimage.affine_transform

cupyx.scipy.ndimage.affine_transform(input, matrix, offset=0.0, output_shape=None, output=None,
order=3, mode='constant', cval=0.0, prefilter=True, *,
texture_memory=False)

Apply an affine transformation.

Given an output image pixel index vector o, the pixel value is determined from the input image at position cupy.
dot(matrix, o) + offset.

Parameters
• input (cupy.ndarray) – The input array.

• matrix (cupy.ndarray) – The inverse coordinate transformation matrix, mapping output
coordinates to input coordinates. If ndim is the number of dimensions of input, the given
matrix must have one of the following shapes:

424 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

– (ndim, ndim): the linear transformation matrix for each output coordinate.

– (ndim,): assume that the 2D transformation matrix is diagonal, with the diagonal speci-
fied by the given value.

– (ndim + 1, ndim + 1): assume that the transformation is specified using homoge-
neous coordinates. In this case, any value passed to offset is ignored.

– (ndim, ndim + 1): as above, but the bottom row of a homogeneous transformation
matrix is always [0, 0, ..., 1], and may be omitted.

• offset (float or sequence) – The offset into the array where the transform is applied.
If a float, offset is the same for each axis. If a sequence, offset should contain one value
for each axis.

• output_shape (tuple of ints) – Shape tuple.

• output (cupy.ndarray or dtype) – The array in which to place the output, or the dtype
of the returned array.

• order (int) – The order of the spline interpolation, default is 3. Must be in the range 0-5.

• mode (str) – Points outside the boundaries of the input are filled according to the
given mode ('constant', 'nearest', 'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

• cval (scalar) – Value used for points outside the boundaries of the input if
mode='constant' or mode='opencv'. Default is 0.0

• prefilter (bool) – Determines if the input array is prefiltered with spline_filter before
interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order >
1, unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original
input.

• texture_memory (bool) – If True, uses GPU texture memory. Supports only:

– 2D and 3D float32 arrays as input

– (ndim + 1, ndim + 1) homogeneous float32 transformation
matrix

– mode='constant' and mode='nearest'

– order=0 (nearest neighbor) and order=1 (linear
interpolation)

– NVIDIA CUDA GPUs

Returns
The transformed input. If output is given as a parameter, None is returned.

Return type
cupy.ndarray or None

See also:
scipy.ndimage.affine_transform()

5.4. Routines (SciPy) 425

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.affine_transform.html#scipy.ndimage.affine_transform

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.map_coordinates

cupyx.scipy.ndimage.map_coordinates(input, coordinates, output=None, order=3, mode='constant',
cval=0.0, prefilter=True)

Map the input array to new coordinates by interpolation.

The array of coordinates is used to find, for each point in the output, the corresponding coordinates in the input.
The value of the input at those coordinates is determined by spline interpolation of the requested order.

The shape of the output is derived from that of the coordinate array by dropping the first axis. The values of the
array along the first axis are the coordinates in the input array at which the output value is found.

Parameters
• input (cupy.ndarray) – The input array.

• coordinates (array_like) – The coordinates at which input is evaluated.

• output (cupy.ndarray or dtype) – The array in which to place the output, or the dtype
of the returned array.

• order (int) – The order of the spline interpolation, default is 3. Must be in the range 0-5.

• mode (str) – Points outside the boundaries of the input are filled according to the
given mode ('constant', 'nearest', 'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

• cval (scalar) – Value used for points outside the boundaries of the input if
mode='constant' or mode='opencv'. Default is 0.0

• prefilter (bool) – Determines if the input array is prefiltered with spline_filter before
interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order >
1, unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original
input.

Returns
The result of transforming the input. The shape of the output is derived from that of
coordinates by dropping the first axis.

Return type
cupy.ndarray

See also:
scipy.ndimage.map_coordinates()

cupyx.scipy.ndimage.rotate

cupyx.scipy.ndimage.rotate(input, angle, axes=(1, 0), reshape=True, output=None, order=3,
mode='constant', cval=0.0, prefilter=True)

Rotate an array.

The array is rotated in the plane defined by the two axes given by the axes parameter using spline interpolation
of the requested order.

Parameters
• input (cupy.ndarray) – The input array.

• angle (float) – The rotation angle in degrees.

426 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• axes (tuple of 2 ints) – The two axes that define the plane of rotation. Default is the
first two axes.

• reshape (bool) – If reshape is True, the output shape is adapted so that the input array is
contained completely in the output. Default is True.

• output (cupy.ndarray or dtype) – The array in which to place the output, or the dtype
of the returned array.

• order (int) – The order of the spline interpolation, default is 3. Must be in the range 0-5.

• mode (str) – Points outside the boundaries of the input are filled according to the
given mode ('constant', 'nearest', 'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

• cval (scalar) – Value used for points outside the boundaries of the input if
mode='constant' or mode='opencv'. Default is 0.0

• prefilter (bool) – Determines if the input array is prefiltered with spline_filter before
interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order >
1, unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original
input.

Returns
The rotated input.

Return type
cupy.ndarray or None

See also:
scipy.ndimage.rotate()

cupyx.scipy.ndimage.shift

cupyx.scipy.ndimage.shift(input, shift, output=None, order=3, mode='constant', cval=0.0, prefilter=True)
Shift an array.

The array is shifted using spline interpolation of the requested order. Points outside the boundaries of the input
are filled according to the given mode.

Parameters
• input (cupy.ndarray) – The input array.

• shift (float or sequence) – The shift along the axes. If a float, shift is the same for
each axis. If a sequence, shift should contain one value for each axis.

• output (cupy.ndarray or dtype) – The array in which to place the output, or the dtype
of the returned array.

• order (int) – The order of the spline interpolation, default is 3. Must be in the range 0-5.

• mode (str) – Points outside the boundaries of the input are filled according to the
given mode ('constant', 'nearest', 'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

• cval (scalar) – Value used for points outside the boundaries of the input if
mode='constant' or mode='opencv'. Default is 0.0

5.4. Routines (SciPy) 427

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.rotate.html#scipy.ndimage.rotate
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• prefilter (bool) – Determines if the input array is prefiltered with spline_filter before
interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order >
1, unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original
input.

Returns
The shifted input.

Return type
cupy.ndarray or None

See also:
scipy.ndimage.shift()

cupyx.scipy.ndimage.spline_filter

cupyx.scipy.ndimage.spline_filter(input, order=3, output=<class 'numpy.float64'>, mode='mirror')
Multidimensional spline filter.

Parameters
• input (cupy.ndarray) – The input array.

• order (int) – The order of the spline interpolation, default is 3. Must be in the range 0-5.

• output (cupy.ndarray or dtype, optional) – The array in which to place the output,
or the dtype of the returned array. Default is numpy.float64.

• mode (str) – Points outside the boundaries of the input are filled according to the
given mode ('constant', 'nearest', 'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

Returns
The result of prefiltering the input.

Return type
cupy.ndarray

See also:
scipy.spline_filter1d()

cupyx.scipy.ndimage.spline_filter1d

cupyx.scipy.ndimage.spline_filter1d(input, order=3, axis=-1, output=<class 'numpy.float64'>,
mode='mirror')

Calculate a 1-D spline filter along the given axis.

The lines of the array along the given axis are filtered by a spline filter. The order of the spline must be >= 2 and
<= 5.

Parameters
• input (cupy.ndarray) – The input array.

• order (int) – The order of the spline interpolation, default is 3. Must be in the range 0-5.

• axis (int) – The axis along which the spline filter is applied. Default is the last axis.

428 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.shift.html#scipy.ndimage.shift
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• output (cupy.ndarray or dtype, optional) – The array in which to place the output,
or the dtype of the returned array. Default is numpy.float64.

• mode (str) – Points outside the boundaries of the input are filled according to the
given mode ('constant', 'nearest', 'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

Returns
The result of prefiltering the input.

Return type
cupy.ndarray

See also:
scipy.spline_filter1d()

cupyx.scipy.ndimage.zoom

cupyx.scipy.ndimage.zoom(input, zoom, output=None, order=3, mode='constant', cval=0.0, prefilter=True, *,
grid_mode=False)

Zoom an array.

The array is zoomed using spline interpolation of the requested order.

Parameters
• input (cupy.ndarray) – The input array.

• zoom (float or sequence) – The zoom factor along the axes. If a float, zoom is the same
for each axis. If a sequence, zoom should contain one value for each axis.

• output (cupy.ndarray or dtype) – The array in which to place the output, or the dtype
of the returned array.

• order (int) – The order of the spline interpolation, default is 3. Must be in the range 0-5.

• mode (str) – Points outside the boundaries of the input are filled according to the
given mode ('constant', 'nearest', 'mirror', 'reflect', 'wrap', 'grid-mirror',
'grid-wrap', 'grid-constant' or 'opencv').

• cval (scalar) – Value used for points outside the boundaries of the input if
mode='constant' or mode='opencv'. Default is 0.0

• prefilter (bool) – Determines if the input array is prefiltered with spline_filter before
interpolation. The default is True, which will create a temporary float64 array of filtered
values if order > 1. If setting this to False, the output will be slightly blurred if order >
1, unless the input is prefiltered, i.e. it is the result of calling spline_filter on the original
input.

• grid_mode (bool, optional) – If False, the distance from the pixel centers is zoomed.
Otherwise, the distance including the full pixel extent is used. For example, a 1d signal
of length 5 is considered to have length 4 when grid_mode is False, but length 5 when
grid_mode is True. See the following visual illustration:

| pixel 1 | pixel 2 | pixel 3 | pixel 4 | pixel 5 |
|<-------------------------------------->|

vs.
|<--->|

5.4. Routines (SciPy) 429

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

The starting point of the arrow in the diagram above corresponds to coordinate location 0 in
each mode.

Returns
The zoomed input.

Return type
cupy.ndarray or None

See also:
scipy.ndimage.zoom()

Measurements

center_of_mass(input[, labels, index]) Calculate the center of mass of the values of an array at
labels.

extrema(input[, labels, index]) Calculate the minimums and maximums of the values of
an array at labels, along with their positions.

histogram(input, min, max, bins[, labels, index]) Calculate the histogram of the values of an array, option-
ally at labels.

label(input[, structure, output]) Labels features in an array.
labeled_comprehension(input, labels, index, ...) Array resulting from applying func to each labeled re-

gion.
maximum(input[, labels, index]) Calculate the maximum of the values of an array over

labeled regions.
maximum_position(input[, labels, index]) Find the positions of the maximums of the values of an

array at labels.
mean(input[, labels, index]) Calculates the mean of the values of an n-D image array,

optionally
median(input[, labels, index]) Calculate the median of the values of an array over la-

beled regions.
minimum(input[, labels, index]) Calculate the minimum of the values of an array over

labeled regions.
minimum_position(input[, labels, index]) Find the positions of the minimums of the values of an

array at labels.
standard_deviation(input[, labels, index]) Calculates the standard deviation of the values of an n-D

image array, optionally at specified sub-regions.
sum_labels(input[, labels, index]) Calculates the sum of the values of an n-D image array,

optionally
value_indices(arr, *[, ignore_value, ...]) Find indices of each distinct value in given array.
variance(input[, labels, index]) Calculates the variance of the values of an n-D image

array, optionally at specified sub-regions.

430 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html#scipy.ndimage.zoom

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.center_of_mass

cupyx.scipy.ndimage.center_of_mass(input, labels=None, index=None)
Calculate the center of mass of the values of an array at labels.

Parameters
• input (cupy.ndarray) – Data from which to calculate center-of-mass. The masses can

either be positive or negative.

• labels (cupy.ndarray, optional) – Labels for objects in input, as enerated by ndim-
age.label. Only used with index. Dimensions must be the same as input.

• index (int or sequence of ints, optional) – Labels for which to calculate centers-
of-mass. If not specified, all labels greater than zero are used. Only used with labels.

Returns
Coordinates of centers-of-mass.

Return type
tuple or list of tuples

See also:
scipy.ndimage.center_of_mass()

cupyx.scipy.ndimage.extrema

cupyx.scipy.ndimage.extrema(input, labels=None, index=None)
Calculate the minimums and maximums of the values of an array at labels, along with their positions.

Parameters
• input (cupy.ndarray) – N-D image data to process.

• labels (cupy.ndarray, optional) – Labels of features in input. If not None, must be
same shape as input.

• index (int or sequence of ints, optional) – Labels to include in output. If None
(default), all values where non-zero labels are used.

Returns
A tuple that contains the following values.

minimums (cupy.ndarray): Values of minimums in each feature.

maximums (cupy.ndarray): Values of maximums in each feature.

min_positions (tuple or list of tuples): Each tuple gives the N-D coordinates of the correspond-
ing minimum.

max_positions (tuple or list of tuples): Each tuple gives the N-D coordinates of the correspond-
ing maximum.

See also:
scipy.ndimage.extrema()

5.4. Routines (SciPy) 431

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.center_of_mass.html#scipy.ndimage.center_of_mass
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.extrema.html#scipy.ndimage.extrema

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.histogram

cupyx.scipy.ndimage.histogram(input, min, max, bins, labels=None, index=None)
Calculate the histogram of the values of an array, optionally at labels.

Histogram calculates the frequency of values in an array within bins determined by min, max, and bins. The
labels and index keywords can limit the scope of the histogram to specified sub-regions within the array.

Parameters
• input (cupy.ndarray) – Data for which to calculate histogram.

• min (int) – Minimum values of range of histogram bins.

• max (int) – Maximum values of range of histogram bins.

• bins (int) – Number of bins.

• labels (cupy.ndarray, optional) – Labels for objects in input. If not None, must be
same shape as input.

• index (int or sequence of ints, optional) – Label or labels for which to calculate
histogram. If None, all values where label is greater than zero are used.

Returns
Histogram counts.

Return type
cupy.ndarray

See also:
scipy.ndimage.histogram()

cupyx.scipy.ndimage.label

cupyx.scipy.ndimage.label(input, structure=None, output=None)
Labels features in an array.

Parameters
• input (cupy.ndarray) – The input array.

• structure (array_like or None) – A structuring element that defines feature connec-
tions. `structure`must be centersymmetric. If None, structure is automatically generated
with a squared connectivity equal to one.

• output (cupy.ndarray, dtype or None) – The array in which to place the output.

Returns
An integer array where each unique feature in `input` has a unique label in the array.

num_features (int): Number of features found.

Return type
label (cupy.ndarray)

Warning: This function may synchronize the device.

432 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.histogram.html#scipy.ndimage.histogram

CuPy Documentation, Release 13.0.0

See also:
scipy.ndimage.label()

cupyx.scipy.ndimage.labeled_comprehension

cupyx.scipy.ndimage.labeled_comprehension(input, labels, index, func, out_dtype, default,
pass_positions=False)

Array resulting from applying func to each labeled region.

Roughly equivalent to [func(input[labels == i]) for i in index].

Sequentially applies an arbitrary function (that works on array_like input) to subsets of an N-D image array
specified by labels and index. The option exists to provide the function with positional parameters as the second
argument.

Parameters
• input (cupy.ndarray) – Data from which to select labels to process.

• labels (cupy.ndarray or None) – Labels to objects in input. If not None, array must be
same shape as input. If None, func is applied to raveled input.

• index (int, sequence of ints or None) – Subset of labels to which to apply func. If
a scalar, a single value is returned. If None, func is applied to all non-zero values of labels.

• func (callable) – Python function to apply to labels from input.

• out_dtype (dtype) – Dtype to use for result.

• default (int, float or None) – Default return value when a element of index does not
exist in labels.

• pass_positions (bool, optional) – If True, pass linear indices to func as a second
argument.

Returns
Result of applying func to each of labels to input in index.

Return type
cupy.ndarray

See also:
scipy.ndimage.labeled_comprehension()

cupyx.scipy.ndimage.maximum

cupyx.scipy.ndimage.maximum(input, labels=None, index=None)
Calculate the maximum of the values of an array over labeled regions.

Parameters
• input (cupy.ndarray) – Array of values. For each region specified by labels, the maximal

values of input over the region is computed.

• labels (cupy.ndarray, optional) – An array of integers marking different regions over
which the maximum value of input is to be computed. labels must have the same shape as
input. If labels is not specified, the maximum over the whole array is returned.

5.4. Routines (SciPy) 433

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.label.html#scipy.ndimage.label
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.labeled_comprehension.html#scipy.ndimage.labeled_comprehension

CuPy Documentation, Release 13.0.0

• index (array_like, optional) – A list of region labels that are taken into account for
computing the maxima. If index is None, the maximum over all elements where labels is
non-zero is returned.

Returns
Array of maxima of input over the regions determaxed by labels and whose index is in index. If
index or labels are not specified, a 0-dimensional cupy.ndarray is returned: the maximal value
of input if labels is None, and the maximal value of elements where labels is greater than zero if
index is None.

Return type
cupy.ndarray

See also:
scipy.ndimage.maximum()

cupyx.scipy.ndimage.maximum_position

cupyx.scipy.ndimage.maximum_position(input, labels=None, index=None)
Find the positions of the maximums of the values of an array at labels.

For each region specified by labels, the position of the maximum value of input within the region is returned.

Parameters
• input (cupy.ndarray) – Array of values. For each region specified by labels, the maximal

values of input over the region is computed.

• labels (cupy.ndarray, optional) – An array of integers marking different regions over
which the position of the maximum value of input is to be computed. labels must have the
same shape as input. If labels is not specified, the location of the first maximum over the
whole array is returned.

The labels argument only works when index is specified.

• index (array_like, optional) – A list of region labels that are taken into account for
finding the location of the maxima. If index is None, the first maximum over all elements
where labels is non-zero is returned.

The index argument only works when labels is specified.

Returns
Tuple of ints or list of tuples of ints that specify the location of maxima of input over the regions
determaxed by labels and whose index is in index.

If index or labels are not specified, a tuple of ints is returned specifying the location of the first
maximal value of input.

Note: When input has multiple identical maxima within a labeled region, the coordinates returned are not
guaranteed to match those returned by SciPy.

See also:
scipy.ndimage.maximum_position()

434 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum.html#scipy.ndimage.maximum
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_position.html#scipy.ndimage.maximum_position

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.mean

cupyx.scipy.ndimage.mean(input, labels=None, index=None)

Calculates the mean of the values of an n-D image array, optionally
at specified sub-regions.

Parameters
• input (cupy.ndarray) – Nd-image data to process.

• labels (cupy.ndarray or None) – Labels defining sub-regions in input. If not None,
must be same shape as input.

• index (cupy.ndarray or None) – labels to include in output. If None (default), all values
where labels is non-zero are used.

Returns
mean of values, for each sub-region if labels and index are specified.

Return type
mean (cupy.ndarray)

See also:
scipy.ndimage.mean()

cupyx.scipy.ndimage.median

cupyx.scipy.ndimage.median(input, labels=None, index=None)
Calculate the median of the values of an array over labeled regions.

Parameters
• input (cupy.ndarray) – Array of values. For each region specified by labels, the median

values of input over the region is computed.

• labels (cupy.ndarray, optional) – An array of integers marking different regions over
which the median value of input is to be computed. labels must have the same shape as input.
If labels is not specified, the median over the whole array is returned.

• index (array_like, optional) – A list of region labels that are taken into account for
computing the medians. If index is None, the median over all elements where labels is non-
zero is returned.

Returns
Array of medians of input over the regions determined by labels and whose index is in index.
If index or labels are not specified, a 0-dimensional cupy.ndarray is returned: the median value
of input if labels is None, and the median value of elements where labels is greater than zero if
index is None.

Return type
cupy.ndarray

See also:
scipy.ndimage.median()

5.4. Routines (SciPy) 435

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.mean.html#scipy.ndimage.mean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median.html#scipy.ndimage.median

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.minimum

cupyx.scipy.ndimage.minimum(input, labels=None, index=None)
Calculate the minimum of the values of an array over labeled regions.

Parameters
• input (cupy.ndarray) – Array of values. For each region specified by labels, the minimal

values of input over the region is computed.

• labels (cupy.ndarray, optional) – An array of integers marking different regions over
which the minimum value of input is to be computed. labels must have the same shape as
input. If labels is not specified, the minimum over the whole array is returned.

• index (array_like, optional) – A list of region labels that are taken into account for
computing the minima. If index is None, the minimum over all elements where labels is
non-zero is returned.

Returns
Array of minima of input over the regions determined by labels and whose index is in index. If
index or labels are not specified, a 0-dimensional cupy.ndarray is returned: the minimal value of
input if labels is None, and the minimal value of elements where labels is greater than zero if
index is None.

Return type
cupy.ndarray

See also:
scipy.ndimage.minimum()

cupyx.scipy.ndimage.minimum_position

cupyx.scipy.ndimage.minimum_position(input, labels=None, index=None)
Find the positions of the minimums of the values of an array at labels.

For each region specified by labels, the position of the minimum value of input within the region is returned.

Parameters
• input (cupy.ndarray) – Array of values. For each region specified by labels, the minimal

values of input over the region is computed.

• labels (cupy.ndarray, optional) – An array of integers marking different regions over
which the position of the minimum value of input is to be computed. labels must have the
same shape as input. If labels is not specified, the location of the first minimum over the
whole array is returned.

The labels argument only works when index is specified.

• index (array_like, optional) – A list of region labels that are taken into account for
finding the location of the minima. If index is None, the first minimum over all elements
where labels is non-zero is returned.

The index argument only works when labels is specified.

Returns
Tuple of ints or list of tuples of ints that specify the location of minima of input over the regions
determined by labels and whose index is in index.

436 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum.html#scipy.ndimage.minimum

CuPy Documentation, Release 13.0.0

If index or labels are not specified, a tuple of ints is returned specifying the location of the first
minimal value of input.

Note: When input has multiple identical minima within a labeled region, the coordinates returned are not
guaranteed to match those returned by SciPy.

See also:
scipy.ndimage.minimum_position()

cupyx.scipy.ndimage.standard_deviation

cupyx.scipy.ndimage.standard_deviation(input, labels=None, index=None)
Calculates the standard deviation of the values of an n-D image array, optionally at specified sub-regions.

Parameters
• input (cupy.ndarray) – Nd-image data to process.

• labels (cupy.ndarray or None) – Labels defining sub-regions in input. If not None,
must be same shape as input.

• index (cupy.ndarray or None) – labels to include in output. If None (default), all values
where labels is non-zero are used.

Returns
standard deviation of values, for each sub-region if labels and index are specified.

Return type
standard_deviation (cupy.ndarray)

See also:
scipy.ndimage.standard_deviation()

cupyx.scipy.ndimage.sum_labels

cupyx.scipy.ndimage.sum_labels(input, labels=None, index=None)

Calculates the sum of the values of an n-D image array, optionally
at specified sub-regions.

Parameters
• input (cupy.ndarray) – Nd-image data to process.

• labels (cupy.ndarray or None) – Labels defining sub-regions in input. If not None,
must be same shape as input.

• index (cupy.ndarray or None) – labels to include in output. If None (default), all values
where labels is non-zero are used.

Returns
sum of values, for each sub-region if labels and index are specified.

Return type
sum (cupy.ndarray)

5.4. Routines (SciPy) 437

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_position.html#scipy.ndimage.minimum_position
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.standard_deviation.html#scipy.ndimage.standard_deviation

CuPy Documentation, Release 13.0.0

See also:
scipy.ndimage.sum_labels()

cupyx.scipy.ndimage.value_indices

cupyx.scipy.ndimage.value_indices(arr, *, ignore_value=None, adaptive_index_dtype=False)
Find indices of each distinct value in given array.

Parameters
• arr (ndarray of ints) – Array containing integer values.

• ignore_value (int, optional) – This value will be ignored in searching the arr array.
If not given, all values found will be included in output. Default is None.

• adaptive_index_dtype (bool, optional) – If True, instead of returning the default
CuPy signed integer dtype, the smallest signed integer dtype capable of representing the im-
age coordinate range will be used. This can substantially reduce memory usage and slightly
reduce runtime. Note that this optional parameter is not available in the SciPy API.

Returns
indices – A Python dictionary of array indices for each distinct value. The dictionary is keyed by
the distinct values, the entries are array index tuples covering all occurrences of the value within
the array.

This dictionary can occupy significant memory, often several times the size of the input array.
To help reduce memory overhead, the argument adaptive_index_dtype can be set to True.

Return type
dictionary

Notes

For a small array with few distinct values, one might use numpy.unique() to find all possible values, and (arr
== val) to locate each value within that array. However, for large arrays, with many distinct values, this can
become extremely inefficient, as locating each value would require a new search through the entire array. Using
this function, there is essentially one search, with the indices saved for all distinct values.

This is useful when matching a categorical image (e.g. a segmentation or classification) to an associated image
of other data, allowing any per-class statistic(s) to then be calculated. Provides a more flexible alternative to
functions like scipy.ndimage.mean() and scipy.ndimage.variance().

Some other closely related functionality, with different strengths and weaknesses, can also be found in scipy.
stats.binned_statistic() and the scikit-image function skimage.measure.regionprops().

Note for IDL users: this provides functionality equivalent to IDL’s REVERSE_INDICES option (as per the IDL
documentation for the HISTOGRAM function).

New in version 1.10.0.

See also:
label, maximum , median, minimum_position, extrema, sum, mean, variance, standard_deviation,
cupy.where, cupy.unique

438 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.sum_labels.html#scipy.ndimage.sum_labels
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://scikit-image.org/
https://www.l3harrisgeospatial.com/docs/histogram.html
https://docs.python.org/3/library/functions.html#sum

CuPy Documentation, Release 13.0.0

Examples

>>> import cupy
>>> from cupyx.scipy import ndimage
>>> a = cupy.zeros((6, 6), dtype=int)
>>> a[2:4, 2:4] = 1
>>> a[4, 4] = 1
>>> a[:2, :3] = 2
>>> a[0, 5] = 3
>>> a
array([[2, 2, 2, 0, 0, 3],

[2, 2, 2, 0, 0, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0]])

>>> val_indices = ndimage.value_indices(a)

The dictionary val_indices will have an entry for each distinct value in the input array.

>>> val_indices.keys()
dict_keys([0, 1, 2, 3])

The entry for each value is an index tuple, locating the elements with that value.

>>> ndx1 = val_indices[1]
>>> ndx1
(array([2, 2, 3, 3, 4]), array([2, 3, 2, 3, 4]))

This can be used to index into the original array, or any other array with the same shape.

>>> a[ndx1]
array([1, 1, 1, 1, 1])

If the zeros were to be ignored, then the resulting dictionary would no longer have an entry for zero.

>>> val_indices = ndimage.value_indices(a, ignore_value=0)
>>> val_indices.keys()
dict_keys([1, 2, 3])

cupyx.scipy.ndimage.variance

cupyx.scipy.ndimage.variance(input, labels=None, index=None)
Calculates the variance of the values of an n-D image array, optionally at specified sub-regions.

Parameters
• input (cupy.ndarray) – Nd-image data to process.

• labels (cupy.ndarray or None) – Labels defining sub-regions in input. If not None,
must be same shape as input.

• index (cupy.ndarray or None) – labels to include in output. If None (default), all values
where labels is non-zero are used.

5.4. Routines (SciPy) 439

CuPy Documentation, Release 13.0.0

Returns
Values of variance, for each sub-region if labels and index are specified.

Return type
cupy.ndarray

See also:
scipy.ndimage.variance()

Morphology

binary_closing(input[, structure, ...]) Multidimensional binary closing with the given structur-
ing element.

binary_dilation(input[, structure, ...]) Multidimensional binary dilation with the given struc-
turing element.

binary_erosion(input[, structure, ...]) Multidimensional binary erosion with a given structur-
ing element.

binary_fill_holes(input[, structure, ...]) Fill the holes in binary objects.
binary_hit_or_miss(input[, structure1, ...]) Multidimensional binary hit-or-miss transform.
binary_opening(input[, structure, ...]) Multidimensional binary opening with the given struc-

turing element.
binary_propagation(input[, structure, mask, ...]) Multidimensional binary propagation with the given

structuring element.
black_tophat(input[, size, footprint, ...]) Multidimensional black tophat filter.
distance_transform_edt(image[, sampling, ...]) Exact Euclidean distance transform.
generate_binary_structure(rank, connectivity) Generate a binary structure for binary morphological op-

erations.
grey_closing(input[, size, footprint, ...]) Calculates a multi-dimensional greyscale closing.
grey_dilation(input[, size, footprint, ...]) Calculates a greyscale dilation.
grey_erosion(input[, size, footprint, ...]) Calculates a greyscale erosion.
grey_opening(input[, size, footprint, ...]) Calculates a multi-dimensional greyscale opening.
iterate_structure(structure, iterations[, ...]) Iterate a structure by dilating it with itself.
morphological_gradient(input[, size, ...]) Multidimensional morphological gradient.
morphological_laplace(input[, size, ...]) Multidimensional morphological laplace.
white_tophat(input[, size, footprint, ...]) Multidimensional white tophat filter.

cupyx.scipy.ndimage.binary_closing

cupyx.scipy.ndimage.binary_closing(input, structure=None, iterations=1, output=None, origin=0,
mask=None, border_value=0, brute_force=False)

Multidimensional binary closing with the given structuring element.

The closing of an input image by a structuring element is the erosion of the dilation of the image by the structuring
element.

Parameters
• input (cupy.ndarray) – The input binary array to be closed. Non-zero (True) elements

form the subset to be closed.

• structure (cupy.ndarray, optional) – The structuring element used for the closing.
Non-zero elements are considered True. If no structuring element is provided an element is
generated with a square connectivity equal to one. (Default value = None).

440 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.variance.html#scipy.ndimage.variance

CuPy Documentation, Release 13.0.0

• iterations (int, optional) – The closing is repeated iterations times (one, by de-
fault). If iterations is less than 1, the closing is repeated until the result does not change
anymore. Only an integer of iterations is accepted.

• output (cupy.ndarray, optional) – Array of the same shape as input, into which the
output is placed. By default, a new array is created.

• origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

• mask (cupy.ndarray or None, optional) – If a mask is given, only those elements
with a True value at the corresponding mask element are modified at each iteration. (Default
value = None)

• border_value (int (cast to 0 or 1), optional) – Value at the border in the output
array. (Default value = 0)

• brute_force (boolean, optional) – Memory condition: if False, only the pixels whose
value was changed in the last iteration are tracked as candidates to be updated (dilated) in
the current iteration; if True all pixels are considered as candidates for closing, regardless of
what happened in the previous iteration.

Returns
The result of binary closing.

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
scipy.ndimage.binary_closing()

cupyx.scipy.ndimage.binary_dilation

cupyx.scipy.ndimage.binary_dilation(input, structure=None, iterations=1, mask=None, output=None,
border_value=0, origin=0, brute_force=False)

Multidimensional binary dilation with the given structuring element.

Parameters
• input (cupy.ndarray) – The input binary array_like to be dilated. Non-zero (True) ele-

ments form the subset to be dilated.

• structure (cupy.ndarray, optional) – The structuring element used for the dilation.
Non-zero elements are considered True. If no structuring element is provided an element is
generated with a square connectivity equal to one. (Default value = None).

• iterations (int, optional) – The dilation is repeated iterations times (one, by de-
fault). If iterations is less than 1, the dilation is repeated until the result does not change
anymore. Only an integer of iterations is accepted.

• mask (cupy.ndarray or None, optional) – If a mask is given, only those elements
with a True value at the corresponding mask element are modified at each iteration. (Default
value = None)

• output (cupy.ndarray, optional) – Array of the same shape as input, into which the
output is placed. By default, a new array is created.

5.4. Routines (SciPy) 441

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_closing.html#scipy.ndimage.binary_closing
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• border_value (int (cast to 0 or 1), optional) – Value at the border in the output
array. (Default value = 0)

• origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

• brute_force (boolean, optional) – Memory condition: if False, only the pixels whose
value was changed in the last iteration are tracked as candidates to be updated (dilated) in
the current iteration; if True all pixels are considered as candidates for dilation, regardless of
what happened in the previous iteration.

Returns
The result of binary dilation.

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
scipy.ndimage.binary_dilation()

cupyx.scipy.ndimage.binary_erosion

cupyx.scipy.ndimage.binary_erosion(input, structure=None, iterations=1, mask=None, output=None,
border_value=0, origin=0, brute_force=False)

Multidimensional binary erosion with a given structuring element.

Binary erosion is a mathematical morphology operation used for image processing.

Parameters
• input (cupy.ndarray) – The input binary array_like to be eroded. Non-zero (True) ele-

ments form the subset to be eroded.

• structure (cupy.ndarray, optional) – The structuring element used for the erosion.
Non-zero elements are considered True. If no structuring element is provided an element is
generated with a square connectivity equal to one. (Default value = None).

• iterations (int, optional) – The erosion is repeated iterations times (one, by de-
fault). If iterations is less than 1, the erosion is repeated until the result does not change
anymore. Only an integer of iterations is accepted.

• mask (cupy.ndarray or None, optional) – If a mask is given, only those elements
with a True value at the corresponding mask element are modified at each iteration. (Default
value = None)

• output (cupy.ndarray, optional) – Array of the same shape as input, into which the
output is placed. By default, a new array is created.

• border_value (int (cast to 0 or 1), optional) – Value at the border in the output
array. (Default value = 0)

• origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

• brute_force (boolean, optional) – Memory condition: if False, only the pixels whose
value was changed in the last iteration are tracked as candidates to be updated (eroded) in
the current iteration; if True all pixels are considered as candidates for erosion, regardless of
what happened in the previous iteration.

442 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_dilation.html#scipy.ndimage.binary_dilation
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Returns
The result of binary erosion.

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
scipy.ndimage.binary_erosion()

cupyx.scipy.ndimage.binary_fill_holes

cupyx.scipy.ndimage.binary_fill_holes(input, structure=None, output=None, origin=0)
Fill the holes in binary objects.

Parameters
• input (cupy.ndarray) – N-D binary array with holes to be filled.

• structure (cupy.ndarray, optional) – Structuring element used in the computation;
large-size elements make computations faster but may miss holes separated from the back-
ground by thin regions. The default element (with a square connectivity equal to one) yields
the intuitive result where all holes in the input have been filled.

• output (cupy.ndarray, dtype or None, optional) – Array of the same shape as in-
put, into which the output is placed. By default, a new array is created.

• origin (int, tuple of ints, optional) – Position of the structuring element.

Returns
Transformation of the initial image input where holes have been filled.

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
scipy.ndimage.binary_fill_holes()

cupyx.scipy.ndimage.binary_hit_or_miss

cupyx.scipy.ndimage.binary_hit_or_miss(input, structure1=None, structure2=None, output=None,
origin1=0, origin2=None)

Multidimensional binary hit-or-miss transform.

The hit-or-miss transform finds the locations of a given pattern inside the input image.

Parameters
• input (cupy.ndarray) – Binary image where a pattern is to be detected.

5.4. Routines (SciPy) 443

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_erosion.html#scipy.ndimage.binary_erosion
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_fill_holes.html#scipy.ndimage.binary_fill_holes

CuPy Documentation, Release 13.0.0

• structure1 (cupy.ndarray, optional) – Part of the structuring element to be fitted to
the foreground (non-zero elements) of input. If no value is provided, a structure of square
connectivity 1 is chosen.

• structure2 (cupy.ndarray, optional) – Second part of the structuring element that
has to miss completely the foreground. If no value is provided, the complementary of
structure1 is taken.

• output (cupy.ndarray, dtype or None, optional) – Array of the same shape as in-
put, into which the output is placed. By default, a new array is created.

• origin1 (int or tuple of ints, optional) – Placement of the first part of the struc-
turing element structure1, by default 0 for a centered structure.

• origin2 (int or tuple of ints or None, optional) – Placement of the second
part of the structuring element structure2, by default 0 for a centered structure. If a value
is provided for origin1 and not for origin2, then origin2 is set to origin1.

Returns
Hit-or-miss transform of inputwith the given structuring element (structure1, structure2).

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
scipy.ndimage.binary_hit_or_miss()

cupyx.scipy.ndimage.binary_opening

cupyx.scipy.ndimage.binary_opening(input, structure=None, iterations=1, output=None, origin=0,
mask=None, border_value=0, brute_force=False)

Multidimensional binary opening with the given structuring element.

The opening of an input image by a structuring element is the dilation of the erosion of the image by the struc-
turing element.

Parameters
• input (cupy.ndarray) – The input binary array to be opened. Non-zero (True) elements

form the subset to be opened.

• structure (cupy.ndarray, optional) – The structuring element used for the opening.
Non-zero elements are considered True. If no structuring element is provided an element is
generated with a square connectivity equal to one. (Default value = None).

• iterations (int, optional) – The opening is repeated iterations times (one, by de-
fault). If iterations is less than 1, the opening is repeated until the result does not change
anymore. Only an integer of iterations is accepted.

• output (cupy.ndarray, optional) – Array of the same shape as input, into which the
output is placed. By default, a new array is created.

• origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

444 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_hit_or_miss.html#scipy.ndimage.binary_hit_or_miss
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

• mask (cupy.ndarray or None, optional) – If a mask is given, only those elements
with a True value at the corresponding mask element are modified at each iteration. (Default
value = None)

• border_value (int (cast to 0 or 1), optional) – Value at the border in the output
array. (Default value = 0)

• brute_force (boolean, optional) – Memory condition: if False, only the pixels whose
value was changed in the last iteration are tracked as candidates to be updated (dilated) in
the current iteration; if True all pixels are considered as candidates for opening, regardless
of what happened in the previous iteration.

Returns
The result of binary opening.

Return type
cupy.ndarray

Warning: This function may synchronize the device.

See also:
scipy.ndimage.binary_opening()

cupyx.scipy.ndimage.binary_propagation

cupyx.scipy.ndimage.binary_propagation(input, structure=None, mask=None, output=None,
border_value=0, origin=0)

Multidimensional binary propagation with the given structuring element.

Parameters
• input (cupy.ndarray) – Binary image to be propagated inside mask.

• structure (cupy.ndarray, optional) – Structuring element used in the successive di-
lations. The output may depend on the structuring element, especially if mask has several
connex components. If no structuring element is provided, an element is generated with a
squared connectivity equal to one.

• mask (cupy.ndarray, optional) – Binary mask defining the region into which input is
allowed to propagate.

• output (cupy.ndarray, optional) – Array of the same shape as input, into which the
output is placed. By default, a new array is created.

• border_value (int, optional) – Value at the border in the output array. The value is
cast to 0 or 1.

• origin (int or tuple of ints, optional) – Placement of the filter.

Returns
Binary propagation of input inside mask.

Return type
cupy.ndarray

5.4. Routines (SciPy) 445

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_opening.html#scipy.ndimage.binary_opening
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Warning: This function may synchronize the device.

See also:
scipy.ndimage.binary_propagation()

cupyx.scipy.ndimage.black_tophat

cupyx.scipy.ndimage.black_tophat(input, size=None, footprint=None, structure=None, output=None,
mode='reflect', cval=0.0, origin=0)

Multidimensional black tophat filter.

Parameters
• input (cupy.ndarray) – The input array.

• size (tuple of ints) – Shape of a flat and full structuring element used for the black
tophat. Optional if footprint or structure is provided.

• footprint (array of ints) – Positions of non-infinite elements of a flat structuring ele-
ment used for the black tophat. Non-zero values give the set of neighbors of the center over
which opening is chosen.

• structure (array of ints) – Structuring element used for the black tophat. structure
may be a non-flat structuring element.

• output (cupy.ndarray, dtype or None) – The array in which to place the output.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is constant. Default is 0.0.

• origin (scalar or tuple of scalar) – The origin parameter controls the placement
of the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
Result of the filter of input with structure.

Return type
cupy.ndarry

See also:
scipy.ndimage.black_tophat()

cupyx.scipy.ndimage.distance_transform_edt

cupyx.scipy.ndimage.distance_transform_edt(image, sampling=None, return_distances=True,
return_indices=False, distances=None, indices=None, *,
block_params=None, float64_distances=True)

Exact Euclidean distance transform.

This function calculates the distance transform of the input, by replacing each foreground (non-zero) element,
with its shortest distance to the background (any zero-valued element).

446 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_propagation.html#scipy.ndimage.binary_propagation
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.black_tophat.html#scipy.ndimage.black_tophat

CuPy Documentation, Release 13.0.0

In addition to the distance transform, the feature transform can be calculated. In this case the index of the closest
background element to each foreground element is returned in a separate array.

Parameters
• image (array_like) – Input data to transform. Can be any type but will be converted into

binary: 1 wherever image equates to True, 0 elsewhere.

• sampling (float, or sequence of float, optional) – Spacing of elements along
each dimension. If a sequence, must be of length equal to the image rank; if a single number,
this is used for all axes. If not specified, a grid spacing of unity is implied.

• return_distances (bool, optional) – Whether to calculate the distance transform.

• return_indices (bool, optional) – Whether to calculate the feature transform.

• distances (cupy.ndarray, optional) – An output array to store the calculated distance
transform, instead of returning it. return_distances must be True. It must be the same shape
as image. Should have dtype cp.float32 if float64_distances is False, otherwise it should
be cp.float64.

• indices (cupy.ndarray, optional) – An output array to store the calculated feature
transform, instead of returning it. return_indicies must be True. Its shape must be (image.
ndim,) + image.shape. Its dtype must be a signed or unsigned integer type of at least
16-bits in 2D or 32-bits in 3D.

• block_params (3-tuple of int) – The m1, m2, m3 algorithm parameters as described
in2. If None, suitable defaults will be chosen. Note: This parameter is specific to cuCIM and
does not exist in SciPy.

• float64_distances (bool, optional) – If True, use double precision in the distance
computation (to match SciPy behavior). Otherwise, single precision will be used for effi-
ciency. Note: This parameter is specific to cuCIM and does not exist in SciPy.

Returns
• distances (cupy.ndarray, optional) – The calculated distance transform. Returned only when

return_distances is True and distances is not supplied. It will have the same shape as image.
Will have dtype cp.float64 if float64_distances is True, otherwise it will have dtype cp.
float32.

• indices (ndarray, optional) – The calculated feature transform. It has an image-shaped array
for each dimension of the image. See example below. Returned only when return_indices is
True and indices is not supplied.

Notes

The Euclidean distance transform gives values of the Euclidean distance.

𝑦𝑖 =

⎯⎸⎸⎷ 𝑛∑︁
𝑖

(𝑥[𝑖]− 𝑏[𝑖])2

where 𝑏[𝑖] is the background point (value 0) with the smallest Euclidean distance to input points 𝑥[𝑖], and 𝑛 is
the number of dimensions.

Note that the indices output may differ from the one given by scipy.ndimage.distance_transform_edt()
in the case of input pixels that are equidistant from multiple background points.

2 https://www.comp.nus.edu.sg/~tants/pba.html

5.4. Routines (SciPy) 447

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_edt.html#scipy.ndimage.distance_transform_edt
https://www.comp.nus.edu.sg/~tants/pba.html

CuPy Documentation, Release 13.0.0

The parallel banding algorithm implemented here was originally described in1. The kernels used here correspond
to the revised PBA+ implementation that is described on the author’s website2. The source code of the author’s
PBA+ implementation is available at3.

References

Examples

>>> import cupy as cp
>>> from cucim.core.operations import morphology
>>> a = cp.array(([0,1,1,1,1],
... [0,0,1,1,1],
... [0,1,1,1,1],
... [0,1,1,1,0],
... [0,1,1,0,0]))
>>> morphology.distance_transform_edt(a)
array([[0. , 1. , 1.4142, 2.2361, 3.],

[0. , 0. , 1. , 2. , 2.],
[0. , 1. , 1.4142, 1.4142, 1.],
[0. , 1. , 1.4142, 1. , 0.],
[0. , 1. , 1. , 0. , 0.]])

With a sampling of 2 units along x, 1 along y:

>>> morphology.distance_transform_edt(a, sampling=[2,1])
array([[0. , 1. , 2. , 2.8284, 3.6056],

[0. , 0. , 1. , 2. , 3.],
[0. , 1. , 2. , 2.2361, 2.],
[0. , 1. , 2. , 1. , 0.],
[0. , 1. , 1. , 0. , 0.]])

Asking for indices as well:

>>> edt, inds = morphology.distance_transform_edt(a, return_indices=True)
>>> inds
array([[[0, 0, 1, 1, 3],

[1, 1, 1, 1, 3],
[2, 2, 1, 3, 3],
[3, 3, 4, 4, 3],
[4, 4, 4, 4, 4]],

[[0, 0, 1, 1, 4],
[0, 1, 1, 1, 4],
[0, 0, 1, 4, 4],
[0, 0, 3, 3, 4],
[0, 0, 3, 3, 4]]])

1 Thanh-Tung Cao, Ke Tang, Anis Mohamed, and Tiow-Seng Tan. 2010. Parallel Banding Algorithm to compute exact distance transform with
the GPU. In Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games (I3D ’10). Association for Computing
Machinery, New York, NY, USA, 83–90. DOI:https://doi.org/10.1145/1730804.1730818

3 https://github.com/orzzzjq/Parallel-Banding-Algorithm-plus

448 Chapter 5. API Reference

https://github.com/orzzzjq/Parallel-Banding-Algorithm-plus

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.generate_binary_structure

cupyx.scipy.ndimage.generate_binary_structure(rank, connectivity)
Generate a binary structure for binary morphological operations.

Parameters
• rank (int) – Number of dimensions of the array to which the structuring element will be

applied, as returned by np.ndim.

• connectivity (int) – connectivity determines which elements of the output array be-
long to the structure, i.e., are considered as neighbors of the central element. Elements
up to a squared distance of connectivity from the center are considered neighbors.
connectivity may range from 1 (no diagonal elements are neighbors) to rank (all ele-
ments are neighbors).

Returns
Structuring element which may be used for binary morphological operations, with rank dimen-
sions and all dimensions equal to 3.

Return type
cupy.ndarray

See also:
scipy.ndimage.generate_binary_structure()

cupyx.scipy.ndimage.grey_closing

cupyx.scipy.ndimage.grey_closing(input, size=None, footprint=None, structure=None, output=None,
mode='reflect', cval=0.0, origin=0)

Calculates a multi-dimensional greyscale closing.

Parameters
• input (cupy.ndarray) – The input array.

• size (tuple of ints) – Shape of a flat and full structuring element used for the greyscale
closing. Optional if footprint or structure is provided.

• footprint (array of ints) – Positions of non-infinite elements of a flat structuring ele-
ment used for greyscale closing. Non-zero values give the set of neighbors of the center over
which closing is chosen.

• structure (array of ints) – Structuring element used for the greyscale closing.
structure may be a non-flat structuring element.

• output (cupy.ndarray, dtype or None) – The array in which to place the output.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is constant. Default is 0.0.

• origin (scalar or tuple of scalar) – The origin parameter controls the placement
of the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of greyscale closing.

5.4. Routines (SciPy) 449

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generate_binary_structure.html#scipy.ndimage.generate_binary_structure
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
scipy.ndimage.grey_closing()

cupyx.scipy.ndimage.grey_dilation

cupyx.scipy.ndimage.grey_dilation(input, size=None, footprint=None, structure=None, output=None,
mode='reflect', cval=0.0, origin=0)

Calculates a greyscale dilation.

Parameters
• input (cupy.ndarray) – The input array.

• size (tuple of ints) – Shape of a flat and full structuring element used for the greyscale
dilation. Optional if footprint or structure is provided.

• footprint (array of ints) – Positions of non-infinite elements of a flat structuring el-
ement used for greyscale dilation. Non-zero values give the set of neighbors of the center
over which maximum is chosen.

• structure (array of ints) – Structuring element used for the greyscale dilation.
structure may be a non-flat structuring element.

• output (cupy.ndarray, dtype or None) – The array in which to place the output.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is constant. Default is 0.0.

• origin (scalar or tuple of scalar) – The origin parameter controls the placement
of the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of greyscale dilation.

Return type
cupy.ndarray

See also:
scipy.ndimage.grey_dilation()

cupyx.scipy.ndimage.grey_erosion

cupyx.scipy.ndimage.grey_erosion(input, size=None, footprint=None, structure=None, output=None,
mode='reflect', cval=0.0, origin=0)

Calculates a greyscale erosion.

Parameters
• input (cupy.ndarray) – The input array.

• size (tuple of ints) – Shape of a flat and full structuring element used for the greyscale
erosion. Optional if footprint or structure is provided.

450 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_closing.html#scipy.ndimage.grey_closing
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_dilation.html#scipy.ndimage.grey_dilation
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

• footprint (array of ints) – Positions of non-infinite elements of a flat structuring ele-
ment used for greyscale erosion. Non-zero values give the set of neighbors of the center over
which minimum is chosen.

• structure (array of ints) – Structuring element used for the greyscale erosion.
structure may be a non-flat structuring element.

• output (cupy.ndarray, dtype or None) – The array in which to place the output.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is constant. Default is 0.0.

• origin (scalar or tuple of scalar) – The origin parameter controls the placement
of the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of greyscale erosion.

Return type
cupy.ndarray

See also:
scipy.ndimage.grey_erosion()

cupyx.scipy.ndimage.grey_opening

cupyx.scipy.ndimage.grey_opening(input, size=None, footprint=None, structure=None, output=None,
mode='reflect', cval=0.0, origin=0)

Calculates a multi-dimensional greyscale opening.

Parameters
• input (cupy.ndarray) – The input array.

• size (tuple of ints) – Shape of a flat and full structuring element used for the greyscale
opening. Optional if footprint or structure is provided.

• footprint (array of ints) – Positions of non-infinite elements of a flat structuring el-
ement used for greyscale opening. Non-zero values give the set of neighbors of the center
over which opening is chosen.

• structure (array of ints) – Structuring element used for the greyscale opening.
structure may be a non-flat structuring element.

• output (cupy.ndarray, dtype or None) – The array in which to place the output.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is constant. Default is 0.0.

• origin (scalar or tuple of scalar) – The origin parameter controls the placement
of the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The result of greyscale opening.

5.4. Routines (SciPy) 451

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_erosion.html#scipy.ndimage.grey_erosion
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
scipy.ndimage.grey_opening()

cupyx.scipy.ndimage.iterate_structure

cupyx.scipy.ndimage.iterate_structure(structure, iterations, origin=None)
Iterate a structure by dilating it with itself.

Parameters
• structure (array_like) – Structuring element (an array of bools, for example), to be

dilated with itself.

• iterations (int) – The number of dilations performed on the structure with itself.

• origin (int or tuple of int, optional) – If origin is None, only the iterated struc-
ture is returned. If not, a tuple of the iterated structure and the modified origin is returned.

Returns
A new structuring element obtained by dilating structure (iterations - 1) times with itself.

Return type
cupy.ndarray

See also:
scipy.ndimage.iterate_structure()

cupyx.scipy.ndimage.morphological_gradient

cupyx.scipy.ndimage.morphological_gradient(input, size=None, footprint=None, structure=None,
output=None, mode='reflect', cval=0.0, origin=0)

Multidimensional morphological gradient.

The morphological gradient is calculated as the difference between a dilation and an erosion of the input with a
given structuring element.

Parameters
• input (cupy.ndarray) – The input array.

• size (tuple of ints) – Shape of a flat and full structuring element used for the morpho-
logical gradient. Optional if footprint or structure is provided.

• footprint (array of ints) – Positions of non-infinite elements of a flat structuring el-
ement used for morphological gradient. Non-zero values give the set of neighbors of the
center over which opening is chosen.

• structure (array of ints) – Structuring element used for the morphological gradient.
structure may be a non-flat structuring element.

• output (cupy.ndarray, dtype or None) – The array in which to place the output.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is constant. Default is 0.0.

452 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_opening.html#scipy.ndimage.grey_opening
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.iterate_structure.html#scipy.ndimage.iterate_structure
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• origin (scalar or tuple of scalar) – The origin parameter controls the placement
of the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The morphological gradient of the input.

Return type
cupy.ndarray

See also:
scipy.ndimage.morphological_gradient()

cupyx.scipy.ndimage.morphological_laplace

cupyx.scipy.ndimage.morphological_laplace(input, size=None, footprint=None, structure=None,
output=None, mode='reflect', cval=0.0, origin=0)

Multidimensional morphological laplace.

Parameters
• input (cupy.ndarray) – The input array.

• size (tuple of ints) – Shape of a flat and full structuring element used for the morpho-
logical laplace. Optional if footprint or structure is provided.

• footprint (array of ints) – Positions of non-infinite elements of a flat structuring ele-
ment used for morphological laplace. Non-zero values give the set of neighbors of the center
over which opening is chosen.

• structure (array of ints) – Structuring element used for the morphological laplace.
structure may be a non-flat structuring element.

• output (cupy.ndarray, dtype or None) – The array in which to place the output.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is constant. Default is 0.0.

• origin (scalar or tuple of scalar) – The origin parameter controls the placement
of the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
The morphological laplace of the input.

Return type
cupy.ndarray

See also:
scipy.ndimage.morphological_laplace()

5.4. Routines (SciPy) 453

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphological_gradient.html#scipy.ndimage.morphological_gradient
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphological_laplace.html#scipy.ndimage.morphological_laplace

CuPy Documentation, Release 13.0.0

cupyx.scipy.ndimage.white_tophat

cupyx.scipy.ndimage.white_tophat(input, size=None, footprint=None, structure=None, output=None,
mode='reflect', cval=0.0, origin=0)

Multidimensional white tophat filter.

Parameters
• input (cupy.ndarray) – The input array.

• size (tuple of ints) – Shape of a flat and full structuring element used for the white
tophat. Optional if footprint or structure is provided.

• footprint (array of ints) – Positions of non-infinite elements of a flat structuring ele-
ment used for the white tophat. Non-zero values give the set of neighbors of the center over
which opening is chosen.

• structure (array of ints) – Structuring element used for the white tophat. structure
may be a non-flat structuring element.

• output (cupy.ndarray, dtype or None) – The array in which to place the output.

• mode (str) – The array borders are handled according to the given mode ('reflect',
'constant', 'nearest', 'mirror', 'wrap'). Default is 'reflect'.

• cval (scalar) – Value to fill past edges of input if mode is constant. Default is 0.0.

• origin (scalar or tuple of scalar) – The origin parameter controls the placement
of the filter, relative to the center of the current element of the input. Default of 0 is equivalent
to (0,)*input.ndim.

Returns
Result of the filter of input with structure.

Return type
cupy.ndarray

See also:
scipy.ndimage.white_tophat()

OpenCV mode

cupyx.scipy.ndimage supports additional mode, opencv. If it is given, the function performs like cv2.warpAffine
or cv2.resize. Example:

import cupyx.scipy.ndimage
import cupy as cp
import cv2

im = cv2.imread('TODO') # pls fill in your image path

trans_mat = cp.eye(4)
trans_mat[0][0] = trans_mat[1][1] = 0.5

smaller_shape = (im.shape[0] // 2, im.shape[1] // 2, 3)
smaller = cp.zeros(smaller_shape) # preallocate memory for resized image

(continues on next page)

454 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.white_tophat.html#scipy.ndimage.white_tophat
https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga0203d9ee5fcd28d40dbc4a1ea4451983
https://docs.opencv.org/master/da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d

CuPy Documentation, Release 13.0.0

(continued from previous page)

cupyx.scipy.ndimage.affine_transform(im, trans_mat, output_shape=smaller_shape,
output=smaller, mode='opencv')

cv2.imwrite('smaller.jpg', cp.asnumpy(smaller)) # smaller image saved locally

5.4.6 Signal processing (cupyx.scipy.signal)

Hint: SciPy API Reference: Signal processing (scipy.signal)

Convolution

convolve(in1, in2[, mode, method]) Convolve two N-dimensional arrays.
correlate(in1, in2[, mode, method]) Cross-correlate two N-dimensional arrays.
fftconvolve(in1, in2[, mode, axes]) Convolve two N-dimensional arrays using FFT.
oaconvolve(in1, in2[, mode, axes]) Convolve two N-dimensional arrays using the overlap-

add method.
convolve2d(in1, in2[, mode, boundary, fillvalue]) Convolve two 2-dimensional arrays.
correlate2d(in1, in2[, mode, boundary, ...]) Cross-correlate two 2-dimensional arrays.
sepfir2d(input, hrow, hcol) Convolve with a 2-D separable FIR filter.
choose_conv_method(in1, in2[, mode]) Find the fastest convolution/correlation method.
correlation_lags(in1_len, in2_len[, mode]) Calculates the lag / displacement indices array for 1D

cross-correlation.

cupyx.scipy.signal.convolve

cupyx.scipy.signal.convolve(in1, in2, mode='full', method='auto')
Convolve two N-dimensional arrays.

Convolve in1 and in2, with the output size determined by the mode argument.

Parameters
• in1 (cupy.ndarray) – First input.

• in2 (cupy.ndarray) – Second input. Should have the same number of dimensions as in1.

• mode (str) – Indicates the size of the output:

– 'full': output is the full discrete linear convolution (default)

– 'valid': output consists only of those elements that do not rely on the zero-padding.
Either in1 or in2 must be at least as large as the other in every dimension.

– 'same': - output is the same size as in1, centered with respect to the 'full' output

• method (str) – Indicates which method to use for the computations:

– 'direct': The convolution is determined directly from sums, the definition of convolu-
tion

– 'fft': The Fourier Transform is used to perform the convolution by calling
fftconvolve.

5.4. Routines (SciPy) 455

https://docs.scipy.org/doc/scipy/reference/signal.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

– 'auto': Automatically choose direct of FFT based on an estimate of which is faster for
the arguments (default).

Returns
the result of convolution.

Return type
cupy.ndarray

See also:
cupyx.scipy.signal.choose_conv_method()

See also:
cupyx.scipy.signal.correlation()

See also:
cupyx.scipy.signal.fftconvolve()

See also:
cupyx.scipy.signal.oaconvolve()

See also:
cupyx.scipy.ndimage.convolve()

See also:
scipy.signal.convolve()

Note: By default, convolve and correlate use method='auto', which calls choose_conv_method to
choose the fastest method using pre-computed values. CuPy may not choose the same method to compute the
convolution as SciPy does given the same inputs.

cupyx.scipy.signal.correlate

cupyx.scipy.signal.correlate(in1, in2, mode='full', method='auto')
Cross-correlate two N-dimensional arrays.

Cross-correlate in1 and in2, with the output size determined by the mode argument.

Parameters
• in1 (cupy.ndarray) – First input.

• in2 (cupy.ndarray) – Second input. Should have the same number of dimensions as in1.

• mode (str) – Indicates the size of the output:

– 'full': output is the full discrete linear convolution (default)

– 'valid': output consists only of those elements that do not rely on the zero-padding.
Either in1 or in2 must be at least as large as the other in every dimension.

– 'same': - output is the same size as in1, centered with respect to the 'full' output

• method (str) – Indicates which method to use for the computations:

– 'direct': The convolution is determined directly from sums, the definition of convolu-
tion

456 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html#scipy.signal.convolve
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

– 'fft': The Fourier Transform is used to perform the convolution by calling
fftconvolve.

– 'auto': Automatically choose direct of FFT based on an estimate of which is faster for
the arguments (default).

Returns
the result of correlation.

Return type
cupy.ndarray

See also:
cupyx.scipy.signal.choose_conv_method()

See also:
cupyx.scipy.signal.convolve()

See also:
cupyx.scipy.signal.fftconvolve()

See also:
cupyx.scipy.signal.oaconvolve()

See also:
cupyx.scipy.ndimage.correlation()

See also:
scipy.signal.correlation()

Note: By default, convolve and correlate use method='auto', which calls choose_conv_method to
choose the fastest method using pre-computed values. CuPy may not choose the same method to compute the
convolution as SciPy does given the same inputs.

cupyx.scipy.signal.fftconvolve

cupyx.scipy.signal.fftconvolve(in1, in2, mode='full', axes=None)
Convolve two N-dimensional arrays using FFT.

Convolve in1 and in2 using the fast Fourier transform method, with the output size determined by the mode
argument.

This is generally much faster than the 'direct' method of convolve for large arrays, but can be slower when
only a few output values are needed, and can only output float arrays (int or object array inputs will be cast to
float).

Parameters
• in1 (cupy.ndarray) – First input.

• in2 (cupy.ndarray) – Second input. Should have the same number of dimensions as in1.

• mode (str) – Indicates the size of the output:

– 'full': output is the full discrete linear cross-correlation (default)

5.4. Routines (SciPy) 457

https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

– 'valid': output consists only of those elements that do not rely on the zero-padding.
Either in1 or in2 must be at least as large as the other in every dimension.

– 'same': output is the same size as in1, centered with respect to the ‘full’ output

• axes (scalar or tuple of scalar or None) – Axes over which to compute the con-
volution. The default is over all axes.

Returns
the result of convolution

Return type
cupy.ndarray

See also:
cupyx.scipy.signal.choose_conv_method()

See also:
cupyx.scipy.signal.correlation()

See also:
cupyx.scipy.signal.convolve()

See also:
cupyx.scipy.signal.oaconvolve()

See also:
cupyx.scipy.ndimage.convolve()

See also:
scipy.signal.correlation()

cupyx.scipy.signal.oaconvolve

cupyx.scipy.signal.oaconvolve(in1, in2, mode='full', axes=None)
Convolve two N-dimensional arrays using the overlap-add method.

Convolve in1 and in2 using the overlap-add method, with the output size determined by the mode argument.
This is generally faster than convolve for large arrays, and generally faster than fftconvolve when one array
is much larger than the other, but can be slower when only a few output values are needed or when the arrays are
very similar in shape, and can only output float arrays (int or object array inputs will be cast to float).

Parameters
• in1 (cupy.ndarray) – First input.

• in2 (cupy.ndarray) – Second input. Should have the same number of dimensions as in1.

• mode (str) – Indicates the size of the output:

– 'full': output is the full discrete linear cross-correlation (default)

– 'valid': output consists only of those elements that do not rely on the zero-padding.
Either in1 or in2 must be at least as large as the other in every dimension.

– 'same': output is the same size as in1, centered with respect to the 'full' output

• axes (scalar or tuple of scalar or None) – Axes over which to compute the con-
volution. The default is over all axes.

458 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Returns
the result of convolution

Return type
cupy.ndarray

See also:
cupyx.scipy.signal.convolve()

See also:
cupyx.scipy.signal.fftconvolve()

See also:
cupyx.scipy.ndimage.convolve()

See also:
scipy.signal.oaconvolve()

cupyx.scipy.signal.convolve2d

cupyx.scipy.signal.convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0)
Convolve two 2-dimensional arrays.

Convolve in1 and in2 with output size determined by mode, and boundary conditions determined by boundary
and fillvalue.

Parameters
• in1 (cupy.ndarray) – First input.

• in2 (cupy.ndarray) – Second input. Should have the same number of dimensions as in1.

• mode (str) – Indicates the size of the output:

– 'full': output is the full discrete linear convolution (default)

– 'valid': output consists only of those elements that do not rely on the zero-padding.
Either in1 or in2 must be at least as large as the other in every dimension.

– 'same': - output is the same size as in1, centered with respect to the 'full' output

• boundary (str) – Indicates how to handle boundaries:

– fill: pad input arrays with fillvalue (default)

– wrap: circular boundary conditions

– symm: symmetrical boundary conditions

• fillvalue (scalar) – Value to fill pad input arrays with. Default is 0.

Returns
A 2-dimensional array containing a subset of the discrete linear convolution of in1 with in2.

Return type
cupy.ndarray

See also:
cupyx.scipy.signal.convolve()

5.4. Routines (SciPy) 459

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.oaconvolve.html#scipy.signal.oaconvolve
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

See also:
cupyx.scipy.signal.fftconvolve()

See also:
cupyx.scipy.signal.oaconvolve()

See also:
cupyx.scipy.signal.correlate2d()

See also:
cupyx.scipy.ndimage.convolve()

See also:
scipy.signal.convolve2d()

cupyx.scipy.signal.correlate2d

cupyx.scipy.signal.correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0)
Cross-correlate two 2-dimensional arrays.

Cross correlate in1 and in2 with output size determined by mode, and boundary conditions determined by
boundary and fillvalue.

Parameters
• in1 (cupy.ndarray) – First input.

• in2 (cupy.ndarray) – Second input. Should have the same number of dimensions as in1.

• mode (str) – Indicates the size of the output:

– 'full': output is the full discrete linear convolution (default)

– 'valid': output consists only of those elements that do not rely on the zero-padding.
Either in1 or in2 must be at least as large as the other in every dimension.

– 'same': - output is the same size as in1, centered with respect to the 'full' output

• boundary (str) – Indicates how to handle boundaries:

– fill: pad input arrays with fillvalue (default)

– wrap: circular boundary conditions

– symm: symmetrical boundary conditions

• fillvalue (scalar) – Value to fill pad input arrays with. Default is 0.

Returns
A 2-dimensional array containing a subset of the discrete linear cross-correlation of in1 with
in2.

Return type
cupy.ndarray

Note: When using "same" mode with even-length inputs, the outputs of correlate and correlate2d differ:
There is a 1-index offset between them.

460 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html#scipy.signal.convolve2d
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

See also:
cupyx.scipy.signal.correlate()

See also:
cupyx.scipy.signal.convolve2d()

See also:
cupyx.scipy.ndimage.correlate()

See also:
scipy.signal.correlate2d()

cupyx.scipy.signal.sepfir2d

cupyx.scipy.signal.sepfir2d(input, hrow, hcol)
Convolve with a 2-D separable FIR filter.

Convolve the rank-2 input array with the separable filter defined by the rank-1 arrays hrow, and hcol. Mirror
symmetric boundary conditions are assumed. This function can be used to find an image given its B-spline
representation.

The arguments hrow and hcol must be 1-dimensional and of off length.

Parameters
• input (cupy.ndarray) – The input signal

• hrow (cupy.ndarray) – Row direction filter

• hcol (cupy.ndarray) – Column direction filter

Returns
The filtered signal

Return type
cupy.ndarray

See also:
scipy.signal.sepfir2d()

cupyx.scipy.signal.choose_conv_method

cupyx.scipy.signal.choose_conv_method(in1, in2, mode='full')
Find the fastest convolution/correlation method.

Parameters
• in1 (cupy.ndarray) – first input.

• in2 (cupy.ndarray) – second input.

• mode (str, optional) – 'valid', 'same', 'full'.

Returns
A string indicating which convolution method is fastest, either 'direct' or 'fft'.

Return type
str

5.4. Routines (SciPy) 461

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html#scipy.signal.correlate2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sepfir2d.html#scipy.signal.sepfir2d
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Warning: This function currently doesn’t support measure option, nor multidimensional inputs. It does not
guarantee the compatibility of the return value to SciPy’s one.

See also:
scipy.signal.choose_conv_method()

cupyx.scipy.signal.correlation_lags

cupyx.scipy.signal.correlation_lags(in1_len, in2_len, mode='full')
Calculates the lag / displacement indices array for 1D cross-correlation.

Parameters
• in1_len (int) – First input size.

• in2_len (int) – Second input size.

• mode (str {'full', 'valid', 'same'}, optional) – A string indicating the size of the
output. See the documentation correlate for more information.

Returns
lags – Returns an array containing cross-correlation lag/displacement indices. Indices can be
indexed with the np.argmax of the correlation to return the lag/displacement.

Return type
array

See also:

correlate
Compute the N-dimensional cross-correlation.

scipy.signal.correlation_lags

B-Splines

gauss_spline(x, n) Gaussian approximation to B-spline basis function of or-
der n.

cspline1d(signal[, lamb]) Compute cubic spline coefficients for rank-1 array.
qspline1d(signal[, lamb]) Compute quadratic spline coefficients for rank-1 array.
cspline2d(signal[, lamb, precision]) Coefficients for 2-D cubic (3rd order) B-spline.
qspline2d(signal[, lamb, precision]) Coefficients for 2-D quadratic (2nd order) B-spline.
cspline1d_eval(cj, newx[, dx, x0]) Evaluate a cubic spline at the new set of points.
qspline1d_eval(cj, newx[, dx, x0]) Evaluate a quadratic spline at the new set of points.
spline_filter(Iin[, lmbda]) Smoothing spline (cubic) filtering of a rank-2 array.

462 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.choose_conv_method.html#scipy.signal.choose_conv_method
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlation_lags.html#scipy.signal.correlation_lags

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.gauss_spline

cupyx.scipy.signal.gauss_spline(x, n)
Gaussian approximation to B-spline basis function of order n.

Parameters
• x (array_like) – a knot vector

• n (int) – The order of the spline. Must be nonnegative, i.e. n >= 0

Returns
res – B-spline basis function values approximated by a zero-mean Gaussian function.

Return type
ndarray

Notes

The B-spline basis function can be approximated well by a zero-mean Gaussian function with standard-deviation
equal to 𝜎 = (𝑛+ 1)/12 for large n :

1√
2𝜋𝜎2

𝑒𝑥𝑝(−𝑥2

2𝜎
)

See1,2 for more information.

References

cupyx.scipy.signal.cspline1d

cupyx.scipy.signal.cspline1d(signal, lamb=0.0)
Compute cubic spline coefficients for rank-1 array.

Find the cubic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To obtain
the signal back from the spline representation mirror-symmetric-convolve these coefficients with a length 3 FIR
window [1.0, 4.0, 1.0]/ 6.0 .

Parameters
• signal (ndarray) – A rank-1 array representing samples of a signal.

• lamb (float, optional) – Smoothing coefficient, default is 0.0.

Returns
c – Cubic spline coefficients.

Return type
ndarray

See also:

cspline1d_eval
Evaluate a cubic spline at the new set of points.

1 Bouma H., Vilanova A., Bescos J.O., ter Haar Romeny B.M., Gerritsen F.A. (2007) Fast and Accurate Gaussian Derivatives Based on B-Splines.
In: Sgallari F., Murli A., Paragios N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer
Science, vol 4485. Springer, Berlin, Heidelberg

2 http://folk.uio.no/inf3330/scripting/doc/python/SciPy/tutorial/old/node24.html

5.4. Routines (SciPy) 463

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://folk.uio.no/inf3330/scripting/doc/python/SciPy/tutorial/old/node24.html

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.qspline1d

cupyx.scipy.signal.qspline1d(signal, lamb=0.0)
Compute quadratic spline coefficients for rank-1 array.

Parameters
• signal (ndarray) – A rank-1 array representing samples of a signal.

• lamb (float, optional) – Smoothing coefficient (must be zero for now).

Returns
c – Quadratic spline coefficients.

Return type
ndarray

See also:

qspline1d_eval
Evaluate a quadratic spline at the new set of points.

Notes

Find the quadratic spline coefficients for a 1-D signal assuming mirror-symmetric boundary conditions. To obtain
the signal back from the spline representation mirror-symmetric-convolve these coefficients with a length 3 FIR
window [1.0, 6.0, 1.0]/ 8.0 .

cupyx.scipy.signal.cspline2d

cupyx.scipy.signal.cspline2d(signal, lamb=0.0, precision=-1.0)
Coefficients for 2-D cubic (3rd order) B-spline.

Return the third-order B-spline coefficients over a regularly spaced input grid for the two-dimensional input
image.

Parameters
• input (ndarray) – The input signal.

• lamb (float) – Specifies the amount of smoothing in the transfer function.

• precision (float) – Specifies the precision for computing the infinite sum needed to apply
mirror-symmetric boundary conditions.

Returns
output – The filtered signal.

Return type
ndarray

464 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.qspline2d

cupyx.scipy.signal.qspline2d(signal, lamb=0.0, precision=-1.0)
Coefficients for 2-D quadratic (2nd order) B-spline.

Return the second-order B-spline coefficients over a regularly spaced input grid for the two-dimensional input
image.

Parameters
• input (ndarray) – The input signal.

• lamb (float) – Specifies the amount of smoothing in the transfer function.

• precision (float) – Specifies the precision for computing the infinite sum needed to apply
mirror-symmetric boundary conditions.

Returns
output – The filtered signal.

Return type
ndarray

cupyx.scipy.signal.cspline1d_eval

cupyx.scipy.signal.cspline1d_eval(cj, newx, dx=1.0, x0=0)
Evaluate a cubic spline at the new set of points.

dx is the old sample-spacing while x0 was the old origin. In other-words the old-sample points (knot-points) for
which the cj represent spline coefficients were at equally-spaced points of:

oldx = x0 + j*dx j=0. . .N-1, with N=len(cj)

Edges are handled using mirror-symmetric boundary conditions.

Parameters
• cj (ndarray) – cublic spline coefficients

• newx (ndarray) – New set of points.

• dx (float, optional) – Old sample-spacing, the default value is 1.0.

• x0 (int, optional) – Old origin, the default value is 0.

Returns
res – Evaluated a cubic spline points.

Return type
ndarray

See also:

cspline1d
Compute cubic spline coefficients for rank-1 array.

5.4. Routines (SciPy) 465

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.qspline1d_eval

cupyx.scipy.signal.qspline1d_eval(cj, newx, dx=1.0, x0=0)
Evaluate a quadratic spline at the new set of points.

Parameters
• cj (ndarray) – Quadratic spline coefficients

• newx (ndarray) – New set of points.

• dx (float, optional) – Old sample-spacing, the default value is 1.0.

• x0 (int, optional) – Old origin, the default value is 0.

Returns
res – Evaluated a quadratic spline points.

Return type
ndarray

See also:

qspline1d
Compute quadratic spline coefficients for rank-1 array.

Notes

dx is the old sample-spacing while x0 was the old origin. In other-words the old-sample points (knot-points) for
which the cj represent spline coefficients were at equally-spaced points of:

oldx = x0 + j*dx j=0...N-1, with N=len(cj)

Edges are handled using mirror-symmetric boundary conditions.

cupyx.scipy.signal.spline_filter

cupyx.scipy.signal.spline_filter(Iin, lmbda=5.0)
Smoothing spline (cubic) filtering of a rank-2 array.

Filter an input data set, Iin, using a (cubic) smoothing spline of fall-off lmbda.

Parameters
• Iin (array_like) – input data set

• lmbda (float, optional) – spline smooghing fall-off value, default is 5.0.

Returns
res – filterd input data

Return type
ndarray

466 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

Filtering

order_filter(a, domain, rank) Perform an order filter on an N-D array.
medfilt(volume[, kernel_size]) Perform a median filter on an N-dimensional array.
medfilt2d(input[, kernel_size]) Median filter a 2-dimensional array.
wiener(im[, mysize, noise]) Perform a Wiener filter on an N-dimensional array.
symiirorder1(input, c0, z1[, precision]) Implement a smoothing IIR filter with mirror-symmetric

boundary conditions using a cascade of first-order sec-
tions. The second section uses a reversed sequence. This
implements a system with the following transfer function
and mirror-symmetric boundary conditions::.

symiirorder2(input, r, omega[, precision]) Implement a smoothing IIR filter with mirror-symmetric
boundary conditions using a cascade of second-order
sections. The second section uses a reversed sequence.
This implements the following transfer function::.

lfilter(b, a, x[, axis, zi]) Filter data along one-dimension with an IIR or FIR filter.
lfiltic(b, a, y[, x]) Construct initial conditions for lfilter given input and

output vectors.
lfilter_zi(b, a) Construct initial conditions for lfilter for step response

steady-state.
filtfilt(b, a, x[, axis, padtype, padlen, ...]) Apply a digital filter forward and backward to a signal.
savgol_filter(x, window_length, polyorder[, ...]) Apply a Savitzky-Golay filter to an array.
deconvolve(signal, divisor) Deconvolves divisor out of signal using inverse fil-

tering.
sosfilt(sos, x[, axis, zi]) Filter data along one dimension using cascaded second-

order sections.
sosfilt_zi(sos) Construct initial conditions for sosfilt for step response

steady-state.
sosfiltfilt(sos, x[, axis, padtype, padlen]) A forward-backward digital filter using cascaded

second-order sections.
hilbert(x[, N, axis]) Compute the analytic signal, using the Hilbert transform.
hilbert2(x[, N]) Compute the '2-D' analytic signal of x
decimate(x, q[, n, ftype, axis, zero_phase]) Downsample the signal after applying an anti-aliasing

filter.
detrend(data[, axis, type, bp, overwrite_data]) Remove linear trend along axis from data.
resample(x, num[, t, axis, window, domain]) Resample x to num samples using Fourier method along

the given axis.
resample_poly(x, up, down[, axis, window, ...]) Resample x along the given axis using polyphase filter-

ing.
upfirdn(h, x[, up, down, axis, mode, cval]) Upsample, FIR filter, and downsample.

cupyx.scipy.signal.order_filter

cupyx.scipy.signal.order_filter(a, domain, rank)
Perform an order filter on an N-D array.

Perform an order filter on the array in. The domain argument acts as a mask centered over each pixel. The
non-zero elements of domain are used to select elements surrounding each input pixel which are placed in a list.
The list is sorted, and the output for that pixel is the element corresponding to rank in the sorted list.

Parameters
• a (cupy.ndarray) – The N-dimensional input array.

5.4. Routines (SciPy) 467

CuPy Documentation, Release 13.0.0

• domain (cupy.ndarray) – A mask array with the same number of dimensions as a. Each
dimension should have an odd number of elements.

• rank (int) – A non-negative integer which selects the element from the sorted list (0 corre-
sponds to the smallest element).

Returns
The results of the order filter in an array with the same shape as a.

Return type
cupy.ndarray

See also:
cupyx.scipy.ndimage.rank_filter()

See also:
scipy.signal.order_filter()

cupyx.scipy.signal.medfilt

cupyx.scipy.signal.medfilt(volume, kernel_size=None)
Perform a median filter on an N-dimensional array.

Apply a median filter to the input array using a local window-size given by kernel_size. The array will automat-
ically be zero-padded.

Parameters
• volume (cupy.ndarray) – An N-dimensional input array.

• kernel_size (int or list of ints) – Gives the size of the median filter window in
each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this
scalar is used as the size in each dimension. Default size is 3 for each dimension.

Returns
An array the same size as input containing the median filtered result.

Return type
cupy.ndarray

See also:
cupyx.scipy.ndimage.median_filter()

See also:
scipy.signal.medfilt()

cupyx.scipy.signal.medfilt2d

cupyx.scipy.signal.medfilt2d(input, kernel_size=3)
Median filter a 2-dimensional array.

Apply a median filter to the input array using a local window-size given by kernel_size (must be odd). The array
is zero-padded automatically.

Parameters
• input (cupy.ndarray) – A 2-dimensional input array.

468 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.order_filter.html#scipy.signal.order_filter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt.html#scipy.signal.medfilt

CuPy Documentation, Release 13.0.0

• kernel_size (int of list of ints of length 2) – Gives the size of the median
filter window in each dimension. Elements of kernel_size should be odd. If kernel_size is a
scalar, then this scalar is used as the size in each dimension. Default is a kernel of size (3,
3).

Returns
An array the same size as input containing the median filtered result.

Return type
cupy.ndarray

See also:
, ,

cupyx.scipy.signal.wiener

cupyx.scipy.signal.wiener(im, mysize=None, noise=None)
Perform a Wiener filter on an N-dimensional array.

Apply a Wiener filter to the N-dimensional array im.

Parameters
• im (cupy.ndarray) – An N-dimensional array.

• mysize (int or cupy.ndarray, optional) – A scalar or an N-length list giving the
size of the Wiener filter window in each dimension. Elements of mysize should be odd. If
mysize is a scalar, then this scalar is used as the size in each dimension.

• noise (float, optional) – The noise-power to use. If None, then noise is estimated as
the average of the local variance of the input.

Returns
Wiener filtered result with the same shape as im.

Return type
cupy.ndarray

See also:
scipy.signal.wiener()

cupyx.scipy.signal.symiirorder1

cupyx.scipy.signal.symiirorder1(input, c0, z1, precision=-1.0)
Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of first-order
sections. The second section uses a reversed sequence. This implements a system with the following transfer
function and mirror-symmetric boundary conditions:

c0
H(z) = ---------------------

(1-z1/z) (1 - z1 z)

The resulting signal will have mirror symmetric boundary conditions as well.

Parameters
• input (ndarray) – The input signal.

5.4. Routines (SciPy) 469

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.wiener.html#scipy.signal.wiener

CuPy Documentation, Release 13.0.0

• c0 (scalar) – Parameters in the transfer function.

• z1 (scalar) – Parameters in the transfer function.

• precision – Specifies the precision for calculating initial conditions of the recursive filter
based on mirror-symmetric input.

Returns
output – The filtered signal.

Return type
ndarray

cupyx.scipy.signal.symiirorder2

cupyx.scipy.signal.symiirorder2(input, r, omega, precision=-1.0)
Implement a smoothing IIR filter with mirror-symmetric boundary conditions using a cascade of second-order
sections. The second section uses a reversed sequence. This implements the following transfer function:

cs^2
H(z) = ---------------------------------------

(1 - a2/z - a3/z^2) (1 - a2 z - a3 z^2)

where:

a2 = 2 * r * cos(omega)
a3 = - r ** 2
cs = 1 - 2 * r * cos(omega) + r ** 2

Parameters
• input (ndarray) – The input signal.

• r (float) – Parameters in the transfer function.

• omega (float) – Parameters in the transfer function.

• precision (float) – Specifies the precision for calculating initial conditions of the recur-
sive filter based on mirror-symmetric input.

Returns
output – The filtered signal.

Return type
ndarray

cupyx.scipy.signal.lfilter

cupyx.scipy.signal.lfilter(b, a, x, axis=-1, zi=None)
Filter data along one-dimension with an IIR or FIR filter.

Filter a data sequence, x, using a digital filter. This works for many fundamental data types (including Object
type). The filter is a direct form II transposed implementation of the standard difference equation (see Notes).

The function sosfilt (and filter design using output='sos') should be preferred over lfilter for most filtering
tasks, as second-order sections have fewer numerical problems.

Parameters

470 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• b (array_like) – The numerator coefficient vector in a 1-D sequence.

• a (array_like) – The denominator coefficient vector in a 1-D sequence. If a[0] is not 1,
then both a and b are normalized by a[0].

• x (array_like) – An N-dimensional input array.

• axis (int, optional) – The axis of the input data array along which to apply the linear
filter. The filter is applied to each subarray along this axis. Default is -1.

• zi (array_like, optional) – Initial conditions for the filter delays. It is a vector (or array
of vectors for an N-dimensional input) of length len(b) + len(a) - 2. The first len(b)
numbers correspond to the last elements of the previous input and the last len(a) to the last
elements of the previous output. If zi is None or is not given then initial rest is assumed. See
lfiltic for more information.

Note: This argument differs from dimensions from the SciPy implementation! However, as
long as they are chained from the same library, the output result will be the same. Please
make sure to use the zi from CuPy calls and not from SciPy. This due to the parallel nature
of this implementation as opposed to the serial one in SciPy.

Returns
• y (array) – The output of the digital filter.

• zf (array, optional) – If zi is None, this is not returned, otherwise, zf holds the final filter
delay values.

See also:

lfiltic
Construct initial conditions for lfilter.

lfilter_zi
Compute initial state (steady state of step response) for lfilter.

filtfilt
A forward-backward filter, to obtain a filter with zero phase.

savgol_filter
A Savitzky-Golay filter.

sosfilt
Filter data using cascaded second-order sections.

sosfiltfilt
A forward-backward filter using second-order sections.

Notes

The filter function is implemented as a direct II transposed structure. This means that the filter implements:

a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M]
- a[1]*y[n-1] - ... - a[N]*y[n-N]

where M is the degree of the numerator, N is the degree of the denominator, n is the sample number and L denotes
the length of the input. It is implemented by computing first the FIR part and then computing the IIR part from
it:

5.4. Routines (SciPy) 471

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

a[0] * y = r(f(x, b), a)
f(x, b)[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M]
r(y, a)[n] = - a[1]*y[n-1] - ... - a[N]*y[n-N]

The IIR result is computed in parallel by first dividing the input signal into chunks (g_i) of size m. For each
chunk, the IIR recurrence equation is applied to each chunk (in parallel). Then the chunks are merged based on
the last N values of the last chunk:

nc = L/m
x = [g_0, g_1, ..., g_nc]

g_i = [x[i * m], ..., x[i * m + m - 1]]
p_i = r(g_i, a)

o_i = r(p_i, c(p_{i - 1})) if i > 1,
r(p_i, zi) otherwise

y = [o_0, o_1, ..., o_nc]

where c denotes a function that takes a chunk, slices the last N values and adjust them using a correction factor
table computed using the (1, 2, . . . , N)-fibonacci sequence. For more information see1.

The rational transfer function describing this filter in the z-transform domain is:

-1 -M
b[0] + b[1]z + ... + b[M] z

Y(z) = -------------------------------- X(z)
-1 -N

a[0] + a[1]z + ... + a[N] z

References

cupyx.scipy.signal.lfiltic

cupyx.scipy.signal.lfiltic(b, a, y, x=None)
Construct initial conditions for lfilter given input and output vectors.

Given a linear filter (b, a) and initial conditions on the output y and the input x, return the initial conditions on
the state vector zi which is used by lfilter to generate the output given the input.

Parameters
• b (array_like) – Linear filter term.

• a (array_like) – Linear filter term.

• y (array_like) – Initial conditions. If N = len(a) - 1, then y = {y[-1], y[-2],
..., y[-N]}. If y is too short, it is padded with zeros.

• x (array_like, optional) – Initial conditions. If M = len(b) - 1, then x = {x[-1],
x[-2], ..., x[-M]}. If x is not given, its initial conditions are assumed zero. If x is too
short, it is padded with zeros.

1 Sepideh Maleki and Martin Burtscher. 2018. Automatic Hierarchical Parallelization of Linear Recurrences. SIGPLAN Not. 53, 2 (February
2018), 128-138. 10.1145/3173162.3173168

472 Chapter 5. API Reference

https://doi.org/10.1145/3173162.3173168

CuPy Documentation, Release 13.0.0

• axis (int, optional) – The axis to take the initial conditions from, if x and y are n-
dimensional

Returns
zi – The state vector zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]}, where K = M + N.

Return type
ndarray

See also:
lfilter, lfilter_zi

cupyx.scipy.signal.lfilter_zi

cupyx.scipy.signal.lfilter_zi(b, a)
Construct initial conditions for lfilter for step response steady-state.

Compute an initial state zi for the lfilter function that corresponds to the steady state of the step response.

A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the
first element of the signal to be filtered.

Parameters
• b (array_like (1-D)) – The IIR filter coefficients. See lfilter for more information.

• a (array_like (1-D)) – The IIR filter coefficients. See lfilter for more information.

Returns
zi – The initial state for the filter.

Return type
1-D ndarray

See also:
lfilter, lfiltic, filtfilt

cupyx.scipy.signal.filtfilt

cupyx.scipy.signal.filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None)
Apply a digital filter forward and backward to a signal.

This function applies a linear digital filter twice, once forward and once backwards. The combined filter has zero
phase and a filter order twice that of the original.

The function provides options for handling the edges of the signal.

The function sosfiltfilt (and filter design using output='sos') should be preferred over filtfilt for most filtering
tasks, as second-order sections have fewer numerical problems.

Parameters
• b ((N,) array_like) – The numerator coefficient vector of the filter.

• a ((N,) array_like) – The denominator coefficient vector of the filter. If a[0] is not 1,
then both a and b are normalized by a[0].

• x (array_like) – The array of data to be filtered.

• axis (int, optional) – The axis of x to which the filter is applied. Default is -1.

5.4. Routines (SciPy) 473

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• padtype (str or None, optional) – Must be ‘odd’, ‘even’, ‘constant’, or None. This
determines the type of extension to use for the padded signal to which the filter is applied. If
padtype is None, no padding is used. The default is ‘odd’.

• padlen (int or None, optional) – The number of elements by which to extend x at
both ends of axis before applying the filter. This value must be less than x.shape[axis] -
1. padlen=0 implies no padding. The default value is 3 * max(len(a), len(b)).

• method (str, optional) – Determines the method for handling the edges of the signal,
either “pad” or “gust”. When method is “pad”, the signal is padded; the type of padding is de-
termined by padtype and padlen, and irlen is ignored. When method is “gust”, Gustafsson’s
method is used, and padtype and padlen are ignored.

• irlen (int or None, optional) – When method is “gust”, irlen specifies the length of
the impulse response of the filter. If irlen is None, no part of the impulse response is ignored.
For a long signal, specifying irlen can significantly improve the performance of the filter.

Returns
y – The filtered output with the same shape as x.

Return type
ndarray

See also:
sosfiltfilt, lfilter_zi, lfilter, lfiltic, savgol_filter, sosfilt

Notes

When method is “pad”, the function pads the data along the given axis in one of three ways: odd, even or constant.
The odd and even extensions have the corresponding symmetry about the end point of the data. The constant
extension extends the data with the values at the end points. On both the forward and backward passes, the initial
condition of the filter is found by using lfilter_zi and scaling it by the end point of the extended data.

When method is “gust”, Gustafsson’s method1 is used. Initial conditions are chosen for the forward and backward
passes so that the forward-backward filter gives the same result as the backward-forward filter.

References

cupyx.scipy.signal.savgol_filter

cupyx.scipy.signal.savgol_filter(x, window_length, polyorder, deriv=0, delta=1.0, axis=-1, mode='interp',
cval=0.0)

Apply a Savitzky-Golay filter to an array.

This is a 1-D filter. If x has dimension greater than 1, axis determines the axis along which the filter is applied.

Parameters
• x (array_like) – The data to be filtered. If x is not a single or double precision floating

point array, it will be converted to type numpy.float64 before filtering.

• window_length (int) – The length of the filter window (i.e., the number of coefficients).
If mode is ‘interp’, window_length must be less than or equal to the size of x.

• polyorder (int) – The order of the polynomial used to fit the samples. polyorder must be
less than window_length.

1 F. Gustaffson, “Determining the initial states in forward-backward filtering”, Transactions on Signal Processing, Vol. 46, pp. 988-992, 1996.

474 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• deriv (int, optional) – The order of the derivative to compute. This must be a nonneg-
ative integer. The default is 0, which means to filter the data without differentiating.

• delta (float, optional) – The spacing of the samples to which the filter will be applied.
This is only used if deriv > 0. Default is 1.0.

• axis (int, optional) – The axis of the array x along which the filter is to be applied.
Default is -1.

• mode (str, optional) – Must be ‘mirror’, ‘constant’, ‘nearest’, ‘wrap’ or ‘interp’. This
determines the type of extension to use for the padded signal to which the filter is applied.
When mode is ‘constant’, the padding value is given by cval. See the Notes for more details
on ‘mirror’, ‘constant’, ‘wrap’, and ‘nearest’. When the ‘interp’ mode is selected (the default),
no extension is used. Instead, a degree polyorder polynomial is fit to the last window_length
values of the edges, and this polynomial is used to evaluate the last window_length // 2 output
values.

• cval (scalar, optional) – Value to fill past the edges of the input if mode is ‘constant’.
Default is 0.0.

Returns
y – The filtered data.

Return type
ndarray, same shape as x

See also:
savgol_coeffs

Notes

Details on the mode options:

‘mirror’:
Repeats the values at the edges in reverse order. The value closest to the edge is not included.

‘nearest’:
The extension contains the nearest input value.

‘constant’:
The extension contains the value given by the cval argument.

‘wrap’:
The extension contains the values from the other end of the array.

For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and window_length is 7, the following shows the extended data
for the various mode options (assuming cval is 0):

mode | Ext | Input | Ext
-----------+---------+------------------------+---------
'mirror' | 4 3 2 | 1 2 3 4 5 6 7 8 | 7 6 5
'nearest' | 1 1 1 | 1 2 3 4 5 6 7 8 | 8 8 8
'constant' | 0 0 0 | 1 2 3 4 5 6 7 8 | 0 0 0
'wrap' | 6 7 8 | 1 2 3 4 5 6 7 8 | 1 2 3

New in version 0.14.0.

5.4. Routines (SciPy) 475

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Examples

>>> import numpy as np
>>> from scipy.signal import savgol_filter
>>> np.set_printoptions(precision=2) # For compact display.
>>> x = np.array([2, 2, 5, 2, 1, 0, 1, 4, 9])

Filter with a window length of 5 and a degree 2 polynomial. Use the defaults for all other parameters.

>>> savgol_filter(x, 5, 2)
array([1.66, 3.17, 3.54, 2.86, 0.66, 0.17, 1. , 4. , 9.])

Note that the last five values in x are samples of a parabola, so when mode=’interp’ (the default) is used with
polyorder=2, the last three values are unchanged. Compare that to, for example, mode=’nearest’:

>>> savgol_filter(x, 5, 2, mode='nearest')
array([1.74, 3.03, 3.54, 2.86, 0.66, 0.17, 1. , 4.6 , 7.97])

cupyx.scipy.signal.deconvolve

cupyx.scipy.signal.deconvolve(signal, divisor)
Deconvolves divisor out of signal using inverse filtering.

Returns the quotient and remainder such that signal = convolve(divisor, quotient) + remainder

Parameters
• signal ((N,) array_like) – Signal data, typically a recorded signal

• divisor ((N,) array_like) – Divisor data, typically an impulse response or filter that
was applied to the original signal

Returns
• quotient (ndarray) – Quotient, typically the recovered original signal

• remainder (ndarray) – Remainder

See also:

cupy.polydiv
performs polynomial division (same operation, but also accepts poly1d objects)

Examples

Deconvolve a signal that’s been filtered:

>>> from cupyx.scipy import signal
>>> original = [0, 1, 0, 0, 1, 1, 0, 0]
>>> impulse_response = [2, 1]
>>> recorded = signal.convolve(impulse_response, original)
>>> recorded
array([0, 2, 1, 0, 2, 3, 1, 0, 0])
>>> recovered, remainder = signal.deconvolve(recorded, impulse_response)
>>> recovered
array([0., 1., 0., 0., 1., 1., 0., 0.])

476 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.sosfilt

cupyx.scipy.signal.sosfilt(sos, x, axis=-1, zi=None)
Filter data along one dimension using cascaded second-order sections.

Filter a data sequence, x, using a digital IIR filter defined by sos.

Parameters
• sos (array_like) – Array of second-order filter coefficients, must have shape
(n_sections, 6). Each row corresponds to a second-order section, with the first three
columns providing the numerator coefficients and the last three providing the denominator
coefficients.

• x (array_like) – An N-dimensional input array.

• axis (int, optional) – The axis of the input data array along which to apply the linear
filter. The filter is applied to each subarray along this axis. Default is -1.

• zi (array_like, optional) – Initial conditions for the cascaded filter delays. It is a (at
least 2D) vector of shape (n_sections, ..., 4, ...), where ..., 4, ... denotes the
shape of x, but with x.shape[axis] replaced by 4. If zi is None or is not given then initial
rest (i.e. all zeros) is assumed. Note that these initial conditions are not the same as the initial
conditions given by lfiltic or lfilter_zi.

Returns
• y (ndarray) – The output of the digital filter.

• zf (ndarray, optional) – If zi is None, this is not returned, otherwise, zf holds the final filter
delay values.

See also:
zpk2sos, sos2zpk , sosfilt_zi, sosfiltfilt, sosfreqz

cupyx.scipy.signal.sosfilt_zi

cupyx.scipy.signal.sosfilt_zi(sos)
Construct initial conditions for sosfilt for step response steady-state.

Compute an initial state zi for the sosfilt function that corresponds to the steady state of the step response.

A typical use of this function is to set the initial state so that the output of the filter starts at the same value as the
first element of the signal to be filtered.

Parameters
sos (array_like) – Array of second-order filter coefficients, must have shape (n_sections,
6). See sosfilt for the SOS filter format specification.

Returns
zi – Initial conditions suitable for use with sosfilt, shape (n_sections, 4).

Return type
ndarray

See also:
sosfilt, zpk2sos

5.4. Routines (SciPy) 477

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.sosfiltfilt

cupyx.scipy.signal.sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None)
A forward-backward digital filter using cascaded second-order sections.

See filtfilt for more complete information about this method.

Parameters
• sos (array_like) – Array of second-order filter coefficients, must have shape
(n_sections, 6). Each row corresponds to a second-order section, with the first three
columns providing the numerator coefficients and the last three providing the denominator
coefficients.

• x (array_like) – The array of data to be filtered.

• axis (int, optional) – The axis of x to which the filter is applied. Default is -1.

• padtype (str or None, optional) – Must be ‘odd’, ‘even’, ‘constant’, or None. This
determines the type of extension to use for the padded signal to which the filter is applied. If
padtype is None, no padding is used. The default is ‘odd’.

• padlen (int or None, optional) – The number of elements by which to extend x at
both ends of axis before applying the filter. This value must be less than x.shape[axis] -
1. padlen=0 implies no padding. The default value is:

3 * (2 * len(sos) + 1 - min((sos[:, 2] == 0).sum(),
(sos[:, 5] == 0).sum()))

The extra subtraction at the end attempts to compensate for poles and zeros at the origin (e.g.
for odd-order filters) to yield equivalent estimates of padlen to those of filtfilt for second-order
section filters built with scipy.signal functions.

Returns
y – The filtered output with the same shape as x.

Return type
ndarray

See also:
filtfilt, sosfilt, sosfilt_zi, sosfreqz

cupyx.scipy.signal.hilbert

cupyx.scipy.signal.hilbert(x, N=None, axis=-1)
Compute the analytic signal, using the Hilbert transform.

The transformation is done along the last axis by default.

Parameters
• x (ndarray) – Signal data. Must be real.

• N (int, optional) – Number of Fourier components. Default: x.shape[axis]

• axis (int, optional) – Axis along which to do the transformation. Default: -1.

Returns
xa – Analytic signal of x, of each 1-D array along axis

478 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
ndarray

Notes

The analytic signal x_a(t) of signal x(t) is:

𝑥𝑎 = 𝐹−1(𝐹 (𝑥)2𝑈) = 𝑥+ 𝑖𝑦

where F is the Fourier transform, U the unit step function, and y the Hilbert transform of x.1

In other words, the negative half of the frequency spectrum is zeroed out, turning the real-valued signal into a
complex signal. The Hilbert transformed signal can be obtained from np.imag(hilbert(x)), and the original
signal from np.real(hilbert(x)).

References

See also:
scipy.signal.hilbert

cupyx.scipy.signal.hilbert2

cupyx.scipy.signal.hilbert2(x, N=None)
Compute the ‘2-D’ analytic signal of x

Parameters
• x (ndarray) – 2-D signal data.

• N (int or tuple of two ints, optional) – Number of Fourier components. Default
is x.shape

Returns
xa – Analytic signal of x taken along axes (0,1).

Return type
ndarray

See also:
scipy.signal.hilbert2

cupyx.scipy.signal.decimate

cupyx.scipy.signal.decimate(x, q, n=None, ftype='iir', axis=-1, zero_phase=True)
Downsample the signal after applying an anti-aliasing filter.

By default, an order 8 Chebyshev type I filter is used. A 30 point FIR filter with Hamming window is used if
ftype is ‘fir’.

Parameters
• x (array_like) – The signal to be downsampled, as an N-dimensional array.

1 Wikipedia, “Analytic signal”. https://en.wikipedia.org/wiki/Analytic_signal

5.4. Routines (SciPy) 479

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert.html#scipy.signal.hilbert
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert2.html#scipy.signal.hilbert2
https://en.wikipedia.org/wiki/Analytic_signal

CuPy Documentation, Release 13.0.0

• q (int) – The downsampling factor. When using IIR downsampling, it is recommended to
call decimate multiple times for downsampling factors higher than 13.

• n (int, optional) – The order of the filter (1 less than the length for ‘fir’). Defaults to 8
for ‘iir’ and 20 times the downsampling factor for ‘fir’.

• ftype (str {‘iir’, ‘fir’} or dlti instance, optional) – If ‘iir’ or ‘fir’, specifies the type of
lowpass filter. If an instance of an dlti object, uses that object to filter before downsampling.

• axis (int, optional) – The axis along which to decimate.

• zero_phase (bool, optional) – Prevent phase shift by filtering with filtfilt instead of lfil-
ter when using an IIR filter, and shifting the outputs back by the filter’s group delay when
using an FIR filter. The default value of True is recommended, since a phase shift is gener-
ally not desired.

Returns
y – The down-sampled signal.

Return type
ndarray

See also:

resample
Resample up or down using the FFT method.

resample_poly
Resample using polyphase filtering and an FIR filter.

cupyx.scipy.signal.detrend

cupyx.scipy.signal.detrend(data, axis=-1, type='linear', bp=0, overwrite_data=False)
Remove linear trend along axis from data.

Parameters
• data (array_like) – The input data.

• axis (int, optional) – The axis along which to detrend the data. By default this is the
last axis (-1).

• type ({'linear', 'constant'}, optional) – The type of detrending. If type ==
'linear' (default), the result of a linear least-squares fit to data is subtracted from data. If
type == 'constant', only the mean of data is subtracted.

• bp (array_like of ints, optional) – A sequence of break points. If given, an indi-
vidual linear fit is performed for each part of data between two break points. Break points are
specified as indices into data. This parameter only has an effect when type == 'linear'.

• overwrite_data (bool, optional) – If True, perform in place detrending and avoid a
copy. Default is False

Returns
ret – The detrended input data.

Return type
ndarray

See also:
scipy.signal.detrend

480 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.detrend.html#scipy.signal.detrend

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.resample

cupyx.scipy.signal.resample(x, num, t=None, axis=0, window=None, domain='time')
Resample x to num samples using Fourier method along the given axis.

The resampled signal starts at the same value as x but is sampled with a spacing of len(x) / num * (spacing
of x). Because a Fourier method is used, the signal is assumed to be periodic.

Parameters
• x (array_like) – The data to be resampled.

• num (int) – The number of samples in the resampled signal.

• t (array_like, optional) – If t is given, it is assumed to be the sample positions asso-
ciated with the signal data in x.

• axis (int, optional) – The axis of x that is resampled. Default is 0.

• window (array_like, callable, string, float, or tuple, optional) – Spec-
ifies the window applied to the signal in the Fourier domain. See below for details.

• domain (string, optional) – A string indicating the domain of the input x:

time
Consider the input x as time-domain. (Default)

freq
Consider the input x as frequency-domain.

Returns
Either the resampled array, or, if t was given, a tuple containing the resampled array and the
corresponding resampled positions.

Return type
resampled_x or (resampled_x, resampled_t)

See also:

decimate
Downsample the signal after applying an FIR or IIR filter.

resample_poly
Resample using polyphase filtering and an FIR filter.

Notes

The argument window controls a Fourier-domain window that tapers the Fourier spectrum before zero-padding to
alleviate ringing in the resampled values for sampled signals you didn’t intend to be interpreted as band-limited.

If window is a function, then it is called with a vector of inputs indicating the frequency bins (i.e. fft-
freq(x.shape[axis])).

If window is an array of the same length as x.shape[axis] it is assumed to be the window to be applied directly
in the Fourier domain (with dc and low-frequency first).

For any other type of window, the function cusignal.get_window is called to generate the window.

The first sample of the returned vector is the same as the first sample of the input vector. The spacing between
samples is changed from dx to dx * len(x) / num.

5.4. Routines (SciPy) 481

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

If t is not None, then it represents the old sample positions, and the new sample positions will be returned as well
as the new samples.

As noted, resample uses FFT transformations, which can be very slow if the number of input or output samples
is large and prime; see scipy.fftpack.fft.

Examples

Note that the end of the resampled data rises to meet the first sample of the next cycle:

>>> import cupy as cp
>>> import cupyx.scipy.signal import resample

>>> x = cupy.linspace(0, 10, 20, endpoint=False)
>>> y = cupy.cos(-x**2/6.0)
>>> f = resample(y, 100)
>>> xnew = cupy.linspace(0, 10, 100, endpoint=False)

>>> import matplotlib.pyplot as plt
>>> plt.plot(cupy.asnumpy(x), cupy.asnumpy(y), 'go-', cupy.asnumpy(xnew), ␣
→˓ cupy.asnumpy(f), '.-', 10, cupy.asnumpy(y[0]), 'ro')
>>> plt.legend(['data', 'resampled'], loc='best')
>>> plt.show()

cupyx.scipy.signal.resample_poly

cupyx.scipy.signal.resample_poly(x, up, down, axis=0, window=('kaiser', 5.0), padtype='constant',
cval=None)

Resample x along the given axis using polyphase filtering.

The signal x is upsampled by the factor up, a zero-phase low-pass FIR filter is applied, and then it is downsampled
by the factor down. The resulting sample rate is up / down times the original sample rate. Values beyond the
boundary of the signal are assumed to be zero during the filtering step.

Parameters
• x (array_like) – The data to be resampled.

• up (int) – The upsampling factor.

• down (int) – The downsampling factor.

• axis (int, optional) – The axis of x that is resampled. Default is 0.

• window (string, tuple, or array_like, optional) – Desired window to use to de-
sign the low-pass filter, or the FIR filter coefficients to employ. See below for details.

• padtype (string, optional) – constant, line, mean, median, maximum, minimum or
any of the other signal extension modes supported by cupyx.scipy.signal.upfirdn. Changes
assumptions on values beyond the boundary. If constant, assumed to be cval (default zero).
If line assumed to continue a linear trend defined by the first and last points. mean, median,
maximum and minimum work as in cupy.pad and assume that the values beyond the boundary
are the mean, median, maximum or minimum respectively of the array along the axis.

• cval (float, optional) – Value to use if padtype=’constant’. Default is zero.

482 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

Returns
resampled_x – The resampled array.

Return type
array

See also:

decimate
Downsample the signal after applying an FIR or IIR filter.

resample
Resample up or down using the FFT method.

Notes

This polyphase method will likely be faster than the Fourier method in cusignal.resample when the number of
samples is large and prime, or when the number of samples is large and up and down share a large greatest
common denominator. The length of the FIR filter used will depend on max(up, down) // gcd(up, down),
and the number of operations during polyphase filtering will depend on the filter length and down (see cusig-
nal.upfirdn for details).

The argument window specifies the FIR low-pass filter design.

If window is an array_like it is assumed to be the FIR filter coefficients. Note that the FIR filter is applied after
the upsampling step, so it should be designed to operate on a signal at a sampling frequency higher than the
original by a factor of up//gcd(up, down). This function’s output will be centered with respect to this array, so it
is best to pass a symmetric filter with an odd number of samples if, as is usually the case, a zero-phase filter is
desired.

For any other type of window, the functions cusignal.get_window and cusignal.firwin are called to generate the
appropriate filter coefficients.

The first sample of the returned vector is the same as the first sample of the input vector. The spacing between
samples is changed from dx to dx * down / float(up).

Examples

Note that the end of the resampled data rises to meet the first sample of the next cycle for the FFT method, and
gets closer to zero for the polyphase method:

>>> import cupy
>>> import cupyx.scipy.signal import resample, resample_poly

>>> x = cupy.linspace(0, 10, 20, endpoint=False)
>>> y = cupy.cos(-x**2/6.0)
>>> f_fft = resample(y, 100)
>>> f_poly = resample_poly(y, 100, 20)
>>> xnew = cupy.linspace(0, 10, 100, endpoint=False)

>>> import matplotlib.pyplot as plt
>>> plt.plot(cupy.asnumpy(xnew), cupy.asnumpy(f_fft), 'b.-', cupy.
→˓asnumpy(xnew), cupy.asnumpy(f_poly), 'r.-')
>>> plt.plot(cupy.asnumpy(x), cupy.asnumpy(y), 'ko-')
>>> plt.plot(10, cupy.asnumpy(y[0]), 'bo', 10, 0., 'ro') # boundaries

(continues on next page)

5.4. Routines (SciPy) 483

CuPy Documentation, Release 13.0.0

(continued from previous page)

>>> plt.legend(['resample', 'resamp_poly', 'data'], loc='best')
>>> plt.show()

cupyx.scipy.signal.upfirdn

cupyx.scipy.signal.upfirdn(h, x, up=1, down=1, axis=-1, mode=None, cval=0)
Upsample, FIR filter, and downsample.

Parameters
• h (array_like) – 1-dimensional FIR (finite-impulse response) filter coefficients.

• x (array_like) – Input signal array.

• up (int, optional) – Upsampling rate. Default is 1.

• down (int, optional) – Downsampling rate. Default is 1.

• axis (int, optional) – The axis of the input data array along which to apply the linear
filter. The filter is applied to each subarray along this axis. Default is -1.

• mode (str, optional) – This parameter is not implemented.

• cval (float, optional) – This parameter is not implemented.

Returns
y – The output signal array. Dimensions will be the same as x except for along axis, which will
change size according to the h, up, and down parameters.

Return type
ndarray

Notes

The algorithm is an implementation of the block diagram shown on page 129 of the Vaidyanathan text1 (Figure
4.3-8d).

The direct approach of upsampling by factor of P with zero insertion, FIR filtering of length N, and downsampling
by factor of Q is O(N*Q) per output sample. The polyphase implementation used here is O(N/P).

See also:
scipy.signal.upfirdn

References

1 P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, 1993.

484 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html#scipy.signal.upfirdn

CuPy Documentation, Release 13.0.0

Filter design

bilinear(b, a[, fs]) Return a digital IIR filter from an analog one using a
bilinear transform.

bilinear_zpk(z, p, k, fs) Return a digital IIR filter from an analog one using a
bilinear transform.

findfreqs(num, den, N[, kind]) Find array of frequencies for computing the response of
an analog filter.

freqs(b, a[, worN, plot]) Compute frequency response of analog filter.
freqs_zpk(z, p, k[, worN]) Compute frequency response of analog filter.
freqz(b[, a, worN, whole, plot, fs, ...]) Compute the frequency response of a digital filter.
freqz_zpk(z, p, k[, worN, whole, fs]) Compute the frequency response of a digital filter in ZPK

form.
sosfreqz(sos[, worN, whole, fs]) Compute the frequency response of a digital filter in SOS

format.
firwin(numtaps, cutoff[, width, window, ...]) FIR filter design using the window method.
firwin2(numtaps, freq, gain[, nfreqs, ...]) FIR filter design using the window method.
firls(numtaps, bands, desired[, weight, fs]) FIR filter design using least-squares error minimization.
minimum_phase(h[, method, n_fft]) Convert a linear-phase FIR filter to minimum phase
savgol_coeffs(window_length, polyorder[, ...]) Compute the coefficients for a 1-D Savitzky-Golay FIR

filter.
gammatone(freq, ftype[, order, numtaps, fs]) Gammatone filter design.
group_delay(system[, w, whole, fs]) Compute the group delay of a digital filter.
iirdesign(wp, ws, gpass, gstop[, analog, ...]) Complete IIR digital and analog filter design.
iirfilter(N, Wn[, rp, rs, btype, analog, ...]) IIR digital and analog filter design given order and crit-

ical points.
kaiser_atten(numtaps, width) Compute the attenuation of a Kaiser FIR filter.
kaiser_beta(a) Compute the Kaiser parameter beta, given the attenua-

tion a.
kaiserord(ripple, width) Determine the filter window parameters for the Kaiser

window method.
unique_roots(p[, tol, rtype]) Determine unique roots and their multiplicities from a

list of roots.
residue(b, a[, tol, rtype]) Compute partial-fraction expansion of b(s) / a(s).
residuez(b, a[, tol, rtype]) Compute partial-fraction expansion of b(z) / a(z).
invres(r, p, k[, tol, rtype]) Compute b(s) and a(s) from partial fraction expansion.
invresz(r, p, k[, tol, rtype]) Compute b(z) and a(z) from partial fraction expansion.
BadCoefficients Warning about badly conditioned filter coefficients

cupyx.scipy.signal.bilinear

cupyx.scipy.signal.bilinear(b, a, fs=1.0)
Return a digital IIR filter from an analog one using a bilinear transform.

Transform a set of poles and zeros from the analog s-plane to the digital z-plane using Tustin’s method, which
substitutes 2*fs*(z-1) / (z+1) for s, maintaining the shape of the frequency response.

Parameters
• b (array_like) – Numerator of the analog filter transfer function.

• a (array_like) – Denominator of the analog filter transfer function.

5.4. Routines (SciPy) 485

CuPy Documentation, Release 13.0.0

• fs (float) – Sample rate, as ordinary frequency (e.g., hertz). No prewarping is done in this
function.

Returns
• b (ndarray) – Numerator of the transformed digital filter transfer function.

• a (ndarray) – Denominator of the transformed digital filter transfer function.

See also:
lp2lp, lp2hp, lp2bp, lp2bs, bilinear_zpk , scipy.signal.bilinear

cupyx.scipy.signal.bilinear_zpk

cupyx.scipy.signal.bilinear_zpk(z, p, k, fs)
Return a digital IIR filter from an analog one using a bilinear transform.

Transform a set of poles and zeros from the analog s-plane to the digital z-plane using Tustin’s method, which
substitutes 2*fs*(z-1) / (z+1) for s, maintaining the shape of the frequency response.

Parameters
• z (array_like) – Zeros of the analog filter transfer function.

• p (array_like) – Poles of the analog filter transfer function.

• k (float) – System gain of the analog filter transfer function.

• fs (float) – Sample rate, as ordinary frequency (e.g., hertz). No prewarping is done in this
function.

Returns
• z (ndarray) – Zeros of the transformed digital filter transfer function.

• p (ndarray) – Poles of the transformed digital filter transfer function.

• k (float) – System gain of the transformed digital filter.

See also:
lp2lp_zpk , lp2hp_zpk , lp2bp_zpk , lp2bs_zpk , bilinear, scipy.signal.bilinear_zpk

cupyx.scipy.signal.findfreqs

cupyx.scipy.signal.findfreqs(num, den, N, kind='ba')
Find array of frequencies for computing the response of an analog filter.

Parameters
• num (array_like, 1-D) – The polynomial coefficients of the numerator and denominator

of the transfer function of the filter or LTI system, where the coefficients are ordered from
highest to lowest degree. Or, the roots of the transfer function numerator and denominator
(i.e., zeroes and poles).

• den (array_like, 1-D) – The polynomial coefficients of the numerator and denominator
of the transfer function of the filter or LTI system, where the coefficients are ordered from
highest to lowest degree. Or, the roots of the transfer function numerator and denominator
(i.e., zeroes and poles).

• N (int) – The length of the array to be computed.

486 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bilinear.html#scipy.signal.bilinear
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bilinear_zpk.html#scipy.signal.bilinear_zpk
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• kind (str {'ba', 'zp'}, optional) – Specifies whether the numerator and denominator
are specified by their polynomial coefficients (‘ba’), or their roots (‘zp’).

Returns
w – A 1-D array of frequencies, logarithmically spaced.

Return type
(N,) ndarray

Warning: This function may synchronize the device.

See also:
scipy.signal.find_freqs

Examples

Find a set of nine frequencies that span the “interesting part” of the frequency response for the filter with the
transfer function

H(s) = s / (s^2 + 8s + 25)

>>> from scipy import signal
>>> signal.findfreqs([1, 0], [1, 8, 25], N=9)
array([1.00000000e-02, 3.16227766e-02, 1.00000000e-01,

3.16227766e-01, 1.00000000e+00, 3.16227766e+00,
1.00000000e+01, 3.16227766e+01, 1.00000000e+02])

cupyx.scipy.signal.freqs

cupyx.scipy.signal.freqs(b, a, worN=200, plot=None)
Compute frequency response of analog filter.

Given the M-order numerator b and N-order denominator a of an analog filter, compute its frequency response:

b[0]*(jw)**M + b[1]*(jw)**(M-1) + ... + b[M]
H(w) = --

a[0]*(jw)**N + a[1]*(jw)**(N-1) + ... + a[N]

Parameters
• b (array_like) – Numerator of a linear filter.

• a (array_like) – Denominator of a linear filter.

• worN ({None, int, array_like}, optional) – If None, then compute at 200 frequen-
cies around the interesting parts of the response curve (determined by pole-zero locations).
If a single integer, then compute at that many frequencies. Otherwise, compute the response
at the angular frequencies (e.g., rad/s) given in worN.

• plot (callable, optional) – A callable that takes two arguments. If given, the return
parameters w and h are passed to plot. Useful for plotting the frequency response inside
freqs.

Returns

5.4. Routines (SciPy) 487

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• w (ndarray) – The angular frequencies at which h was computed.

• h (ndarray) – The frequency response.

See also:
scipy.signal.freqs

freqz
Compute the frequency response of a digital filter.

cupyx.scipy.signal.freqs_zpk

cupyx.scipy.signal.freqs_zpk(z, p, k, worN=200)
Compute frequency response of analog filter.

Given the zeros z, poles p, and gain k of a filter, compute its frequency response:

(jw-z[0]) * (jw-z[1]) * ... * (jw-z[-1])
H(w) = k * --

(jw-p[0]) * (jw-p[1]) * ... * (jw-p[-1])

Parameters
• z (array_like) – Zeroes of a linear filter

• p (array_like) – Poles of a linear filter

• k (scalar) – Gain of a linear filter

• worN ({None, int, array_like}, optional) – If None, then compute at 200 frequen-
cies around the interesting parts of the response curve (determined by pole-zero locations).
If a single integer, then compute at that many frequencies. Otherwise, compute the response
at the angular frequencies (e.g., rad/s) given in worN.

Returns
• w (ndarray) – The angular frequencies at which h was computed.

• h (ndarray) – The frequency response.

See also:
scipy.signal.freqs_zpk

cupyx.scipy.signal.freqz

cupyx.scipy.signal.freqz(b, a=1, worN=512, whole=False, plot=None, fs=6.283185307179586,
include_nyquist=False)

Compute the frequency response of a digital filter.

Given the M-order numerator b and N-order denominator a of a digital filter, compute its frequency response:

jw -jw -jwM
jw B(e) b[0] + b[1]e + ... + b[M]e

H(e) = ------ = -----------------------------------
jw -jw -jwN

A(e) a[0] + a[1]e + ... + a[N]e

488 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqs.html#scipy.signal.freqs
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqs_zpk.html#scipy.signal.freqs_zpk

CuPy Documentation, Release 13.0.0

Parameters
• b (array_like) – Numerator of a linear filter. If b has dimension greater than 1, it is assumed

that the coefficients are stored in the first dimension, and b.shape[1:], a.shape[1:], and
the shape of the frequencies array must be compatible for broadcasting.

• a (array_like) – Denominator of a linear filter. If b has dimension greater than 1, it
is assumed that the coefficients are stored in the first dimension, and b.shape[1:], a.
shape[1:], and the shape of the frequencies array must be compatible for broadcasting.

• worN ({None, int, array_like}, optional) – If a single integer, then compute at that
many frequencies (default is N=512). This is a convenient alternative to:

cupy.linspace(0, fs if whole else fs/2, N,
endpoint=include_nyquist)

Using a number that is fast for FFT computations can result in faster computations (see
Notes).

If an array_like, compute the response at the frequencies given. These are in the same units
as fs.

• whole (bool, optional) – Normally, frequencies are computed from 0 to the Nyquist
frequency, fs/2 (upper-half of unit-circle). If whole is True, compute frequencies from 0 to
fs. Ignored if worN is array_like.

• plot (callable) – A callable that takes two arguments. If given, the return parameters w
and h are passed to plot. Useful for plotting the frequency response inside freqz.

• fs (float, optional) – The sampling frequency of the digital system. Defaults to 2*pi
radians/sample (so w is from 0 to pi).

• include_nyquist (bool, optional) – If whole is False and worN is an integer, setting
include_nyquist to True will include the last frequency (Nyquist frequency) and is otherwise
ignored.

Returns
• w (ndarray) – The frequencies at which h was computed, in the same units as fs. By default,

w is normalized to the range [0, pi) (radians/sample).

• h (ndarray) – The frequency response, as complex numbers.

See also:
freqz_zpk , sosfreqz, scipy.signal.freqz

Notes

Using Matplotlib’s matplotlib.pyplot.plot() function as the callable for plot produces unexpected results,
as this plots the real part of the complex transfer function, not the magnitude. Try lambda w, h: plot(w,
cupy.abs(h)).

A direct computation via (R)FFT is used to compute the frequency response when the following conditions are
met:

1. An integer value is given for worN.

2. worN is fast to compute via FFT (i.e., next_fast_len(worN) <scipy.fft.next_fast_len> equals worN).

3. The denominator coefficients are a single value (a.shape[0] == 1).

5.4. Routines (SciPy) 489

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz.html#scipy.signal.freqz

CuPy Documentation, Release 13.0.0

4. worN is at least as long as the numerator coefficients (worN >= b.shape[0]).

5. If b.ndim > 1, then b.shape[-1] == 1.

For long FIR filters, the FFT approach can have lower error and be much faster than the equivalent direct poly-
nomial calculation.

cupyx.scipy.signal.freqz_zpk

cupyx.scipy.signal.freqz_zpk(z, p, k, worN=512, whole=False, fs=6.283185307179586)
Compute the frequency response of a digital filter in ZPK form.

Given the Zeros, Poles and Gain of a digital filter, compute its frequency response:

𝐻(𝑧) = 𝑘
∏︀

𝑖(𝑧 − 𝑍[𝑖])/
∏︀

𝑗(𝑧 − 𝑃 [𝑗])

where 𝑘 is the gain, 𝑍 are the zeros and 𝑃 are the poles.

Parameters
• z (array_like) – Zeroes of a linear filter

• p (array_like) – Poles of a linear filter

• k (scalar) – Gain of a linear filter

• worN ({None, int, array_like}, optional) – If a single integer, then compute at that
many frequencies (default is N=512).

If an array_like, compute the response at the frequencies given. These are in the same units
as fs.

• whole (bool, optional) – Normally, frequencies are computed from 0 to the Nyquist
frequency, fs/2 (upper-half of unit-circle). If whole is True, compute frequencies from 0 to
fs. Ignored if w is array_like.

• fs (float, optional) – The sampling frequency of the digital system. Defaults to 2*pi
radians/sample (so w is from 0 to pi).

Returns
• w (ndarray) – The frequencies at which h was computed, in the same units as fs. By default,

w is normalized to the range [0, pi) (radians/sample).

• h (ndarray) – The frequency response, as complex numbers.

See also:

freqs
Compute the frequency response of an analog filter in TF form

freqs_zpk
Compute the frequency response of an analog filter in ZPK form

freqz
Compute the frequency response of a digital filter in TF form

scipy.signal.freqz_zpk

490 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz_zpk.html#scipy.signal.freqz_zpk

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.sosfreqz

cupyx.scipy.signal.sosfreqz(sos, worN=512, whole=False, fs=6.283185307179586)
Compute the frequency response of a digital filter in SOS format.

Given sos, an array with shape (n, 6) of second order sections of a digital filter, compute the frequency response
of the system function:

B0(z) B1(z) B{n-1}(z)
H(z) = ----- * ----- * ... * ---------

A0(z) A1(z) A{n-1}(z)

for z = exp(omega*1j), where B{k}(z) and A{k}(z) are numerator and denominator of the transfer function of
the k-th second order section.

Parameters
• sos (array_like) – Array of second-order filter coefficients, must have shape
(n_sections, 6). Each row corresponds to a second-order section, with the first three
columns providing the numerator coefficients and the last three providing the denominator
coefficients.

• worN ({None, int, array_like}, optional) – If a single integer, then compute at that
many frequencies (default is N=512). Using a number that is fast for FFT computations can
result in faster computations (see Notes of freqz).

If an array_like, compute the response at the frequencies given (must be 1-D). These are in
the same units as fs.

• whole (bool, optional) – Normally, frequencies are computed from 0 to the Nyquist
frequency, fs/2 (upper-half of unit-circle). If whole is True, compute frequencies from 0 to
fs.

• fs (float, optional) – The sampling frequency of the digital system. Defaults to 2*pi
radians/sample (so w is from 0 to pi).

New in version 1.2.0.

Returns
• w (ndarray) – The frequencies at which h was computed, in the same units as fs. By default,

w is normalized to the range [0, pi) (radians/sample).

• h (ndarray) – The frequency response, as complex numbers.

See also:
freqz, sosfilt, scipy.signal.sosfreqz

cupyx.scipy.signal.firwin

cupyx.scipy.signal.firwin(numtaps, cutoff, width=None, window='hamming', pass_zero=True, scale=True,
fs=2)

FIR filter design using the window method.

This function computes the coefficients of a finite impulse response filter. The filter will have linear phase; it
will be Type I if numtaps is odd and Type II if numtaps is even.

Type II filters always have zero response at the Nyquist frequency, so a ValueError exception is raised if firwin
is called with numtaps even and having a passband whose right end is at the Nyquist frequency.

5.4. Routines (SciPy) 491

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfreqz.html#scipy.signal.sosfreqz

CuPy Documentation, Release 13.0.0

Parameters
• numtaps (int) – Length of the filter (number of coefficients, i.e. the filter order + 1). num-

taps must be odd if a passband includes the Nyquist frequency.

• cutoff (float or 1D array_like) – Cutoff frequency of filter (expressed in the same
units as fs) OR an array of cutoff frequencies (that is, band edges). In the latter case, the
frequencies in cutoff should be positive and monotonically increasing between 0 and fs/2.
The values 0 and fs/2 must not be included in cutoff.

• width (float or None, optional) – If width is not None, then assume it is the approx-
imate width of the transition region (expressed in the same units as fs) for use in Kaiser FIR
filter design. In this case, the window argument is ignored.

• window (string or tuple of string and parameter values, optional) – De-
sired window to use. See cusignal.get_window for a list of windows and required parameters.

• pass_zero ({True, False, 'bandpass', 'lowpass', 'highpass', 'bandstop'},) –
optional If True, the gain at the frequency 0 (i.e. the “DC gain”) is 1. If False, the DC
gain is 0. Can also be a string argument for the desired filter type (equivalent to btype in
IIR design functions).

• scale (bool, optional) – Set to True to scale the coefficients so that the frequency re-
sponse is exactly unity at a certain frequency. That frequency is either:

– 0 (DC) if the first passband starts at 0 (i.e. pass_zero is True)

– fs/2 (the Nyquist frequency) if the first passband ends at fs/2 (i.e the filter is a single band
highpass filter); center of first passband otherwise

• fs (float, optional) – The sampling frequency of the signal. Each frequency in cutoff
must be between 0 and fs/2. Default is 2.

Returns
h – Coefficients of length numtaps FIR filter.

Return type
(numtaps,) ndarray

Raises
ValueError – If any value in cutoff is less than or equal to 0 or greater than or equal to fs/2, if
the values in cutoff are not strictly monotonically increasing, or if numtaps is even but a passband
includes the Nyquist frequency.

See also:
firwin2, firls, minimum_phase, remez

Examples

Low-pass from 0 to f:

>>> import cusignal
>>> numtaps = 3
>>> f = 0.1
>>> cusignal.firwin(numtaps, f)
array([0.06799017, 0.86401967, 0.06799017])

Use a specific window function:

492 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

CuPy Documentation, Release 13.0.0

>>> cusignal.firwin(numtaps, f, window='nuttall')
array([3.56607041e-04, 9.99286786e-01, 3.56607041e-04])

High-pass (‘stop’ from 0 to f):

>>> cusignal.firwin(numtaps, f, pass_zero=False)
array([-0.00859313, 0.98281375, -0.00859313])

Band-pass:

>>> f1, f2 = 0.1, 0.2
>>> cusignal.firwin(numtaps, [f1, f2], pass_zero=False)
array([0.06301614, 0.88770441, 0.06301614])

Band-stop:

>>> cusignal.firwin(numtaps, [f1, f2])
array([-0.00801395, 1.0160279 , -0.00801395])

Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):

>>> f3, f4 = 0.3, 0.4
>>> cusignal.firwin(numtaps, [f1, f2, f3, f4])
array([-0.01376344, 1.02752689, -0.01376344])

Multi-band (passbands are [f1, f2] and [f3,f4]):

>>> cusignal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)
array([0.04890915, 0.91284326, 0.04890915])

cupyx.scipy.signal.firwin2

cupyx.scipy.signal.firwin2(numtaps, freq, gain, nfreqs=None, window='hamming', nyq=None,
antisymmetric=False, fs=2.0)

FIR filter design using the window method.

From the given frequencies freq and corresponding gains gain, this function constructs an FIR filter with linear
phase and (approximately) the given frequency response.

Parameters
• numtaps (int) – The number of taps in the FIR filter. numtaps must be less than nfreqs.

• freq (array_like, 1-D) – The frequency sampling points. Typically 0.0 to 1.0 with 1.0
being Nyquist. The Nyquist frequency is half fs. The values in freq must be nondecreasing.
A value can be repeated once to implement a discontinuity. The first value in freq must be
0, and the last value must be fs/2. Values 0 and fs/2 must not be repeated.

• gain (array_like) – The filter gains at the frequency sampling points. Certain constraints
to gain values, depending on the filter type, are applied, see Notes for details.

• nfreqs (int, optional) – The size of the interpolation mesh used to construct the filter.
For most efficient behavior, this should be a power of 2 plus 1 (e.g, 129, 257, etc). The default
is one more than the smallest power of 2 that is not less than numtaps. nfreqs must be greater
than numtaps.

5.4. Routines (SciPy) 493

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• window (string or (string, float) or float, or None, optional) – Window
function to use. Default is “hamming”. See scipy.signal.get_window for the complete list of
possible values. If None, no window function is applied.

• antisymmetric (bool, optional) – Whether resulting impulse response is symmet-
ric/antisymmetric. See Notes for more details.

• fs (float, optional) – The sampling frequency of the signal. Each frequency in cutoff
must be between 0 and fs/2. Default is 2.

Returns
taps – The filter coefficients of the FIR filter, as a 1-D array of length numtaps.

Return type
ndarray

See also:
scipy.signal.firwin2, firls, firwin, minimum_phase, remez

Notes

From the given set of frequencies and gains, the desired response is constructed in the frequency domain. The
inverse FFT is applied to the desired response to create the associated convolution kernel, and the first numtaps
coefficients of this kernel, scaled by window, are returned. The FIR filter will have linear phase. The type of
filter is determined by the value of ‘numtaps` and antisymmetric flag. There are four possible combinations:

• odd numtaps, antisymmetric is False, type I filter is produced

• even numtaps, antisymmetric is False, type II filter is produced

• odd numtaps, antisymmetric is True, type III filter is produced

• even numtaps, antisymmetric is True, type IV filter is produced

Magnitude response of all but type I filters are subjects to following constraints:

• type II – zero at the Nyquist frequency

• type III – zero at zero and Nyquist frequencies

• type IV – zero at zero frequency

cupyx.scipy.signal.firls

cupyx.scipy.signal.firls(numtaps, bands, desired, weight=None, fs=2)
FIR filter design using least-squares error minimization.

Calculate the filter coefficients for the linear-phase finite impulse response (FIR) filter which has the best approx-
imation to the desired frequency response described by bands and desired in the least squares sense (i.e., the
integral of the weighted mean-squared error within the specified bands is minimized).

Parameters
• numtaps (int) – The number of taps in the FIR filter. numtaps must be odd.

• bands (array_like) – A monotonic nondecreasing sequence containing the band edges in
Hz. All elements must be non-negative and less than or equal to the Nyquist frequency given
by fs/2. The bands are specified as frequency pairs, thus, if using a 1D array, its length must
be even, e.g., cupy.array([0, 1, 2, 3, 4, 5]). Alternatively, the bands can be specified as an
nx2 sized 2D array, where n is the number of bands, e.g, cupy.array([[0, 1], [2, 3], [4, 5]]).

494 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin2.html#scipy.signal.firwin2
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

All elements of bands must be monotonically nondecreasing, have width > 0, and must not
overlap. (This is not checked by the routine).

• desired (array_like) – A sequence the same size as bands containing the desired gain at
the start and end point of each band. All elements must be non-negative (this is not checked
by the routine).

• weight (array_like, optional) – A relative weighting to give to each band region when
solving the least squares problem. weight has to be half the size of bands. All elements must
be non-negative (this is not checked by the routine).

• fs (float, optional) – The sampling frequency of the signal. Each frequency in bands
must be between 0 and fs/2 (inclusive). Default is 2.

Returns
coeffs – Coefficients of the optimal (in a least squares sense) FIR filter.

Return type
ndarray

See also:
firwin, firwin2, minimum_phase, remez, scipy.signal.firls

cupyx.scipy.signal.minimum_phase

cupyx.scipy.signal.minimum_phase(h, method='homomorphic', n_fft=None)
Convert a linear-phase FIR filter to minimum phase

Parameters
• h (array) – Linear-phase FIR filter coefficients.

• method ({'hilbert', 'homomorphic'}) – The method to use:

’homomorphic’ (default)
This method45 works best with filters with an odd number of taps, and the resulting
minimum phase filter will have a magnitude response that approximates the square
root of the original filter’s magnitude response.

’hilbert’
This method1 is designed to be used with equiripple filters (e.g., from remez) with
unity or zero gain regions.

• n_fft (int) – The number of points to use for the FFT. Should be at least a few times larger
than the signal length (see Notes).

Returns
h_minimum – The minimum-phase version of the filter, with length (length(h) + 1) // 2.

Return type
array

See also:
scipy.signal.minimum_phase

4 J. S. Lim, Advanced Topics in Signal Processing. Englewood Cliffs, N.J.: Prentice Hall, 1988.
5 A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Discrete-Time Signal Processing,” 2nd edition. Upper Saddle River, N.J.: Prentice Hall,

1999.
1 N. Damera-Venkata and B. L. Evans, “Optimal design of real and complex minimum phase digital FIR filters,” Acoustics, Speech,

and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on, Phoenix, AZ, 1999, pp. 1145-1148 vol.3.
DOI:10.1109/ICASSP.1999.756179

5.4. Routines (SciPy) 495

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firls.html#scipy.signal.firls
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.minimum_phase.html#scipy.signal.minimum_phase

CuPy Documentation, Release 13.0.0

Notes

Both the HilbertPage 495, 1 or homomorphicPage 495, 4Page 495, 5 methods require selection of an FFT length to estimate
the complex cepstrum of the filter.

In the case of the Hilbert method, the deviation from the ideal spectrum epsilon is related to the number of
stopband zeros n_stop and FFT length n_fft as:

epsilon = 2. * n_stop / n_fft

For example, with 100 stopband zeros and a FFT length of 2048, epsilon = 0.0976. If we conservatively
assume that the number of stopband zeros is one less than the filter length, we can take the FFT length to be the
next power of 2 that satisfies epsilon=0.01 as:

n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))

This gives reasonable results for both the Hilbert and homomorphic methods, and gives the value used when
n_fft=None.

Alternative implementations exist for creating minimum-phase filters, including zero inversion2 and spectral
factorization3Page 495, 4Page 495, 5. For more information, see:

http://dspguru.com/dsp/howtos/how-to-design-minimum-phase-fir-filters

References

cupyx.scipy.signal.savgol_coeffs

cupyx.scipy.signal.savgol_coeffs(window_length, polyorder, deriv=0, delta=1.0, pos=None, use='conv')
Compute the coefficients for a 1-D Savitzky-Golay FIR filter.

Parameters
• window_length (int) – The length of the filter window (i.e., the number of coefficients).

• polyorder (int) – The order of the polynomial used to fit the samples. polyorder must be
less than window_length.

• deriv (int, optional) – The order of the derivative to compute. This must be a nonneg-
ative integer. The default is 0, which means to filter the data without differentiating.

• delta (float, optional) – The spacing of the samples to which the filter will be applied.
This is only used if deriv > 0.

• pos (int or None, optional) – If pos is not None, it specifies evaluation position within
the window. The default is the middle of the window.

• use (str, optional) – Either ‘conv’ or ‘dot’. This argument chooses the order of the
coefficients. The default is ‘conv’, which means that the coefficients are ordered to be used
in a convolution. With use=’dot’, the order is reversed, so the filter is applied by dotting the
coefficients with the data set.

Returns
coeffs – The filter coefficients.

2 X. Chen and T. W. Parks, “Design of optimal minimum phase FIR filters by direct factorization,” Signal Processing, vol. 10, no. 4, pp. 369-383,
Jun. 1986.

3 T. Saramaki, “Finite Impulse Response Filter Design,” in Handbook for Digital Signal Processing, chapter 4, New York: Wiley-Interscience,
1993.

496 Chapter 5. API Reference

http://dspguru.com/dsp/howtos/how-to-design-minimum-phase-fir-filters
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Return type
1-D ndarray

See also:
scipy.signal.savgol_coeffs, savgol_filter

References

A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
Analytical Chemistry, 1964, 36 (8), pp 1627-1639. Jianwen Luo, Kui Ying, and Jing Bai. 2005. Savitzky-Golay
smoothing and differentiation filter for even number data. Signal Process. 85, 7 (July 2005), 1429-1434.

Examples

>>> import numpy as np
>>> from scipy.signal import savgol_coeffs
>>> savgol_coeffs(5, 2)
array([-0.08571429, 0.34285714, 0.48571429, 0.34285714, -0.08571429])
>>> savgol_coeffs(5, 2, deriv=1)
array([2.00000000e-01, 1.00000000e-01, 2.07548111e-16, -1.00000000e-01,

-2.00000000e-01])

Note that use=’dot’ simply reverses the coefficients.

>>> savgol_coeffs(5, 2, pos=3)
array([0.25714286, 0.37142857, 0.34285714, 0.17142857, -0.14285714])
>>> savgol_coeffs(5, 2, pos=3, use='dot')
array([-0.14285714, 0.17142857, 0.34285714, 0.37142857, 0.25714286])
>>> savgol_coeffs(4, 2, pos=3, deriv=1, use='dot')
array([0.45, -0.85, -0.65, 1.05])

x contains data from the parabola x = t**2, sampled at t = -1, 0, 1, 2, 3. c holds the coefficients that will compute
the derivative at the last position. When dotted with x the result should be 6.

>>> x = np.array([1, 0, 1, 4, 9])
>>> c = savgol_coeffs(5, 2, pos=4, deriv=1, use='dot')
>>> c.dot(x)
6.0

cupyx.scipy.signal.gammatone

cupyx.scipy.signal.gammatone(freq, ftype, order=None, numtaps=None, fs=None)
Gammatone filter design.

This function computes the coefficients of an FIR or IIR gammatone digital filter1.

Parameters
• freq (float) – Center frequency of the filter (expressed in the same units as fs).

1 Slaney, Malcolm, “An Efficient Implementation of the Patterson-Holdsworth Auditory Filter Bank”, Apple Computer Technical Report 35,
1993, pp.3-8, 34-39.

5.4. Routines (SciPy) 497

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_coeffs.html#scipy.signal.savgol_coeffs
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• ftype ({'fir', 'iir'}) – The type of filter the function generates. If ‘fir’, the function will
generate an Nth order FIR gammatone filter. If ‘iir’, the function will generate an 8th order
digital IIR filter, modeled as as 4th order gammatone filter.

• order (int, optional) – The order of the filter. Only used when ftype='fir'. Default
is 4 to model the human auditory system. Must be between 0 and 24.

• numtaps (int, optional) – Length of the filter. Only used when ftype='fir'. Default
is fs*0.015 if fs is greater than 1000, 15 if fs is less than or equal to 1000.

• fs (float, optional) – The sampling frequency of the signal. freq must be between 0
and fs/2. Default is 2.

Returns
b, a – Numerator (b) and denominator (a) polynomials of the filter.

Return type
ndarray, ndarray

Raises
ValueError – If freq is less than or equal to 0 or greater than or equal to fs/2, if ftype is not
‘fir’ or ‘iir’, if order is less than or equal to 0 or greater than 24 when ftype='fir'

See also:
firwin, iirfilter

References

cupyx.scipy.signal.group_delay

cupyx.scipy.signal.group_delay(system, w=512, whole=False, fs=6.283185307179586)
Compute the group delay of a digital filter.

The group delay measures by how many samples amplitude envelopes of various spectral components of a signal
are delayed by a filter. It is formally defined as the derivative of continuous (unwrapped) phase:

d jw
D(w) = - -- arg H(e)

dw

Parameters
• system (tuple of array_like (b, a)) – Numerator and denominator coefficients of

a filter transfer function.

• w ({None, int, array_like}, optional) – If a single integer, then compute at that
many frequencies (default is N=512).

If an array_like, compute the delay at the frequencies given. These are in the same units as
fs.

• whole (bool, optional) – Normally, frequencies are computed from 0 to the Nyquist
frequency, fs/2 (upper-half of unit-circle). If whole is True, compute frequencies from 0 to
fs. Ignored if w is array_like.

• fs (float, optional) – The sampling frequency of the digital system. Defaults to 2*pi
radians/sample (so w is from 0 to pi).

Returns

498 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• w (ndarray) – The frequencies at which group delay was computed, in the same units as fs.
By default, w is normalized to the range [0, pi) (radians/sample).

• gd (ndarray) – The group delay.

See also:

freqz
Frequency response of a digital filter

Notes

The similar function in MATLAB is called grpdelay.

If the transfer function 𝐻(𝑧) has zeros or poles on the unit circle, the group delay at corresponding frequencies
is undefined. When such a case arises the warning is raised and the group delay is set to 0 at those frequencies.

For the details of numerical computation of the group delay refer to1.

References

cupyx.scipy.signal.iirdesign

cupyx.scipy.signal.iirdesign(wp, ws, gpass, gstop, analog=False, ftype='ellip', output='ba', fs=None)
Complete IIR digital and analog filter design.

Given passband and stopband frequencies and gains, construct an analog or digital IIR filter of minimum order
for a given basic type. Return the output in numerator, denominator (‘ba’), pole-zero (‘zpk’) or second order
sections (‘sos’) form.

Parameters
• wp (float or array like, shape (2,)) – Passband and stopband edge frequencies.

Possible values are scalars (for lowpass and highpass filters) or ranges (for bandpass and
bandstop filters). For digital filters, these are in the same units as fs. By default, fs is 2 half-
cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. For
example:

– Lowpass: wp = 0.2, ws = 0.3

– Highpass: wp = 0.3, ws = 0.2

– Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

– Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies (e.g., rad/s). Note, that for bandpass
and bandstop filters passband must lie strictly inside stopband or vice versa.

• ws (float or array like, shape (2,)) – Passband and stopband edge frequencies.
Possible values are scalars (for lowpass and highpass filters) or ranges (for bandpass and
bandstop filters). For digital filters, these are in the same units as fs. By default, fs is 2 half-
cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. For
example:

– Lowpass: wp = 0.2, ws = 0.3
1 Richard G. Lyons, “Understanding Digital Signal Processing, 3rd edition”, p. 830.

5.4. Routines (SciPy) 499

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

– Highpass: wp = 0.3, ws = 0.2

– Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

– Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies (e.g., rad/s). Note, that for bandpass
and bandstop filters passband must lie strictly inside stopband or vice versa.

• gpass (float) – The maximum loss in the passband (dB).

• gstop (float) – The minimum attenuation in the stopband (dB).

• analog (bool, optional) – When True, return an analog filter, otherwise a digital filter
is returned.

• ftype (str, optional) – The type of IIR filter to design:

– Butterworth : ‘butter’

– Chebyshev I : ‘cheby1’

– Chebyshev II : ‘cheby2’

– Cauer/elliptic: ‘ellip’

• output ({'ba', 'zpk', 'sos'}, optional) – Filter form of the output:

– second-order sections (recommended): ‘sos’

– numerator/denominator (default) : ‘ba’

– pole-zero : ‘zpk’

In general the second-order sections (‘sos’) form is recommended because inferring the co-
efficients for the numerator/denominator form (‘ba’) suffers from numerical instabilities. For
reasons of backward compatibility the default form is the numerator/denominator form (‘ba’),
where the ‘b’ and the ‘a’ in ‘ba’ refer to the commonly used names of the coefficients used.

Note: Using the second-order sections form (‘sos’) is sometimes associated with additional
computational costs: for data-intense use cases it is therefore recommended to also investi-
gate the numerator/denominator form (‘ba’).

• fs (float, optional) – The sampling frequency of the digital system.

New in version 1.2.0.

Returns
• b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.

Only returned if output='ba'.

• z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

• sos (ndarray) – Second-order sections representation of the IIR filter. Only returned if
output='sos'.

See also:
scipy.signal.iirdesign

butter
Filter design using order and critical points

cheby1, cheby2, ellip, bessel

500 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html#scipy.signal.iirdesign

CuPy Documentation, Release 13.0.0

buttord
Find order and critical points from passband and stopband spec

cheb1ord , cheb2ord , ellipord

iirfilter
General filter design using order and critical frequencies

cupyx.scipy.signal.iirfilter

cupyx.scipy.signal.iirfilter(N, Wn, rp=None, rs=None, btype='band', analog=False, ftype='butter',
output='ba', fs=None)

IIR digital and analog filter design given order and critical points.

Design an Nth-order digital or analog filter and return the filter coefficients.

Parameters
• N (int) – The order of the filter.

• Wn (array_like) – A scalar or length-2 sequence giving the critical frequencies.

For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles
/ sample.)

For analog filters, Wn is an angular frequency (e.g., rad/s).

When Wn is a length-2 sequence, Wn[0] must be less than Wn[1].

• rp (float, optional) – For Chebyshev and elliptic filters, provides the maximum ripple
in the passband. (dB)

• rs (float, optional) – For Chebyshev and elliptic filters, provides the minimum attenu-
ation in the stop band. (dB)

• btype ({'bandpass', 'lowpass', 'highpass', 'bandstop'}, optional) – The type of
filter. Default is ‘bandpass’.

• analog (bool, optional) – When True, return an analog filter, otherwise a digital filter
is returned.

• ftype (str, optional) – The type of IIR filter to design:

– Butterworth : ‘butter’

– Chebyshev I : ‘cheby1’

– Chebyshev II : ‘cheby2’

– Cauer/elliptic: ‘ellip’

– Bessel/Thomson: ‘bessel’

• output ({'ba', 'zpk', 'sos'}, optional) – Filter form of the output:

– second-order sections (recommended): ‘sos’

– numerator/denominator (default) : ‘ba’

– pole-zero : ‘zpk’

5.4. Routines (SciPy) 501

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

In general the second-order sections (‘sos’) form is recommended because inferring the co-
efficients for the numerator/denominator form (‘ba’) suffers from numerical instabilities. For
reasons of backward compatibility the default form is the numerator/denominator form (‘ba’),
where the ‘b’ and the ‘a’ in ‘ba’ refer to the commonly used names of the coefficients used.

Note: Using the second-order sections form (‘sos’) is sometimes associated with additional
computational costs: for data-intense use cases it is therefore recommended to also investi-
gate the numerator/denominator form (‘ba’).

• fs (float, optional) – The sampling frequency of the digital system.

Returns
• b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.

Only returned if output='ba'.

• z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

• sos (ndarray) – Second-order sections representation of the IIR filter. Only returned if
output='sos'.

See also:

butter
Filter design using order and critical points

cheby1, cheby2, ellip, bessel

buttord
Find order and critical points from passband and stopband spec

cheb1ord , cheb2ord , ellipord

iirdesign
General filter design using passband and stopband spec

scipy.signal.iirfilter

cupyx.scipy.signal.kaiser_atten

cupyx.scipy.signal.kaiser_atten(numtaps, width)
Compute the attenuation of a Kaiser FIR filter.

Given the number of taps N and the transition width width, compute the attenuation a in dB, given by Kaiser’s
formula:

a = 2.285 * (N - 1) * pi * width + 7.95

Parameters
• numtaps (int) – The number of taps in the FIR filter.

• width (float) – The desired width of the transition region between passband and stopband
(or, in general, at any discontinuity) for the filter, expressed as a fraction of the Nyquist
frequency.

Returns
a – The attenuation of the ripple, in dB.

502 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

Return type
float

See also:
scipy.signal.kaiser_atten

cupyx.scipy.signal.kaiser_beta

cupyx.scipy.signal.kaiser_beta(a)
Compute the Kaiser parameter beta, given the attenuation a.

Parameters
a (float) – The desired attenuation in the stopband and maximum ripple in the passband, in dB.
This should be a positive number.

Returns
beta – The beta parameter to be used in the formula for a Kaiser window.

Return type
float

References

Oppenheim, Schafer, “Discrete-Time Signal Processing”, p.475-476.

See also:
scipy.signal.kaiser_beta

cupyx.scipy.signal.kaiserord

cupyx.scipy.signal.kaiserord(ripple, width)
Determine the filter window parameters for the Kaiser window method.

The parameters returned by this function are generally used to create a finite impulse response filter using the
window method, with either firwin or firwin2.

Parameters
• ripple (float) – Upper bound for the deviation (in dB) of the magnitude of the filter’s

frequency response from that of the desired filter (not including frequencies in any transition
intervals). That is, if w is the frequency expressed as a fraction of the Nyquist frequency,
A(w) is the actual frequency response of the filter and D(w) is the desired frequency response,
the design requirement is that:

abs(A(w) - D(w))) < 10**(-ripple/20)

for 0 <= w <= 1 and w not in a transition interval.

• width (float) – Width of transition region, normalized so that 1 corresponds to pi radians
/ sample. That is, the frequency is expressed as a fraction of the Nyquist frequency.

Returns
• numtaps (int) – The length of the Kaiser window.

5.4. Routines (SciPy) 503

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiser_atten.html#scipy.signal.kaiser_atten
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiser_beta.html#scipy.signal.kaiser_beta
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• beta (float) – The beta parameter for the Kaiser window.

See also:
scipy.signal.kaiserord

cupyx.scipy.signal.unique_roots

cupyx.scipy.signal.unique_roots(p, tol=0.001, rtype='min')
Determine unique roots and their multiplicities from a list of roots.

Parameters
• p (array_like) – The list of roots.

• tol (float, optional) – The tolerance for two roots to be considered equal in terms of the
distance between them. Default is 1e-3. Refer to Notes about the details on roots grouping.

• rtype ({'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}, optional) – How to
determine the returned root if multiple roots are within tol of each other.

– ’max’, ‘maximum’: pick the maximum of those roots

– ’min’, ‘minimum’: pick the minimum of those roots

– ’avg’, ‘mean’: take the average of those roots

When finding minimum or maximum among complex roots they are compared first by the
real part and then by the imaginary part.

Returns
• unique (ndarray) – The list of unique roots.

• multiplicity (ndarray) – The multiplicity of each root.

See also:
scipy.signal.unique_roots

Notes

If we have 3 roots a, b and c, such that a is close to b and b is close to c (distance is less than tol), then it doesn’t
necessarily mean that a is close to c. It means that roots grouping is not unique. In this function we use “greedy”
grouping going through the roots in the order they are given in the input p.

This utility function is not specific to roots but can be used for any sequence of values for which uniqueness and
multiplicity has to be determined. For a more general routine, see numpy.unique.

cupyx.scipy.signal.residue

cupyx.scipy.signal.residue(b, a, tol=0.001, rtype='avg')
Compute partial-fraction expansion of b(s) / a(s).

If M is the degree of numerator b and N the degree of denominator a:

b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
H(s) = ------ = --

a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N]

504 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiserord.html#scipy.signal.kaiserord
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.unique_roots.html#scipy.signal.unique_roots

CuPy Documentation, Release 13.0.0

then the partial-fraction expansion H(s) is defined as:

r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)
(s-p[0]) (s-p[1]) (s-p[-1])

If there are any repeated roots (closer together than tol), then H(s) has terms like:

r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n

This function is used for polynomials in positive powers of s or z, such as analog filters or digital filters in controls
engineering. For negative powers of z (typical for digital filters in DSP), use residuez.

See Notes for details about the algorithm.

Parameters
• b (array_like) – Numerator polynomial coefficients.

• a (array_like) – Denominator polynomial coefficients.

• tol (float, optional) – The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See unique_roots for further details.

• rtype ({'avg', 'min', 'max'}, optional) – Method for computing a root to represent a
group of identical roots. Default is ‘avg’. See unique_roots for further details.

Returns
• r (ndarray) – Residues corresponding to the poles. For repeated poles, the residues are

ordered to correspond to ascending by power fractions.

• p (ndarray) – Poles ordered by magnitude in ascending order.

• k (ndarray) – Coefficients of the direct polynomial term.

Warning: This function may synchronize the device.

See also:
scipy.signal.residue, invres, residuez, numpy.poly, unique_roots

Notes

The “deflation through subtraction” algorithm is used for computations — method 6 in1.

The form of partial fraction expansion depends on poles multiplicity in the exact mathematical sense. However
there is no way to exactly determine multiplicity of roots of a polynomial in numerical computing. Thus you
should think of the result of residue with given tol as partial fraction expansion computed for the denominator
composed of the computed poles with empirically determined multiplicity. The choice of tol can drastically
change the result if there are close poles.

1 J. F. Mahoney, B. D. Sivazlian, “Partial fractions expansion: a review of computational methodology and efficiency”, Journal of Computational
and Applied Mathematics, Vol. 9, 1983.

5.4. Routines (SciPy) 505

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.residue.html#scipy.signal.residue
https://numpy.org/doc/stable/reference/generated/numpy.poly.html#numpy.poly

CuPy Documentation, Release 13.0.0

References

cupyx.scipy.signal.residuez

cupyx.scipy.signal.residuez(b, a, tol=0.001, rtype='avg')
Compute partial-fraction expansion of b(z) / a(z).

If M is the degree of numerator b and N the degree of denominator a:

b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
H(z) = ------ = --

a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N)

then the partial-fraction expansion H(z) is defined as:

r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
(1-p[0]z**(-1)) (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:

r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n

This function is used for polynomials in negative powers of z, such as digital filters in DSP. For positive powers,
use residue.

See Notes of residue for details about the algorithm.

Parameters
• b (array_like) – Numerator polynomial coefficients.

• a (array_like) – Denominator polynomial coefficients.

• tol (float, optional) – The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See unique_roots for further details.

• rtype ({'avg', 'min', 'max'}, optional) – Method for computing a root to represent a
group of identical roots. Default is ‘avg’. See unique_roots for further details.

Returns
• r (ndarray) – Residues corresponding to the poles. For repeated poles, the residues are

ordered to correspond to ascending by power fractions.

• p (ndarray) – Poles ordered by magnitude in ascending order.

• k (ndarray) – Coefficients of the direct polynomial term.

Warning: This function may synchronize the device.

See also:
scipy.signal.residuez, invresz, residue, unique_roots

506 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.residuez.html#scipy.signal.residuez

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.invres

cupyx.scipy.signal.invres(r, p, k, tol=0.001, rtype='avg')
Compute b(s) and a(s) from partial fraction expansion.

If M is the degree of numerator b and N the degree of denominator a:

b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
H(s) = ------ = --

a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N]

then the partial-fraction expansion H(s) is defined as:

r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)
(s-p[0]) (s-p[1]) (s-p[-1])

If there are any repeated roots (closer together than tol), then H(s) has terms like:

r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n

This function is used for polynomials in positive powers of s or z, such as analog filters or digital filters in controls
engineering. For negative powers of z (typical for digital filters in DSP), use invresz.

Parameters
• r (array_like) – Residues corresponding to the poles. For repeated poles, the residues

must be ordered to correspond to ascending by power fractions.

• p (array_like) – Poles. Equal poles must be adjacent.

• k (array_like) – Coefficients of the direct polynomial term.

• tol (float, optional) – The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See unique_roots for further details.

• rtype ({'avg', 'min', 'max'}, optional) – Method for computing a root to represent a
group of identical roots. Default is ‘avg’. See unique_roots for further details.

Returns
• b (ndarray) – Numerator polynomial coefficients.

• a (ndarray) – Denominator polynomial coefficients.

See also:
scipy.signal.invres, residue, invresz, unique_roots

5.4. Routines (SciPy) 507

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.invres.html#scipy.signal.invres

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.invresz

cupyx.scipy.signal.invresz(r, p, k, tol=0.001, rtype='avg')
Compute b(z) and a(z) from partial fraction expansion.

If M is the degree of numerator b and N the degree of denominator a:

b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
H(z) = ------ = --

a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N)

then the partial-fraction expansion H(z) is defined as:

r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
(1-p[0]z**(-1)) (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:

r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n

This function is used for polynomials in negative powers of z, such as digital filters in DSP. For positive powers,
use invres.

Parameters
• r (array_like) – Residues corresponding to the poles. For repeated poles, the residues

must be ordered to correspond to ascending by power fractions.

• p (array_like) – Poles. Equal poles must be adjacent.

• k (array_like) – Coefficients of the direct polynomial term.

• tol (float, optional) – The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See unique_roots for further details.

• rtype ({'avg', 'min', 'max'}, optional) – Method for computing a root to represent a
group of identical roots. Default is ‘avg’. See unique_roots for further details.

Returns
• b (ndarray) – Numerator polynomial coefficients.

• a (ndarray) – Denominator polynomial coefficients.

See also:
scipy.signal.invresz, residuez, unique_roots, invres

508 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.invresz.html#scipy.signal.invresz

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.BadCoefficients

exception cupyx.scipy.signal.BadCoefficients

Warning about badly conditioned filter coefficients

Matlab-style IIR filter design

butter(N, Wn[, btype, analog, output, fs]) Butterworth digital and analog filter design.
buttord(wp, ws, gpass, gstop[, analog, fs]) Butterworth filter order selection.
ellip(N, rp, rs, Wn[, btype, analog, output, fs]) Elliptic (Cauer) digital and analog filter design.
ellipord(wp, ws, gpass, gstop[, analog, fs]) Elliptic (Cauer) filter order selection.
cheby1(N, rp, Wn[, btype, analog, output, fs]) Chebyshev type I digital and analog filter design.
cheb1ord(wp, ws, gpass, gstop[, analog, fs]) Chebyshev type I filter order selection.
cheby2(N, rs, Wn[, btype, analog, output, fs]) Chebyshev type II digital and analog filter design.
cheb2ord(wp, ws, gpass, gstop[, analog, fs]) Chebyshev type II filter order selection.
iircomb(w0, Q[, ftype, fs, pass_zero]) Design IIR notching or peaking digital comb filter.
iirnotch (w0, Q[, fs]) Design second-order IIR notch digital filter.
iirpeak(w0, Q[, fs]) Design second-order IIR peak (resonant) digital filter.

cupyx.scipy.signal.butter

cupyx.scipy.signal.butter(N, Wn, btype='low', analog=False, output='ba', fs=None)
Butterworth digital and analog filter design.

Design an Nth-order digital or analog Butterworth filter and return the filter coefficients.

Parameters
• N (int) – The order of the filter. For ‘bandpass’ and ‘bandstop’ filters, the resulting order of

the final second-order sections (‘sos’) matrix is 2*N, with N the number of biquad sections
of the desired system.

• Wn (array_like) – The critical frequency or frequencies. For lowpass and highpass filters,
Wn is a scalar; for bandpass and bandstop filters, Wn is a length-2 sequence.

For a Butterworth filter, this is the point at which the gain drops to 1/sqrt(2) that of the
passband (the “-3 dB point”).

For digital filters, if fs is not specified, Wn units are normalized from 0 to 1, where 1 is the
Nyquist frequency (Wn is thus in half cycles / sample and defined as 2*critical frequencies /
fs). If fs is specified, Wn is in the same units as fs.

For analog filters, Wn is an angular frequency (e.g. rad/s).

• btype ({'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional) – The type of
filter. Default is ‘lowpass’.

• analog (bool, optional) – When True, return an analog filter, otherwise a digital filter
is returned.

• output ({'ba', 'zpk', 'sos'}, optional) – Type of output: numerator/denominator
(‘ba’), pole-zero (‘zpk’), or second-order sections (‘sos’). Default is ‘ba’ for backwards com-
patibility, but ‘sos’ should be used for general-purpose filtering.

• fs (float, optional) – The sampling frequency of the digital system.

5.4. Routines (SciPy) 509

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

Returns
• b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.

Only returned if output='ba'.

• z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

• sos (ndarray) – Second-order sections representation of the IIR filter. Only returned if
output='sos'.

See also:
buttord , buttap, iirfilter, scipy.signal.butter

Notes

The Butterworth filter has maximally flat frequency response in the passband.

If the transfer function form [b, a] is requested, numerical problems can occur since the conversion between
roots and the polynomial coefficients is a numerically sensitive operation, even for N >= 4. It is recommended
to work with the SOS representation.

Warning: Designing high-order and narrowband IIR filters in TF form can result in unstable or incorrect
filtering due to floating point numerical precision issues. Consider inspecting output filter characteristics
freqz or designing the filters with second-order sections via output='sos'.

cupyx.scipy.signal.buttord

cupyx.scipy.signal.buttord(wp, ws, gpass, gstop, analog=False, fs=None)
Butterworth filter order selection.

Return the order of the lowest order digital or analog Butterworth filter that loses no more than gpass dB in the
passband and has at least gstop dB attenuation in the stopband.

Parameters
• wp (float) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

– Lowpass: wp = 0.2, ws = 0.3

– Highpass: wp = 0.3, ws = 0.2

– Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

– Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies (e.g., rad/s).

• ws (float) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

– Lowpass: wp = 0.2, ws = 0.3

510 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#scipy.signal.butter
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

– Highpass: wp = 0.3, ws = 0.2

– Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

– Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies (e.g., rad/s).

• gpass (float) – The maximum loss in the passband (dB).

• gstop (float) – The minimum attenuation in the stopband (dB).

• analog (bool, optional) – When True, return an analog filter, otherwise a digital filter
is returned.

• fs (float, optional) – The sampling frequency of the digital system.

New in version 1.2.0.

Returns
• ord (int) – The lowest order for a Butterworth filter which meets specs.

• wn (ndarray or float) – The Butterworth natural frequency (i.e. the “3dB frequency”).
Should be used with butter to give filter results. If fs is specified, this is in the same units,
and fs must also be passed to butter.

See also:
scipy.signal.buttord

butter
Filter design using order and critical points

cheb1ord
Find order and critical points from passband and stopband spec

cheb2ord , ellipord

iirfilter
General filter design using order and critical frequencies

iirdesign
General filter design using passband and stopband spec

cupyx.scipy.signal.ellip

cupyx.scipy.signal.ellip(N, rp, rs, Wn, btype='low', analog=False, output='ba', fs=None)
Elliptic (Cauer) digital and analog filter design.

Design an Nth-order digital or analog elliptic filter and return the filter coefficients.

Parameters
• N (int) – The order of the filter.

• rp (float) – The maximum ripple allowed below unity gain in the passband. Specified in
decibels, as a positive number.

• rs (float) – The minimum attenuation required in the stop band. Specified in decibels, as
a positive number.

5.4. Routines (SciPy) 511

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.buttord.html#scipy.signal.buttord
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• Wn (array_like) – A scalar or length-2 sequence giving the critical frequencies. For elliptic
filters, this is the point in the transition band at which the gain first drops below -rp.

For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles
/ sample.)

For analog filters, Wn is an angular frequency (e.g., rad/s).

• btype ({'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional) – The type of
filter. Default is ‘lowpass’.

• analog (bool, optional) – When True, return an analog filter, otherwise a digital filter
is returned.

• output ({'ba', 'zpk', 'sos'}, optional) – Type of output: numerator/denominator
(‘ba’), pole-zero (‘zpk’), or second-order sections (‘sos’). Default is ‘ba’ for backwards com-
patibility, but ‘sos’ should be used for general-purpose filtering.

• fs (float, optional) – The sampling frequency of the digital system.

Returns
• b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.

Only returned if output='ba'.

• z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

• sos (ndarray) – Second-order sections representation of the IIR filter. Only returned if
output='sos'.

See also:
ellipord , ellipap, iirfilter, scipy.signal.ellip

Notes

Also known as Cauer or Zolotarev filters, the elliptical filter maximizes the rate of transition between the fre-
quency response’s passband and stopband, at the expense of ripple in both, and increased ringing in the step
response.

As rp approaches 0, the elliptical filter becomes a Chebyshev type II filter (cheby2). As rs approaches 0, it
becomes a Chebyshev type I filter (cheby1). As both approach 0, it becomes a Butterworth filter (butter).

The equiripple passband has N maxima or minima (for example, a 5th-order filter has 3 maxima and 2 minima).
Consequently, the DC gain is unity for odd-order filters, or -rp dB for even-order filters.

cupyx.scipy.signal.ellipord

cupyx.scipy.signal.ellipord(wp, ws, gpass, gstop, analog=False, fs=None)
Elliptic (Cauer) filter order selection.

Return the order of the lowest order digital or analog elliptic filter that loses no more than gpass dB in the
passband and has at least gstop dB attenuation in the stopband.

Parameters

512 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellip.html#scipy.signal.ellip

CuPy Documentation, Release 13.0.0

• wp (float) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

– Lowpass: wp = 0.2, ws = 0.3

– Highpass: wp = 0.3, ws = 0.2

– Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

– Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies (e.g., rad/s).

• ws (float) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

– Lowpass: wp = 0.2, ws = 0.3

– Highpass: wp = 0.3, ws = 0.2

– Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

– Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies (e.g., rad/s).

• gpass (float) – The maximum loss in the passband (dB).

• gstop (float) – The minimum attenuation in the stopband (dB).

• analog (bool, optional) – When True, return an analog filter, otherwise a digital filter
is returned.

• fs (float, optional) – The sampling frequency of the digital system.

Returns
• ord (int) – The lowest order for an Elliptic (Cauer) filter that meets specs.

• wn (ndarray or float) – The Chebyshev natural frequency (the “3dB frequency”) for use with
ellip to give filter results. If fs is specified, this is in the same units, and fs must also be passed
to ellip.

See also:
scipy.signal.ellipord

ellip
Filter design using order and critical points

buttord
Find order and critical points from passband and stopband spec

cheb1ord , cheb2ord

iirfilter
General filter design using order and critical frequencies

iirdesign
General filter design using passband and stopband spec

5.4. Routines (SciPy) 513

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellipord.html#scipy.signal.ellipord

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.cheby1

cupyx.scipy.signal.cheby1(N, rp, Wn, btype='low', analog=False, output='ba', fs=None)
Chebyshev type I digital and analog filter design.

Design an Nth-order digital or analog Chebyshev type I filter and return the filter coefficients.

Parameters
• N (int) – The order of the filter.

• rp (float) – The maximum ripple allowed below unity gain in the passband. Specified in
decibels, as a positive number.

• Wn (array_like) – A scalar or length-2 sequence giving the critical frequencies. For Type
I filters, this is the point in the transition band at which the gain first drops below -rp.

For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles
/ sample.)

For analog filters, Wn is an angular frequency (e.g., rad/s).

• btype ({'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional) – The type of
filter. Default is ‘lowpass’.

• analog (bool, optional) – When True, return an analog filter, otherwise a digital filter
is returned.

• output ({'ba', 'zpk', 'sos'}, optional) – Type of output: numerator/denominator
(‘ba’), pole-zero (‘zpk’), or second-order sections (‘sos’). Default is ‘ba’ for backwards com-
patibility, but ‘sos’ should be used for general-purpose filtering.

• fs (float, optional) – The sampling frequency of the digital system.

Returns
• b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.

Only returned if output='ba'.

• z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

• sos (ndarray) – Second-order sections representation of the IIR filter. Only returned if
output='sos'.

See also:
cheb1ord , cheb1ap, iirfilter, scipy.signal.cheby1

Notes

The Chebyshev type I filter maximizes the rate of cutoff between the frequency response’s passband and stopband,
at the expense of ripple in the passband and increased ringing in the step response.

Type I filters roll off faster than Type II (cheby2), but Type II filters do not have any ripple in the passband.

The equiripple passband has N maxima or minima (for example, a 5th-order filter has 3 maxima and 2 minima).
Consequently, the DC gain is unity for odd-order filters, or -rp dB for even-order filters.

514 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheby1.html#scipy.signal.cheby1

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.cheb1ord

cupyx.scipy.signal.cheb1ord(wp, ws, gpass, gstop, analog=False, fs=None)
Chebyshev type I filter order selection.

Return the order of the lowest order digital or analog Chebyshev Type I filter that loses no more than gpass dB
in the passband and has at least gstop dB attenuation in the stopband.

Parameters
• wp (float) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

– Lowpass: wp = 0.2, ws = 0.3

– Highpass: wp = 0.3, ws = 0.2

– Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

– Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies (e.g., rad/s).

• ws (float) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

– Lowpass: wp = 0.2, ws = 0.3

– Highpass: wp = 0.3, ws = 0.2

– Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

– Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies (e.g., rad/s).

• gpass (float) – The maximum loss in the passband (dB).

• gstop (float) – The minimum attenuation in the stopband (dB).

• analog (bool, optional) – When True, return an analog filter, otherwise a digital filter
is returned.

• fs (float, optional) – The sampling frequency of the digital system.

Returns
• ord (int) – The lowest order for a Chebyshev type I filter that meets specs.

• wn (ndarray or float) – The Chebyshev natural frequency (the “3dB frequency”) for use with
cheby1 to give filter results. If fs is specified, this is in the same units, and fs must also be
passed to cheby1.

See also:
scipy.signal.cheb1ord

cheby1
Filter design using order and critical points

5.4. Routines (SciPy) 515

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb1ord.html#scipy.signal.cheb1ord

CuPy Documentation, Release 13.0.0

buttord
Find order and critical points from passband and stopband spec

cheb2ord , ellipord

iirfilter
General filter design using order and critical frequencies

iirdesign
General filter design using passband and stopband spec

cupyx.scipy.signal.cheby2

cupyx.scipy.signal.cheby2(N, rs, Wn, btype='low', analog=False, output='ba', fs=None)
Chebyshev type II digital and analog filter design.

Design an Nth-order digital or analog Chebyshev type II filter and return the filter coefficients.

Parameters
• N (int) – The order of the filter.

• rs (float) – The minimum attenuation required in the stop band. Specified in decibels, as
a positive number.

• Wn (array_like) – A scalar or length-2 sequence giving the critical frequencies. For Type
II filters, this is the point in the transition band at which the gain first reaches -rs.

For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles
/ sample.)

For analog filters, Wn is an angular frequency (e.g., rad/s).

• btype ({'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional) – The type of
filter. Default is ‘lowpass’.

• analog (bool, optional) – When True, return an analog filter, otherwise a digital filter
is returned.

• output ({'ba', 'zpk', 'sos'}, optional) – Type of output: numerator/denominator
(‘ba’), pole-zero (‘zpk’), or second-order sections (‘sos’). Default is ‘ba’ for backwards com-
patibility, but ‘sos’ should be used for general-purpose filtering.

• fs (float, optional) – The sampling frequency of the digital system.

Returns
• b, a (ndarray, ndarray) – Numerator (b) and denominator (a) polynomials of the IIR filter.

Only returned if output='ba'.

• z, p, k (ndarray, ndarray, float) – Zeros, poles, and system gain of the IIR filter transfer
function. Only returned if output='zpk'.

• sos (ndarray) – Second-order sections representation of the IIR filter. Only returned if
output='sos'.

See also:
cheb2ord , cheb2ap, iirfilter, scipy.signal.cheby2

516 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheby2.html#scipy.signal.cheby2

CuPy Documentation, Release 13.0.0

Notes

The Chebyshev type II filter maximizes the rate of cutoff between the frequency response’s passband and stop-
band, at the expense of ripple in the stopband and increased ringing in the step response.

Type II filters do not roll off as fast as Type I (cheby1).

cupyx.scipy.signal.cheb2ord

cupyx.scipy.signal.cheb2ord(wp, ws, gpass, gstop, analog=False, fs=None)
Chebyshev type II filter order selection.

Return the order of the lowest order digital or analog Chebyshev Type II filter that loses no more than gpass dB
in the passband and has at least gstop dB attenuation in the stopband.

Parameters
• wp (float) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

– Lowpass: wp = 0.2, ws = 0.3

– Highpass: wp = 0.3, ws = 0.2

– Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

– Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies (e.g., rad/s).

• ws (float) – Passband and stopband edge frequencies.

For digital filters, these are in the same units as fs. By default, fs is 2 half-cycles/sample, so
these are normalized from 0 to 1, where 1 is the Nyquist frequency. (wp and ws are thus in
half-cycles / sample.) For example:

– Lowpass: wp = 0.2, ws = 0.3

– Highpass: wp = 0.3, ws = 0.2

– Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]

– Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]

For analog filters, wp and ws are angular frequencies (e.g., rad/s).

• gpass (float) – The maximum loss in the passband (dB).

• gstop (float) – The minimum attenuation in the stopband (dB).

• analog (bool, optional) – When True, return an analog filter, otherwise a digital filter
is returned.

• fs (float, optional) – The sampling frequency of the digital system.

Returns
• ord (int) – The lowest order for a Chebyshev type II filter that meets specs.

• wn (ndarray or float) – The Chebyshev natural frequency (the “3dB frequency”) for use with
cheby2 to give filter results. If fs is specified, this is in the same units, and fs must also be
passed to cheby2.

5.4. Routines (SciPy) 517

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

See also:
scipy.signal.cheb2ord

cheby2
Filter design using order and critical points

buttord
Find order and critical points from passband and stopband spec

cheb1ord , ellipord

iirfilter
General filter design using order and critical frequencies

iirdesign
General filter design using passband and stopband spec

cupyx.scipy.signal.iircomb

cupyx.scipy.signal.iircomb(w0, Q, ftype='notch', fs=2.0, *, pass_zero=False)
Design IIR notching or peaking digital comb filter.

A notching comb filter consists of regularly-spaced band-stop filters with a narrow bandwidth (high quality
factor). Each rejects a narrow frequency band and leaves the rest of the spectrum little changed.

A peaking comb filter consists of regularly-spaced band-pass filters with a narrow bandwidth (high quality factor).
Each rejects components outside a narrow frequency band.

Parameters
• w0 (float) – The fundamental frequency of the comb filter (the spacing between its peaks).

This must evenly divide the sampling frequency. If fs is specified, this is in the same units
as fs. By default, it is a normalized scalar that must satisfy 0 < w0 < 1, with w0 = 1
corresponding to half of the sampling frequency.

• Q (float) – Quality factor. Dimensionless parameter that characterizes notch filter -3 dB
bandwidth bw relative to its center frequency, Q = w0/bw.

• ftype ({'notch', 'peak'}) – The type of comb filter generated by the function. If ‘notch’,
then the Q factor applies to the notches. If ‘peak’, then the Q factor applies to the peaks.
Default is ‘notch’.

• fs (float, optional) – The sampling frequency of the signal. Default is 2.0.

• pass_zero (bool, optional) – If False (default), the notches (nulls) of the filter are cen-
tered on frequencies [0, w0, 2*w0, . . .], and the peaks are centered on the midpoints [w0/2,
3*w0/2, 5*w0/2, . . .]. If True, the peaks are centered on [0, w0, 2*w0, . . .] (passing zero
frequency) and vice versa.

Returns
b, a – Numerator (b) and denominator (a) polynomials of the IIR filter.

Return type
ndarray, ndarray

Raises
ValueError – If w0 is less than or equal to 0 or greater than or equal to fs/2, if fs is not divisible
by w0, if ftype is not ‘notch’ or ‘peak’

518 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb2ord.html#scipy.signal.cheb2ord
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

CuPy Documentation, Release 13.0.0

See also:
scipy.signal.iircomb, iirnotch , iirpeak

Notes

The TF implementation of the comb filter is numerically stable even at higher orders due to the use of a single
repeated pole, which won’t suffer from precision loss.

References

Sophocles J. Orfanidis, “Introduction To Signal Processing”,
Prentice-Hall, 1996, ch. 11, “Digital Filter Design”

cupyx.scipy.signal.iirnotch

cupyx.scipy.signal.iirnotch(w0, Q, fs=2.0)
Design second-order IIR notch digital filter.

A notch filter is a band-stop filter with a narrow bandwidth (high quality factor). It rejects a narrow frequency
band and leaves the rest of the spectrum little changed.

Parameters
• w0 (float) – Frequency to remove from a signal. If fs is specified, this is in the same units

as fs. By default, it is a normalized scalar that must satisfy 0 < w0 < 1, with w0 = 1
corresponding to half of the sampling frequency.

• Q (float) – Quality factor. Dimensionless parameter that characterizes notch filter -3 dB
bandwidth bw relative to its center frequency, Q = w0/bw.

• fs (float, optional) – The sampling frequency of the digital system.

Returns
b, a – Numerator (b) and denominator (a) polynomials of the IIR filter.

Return type
ndarray, ndarray

See also:
scipy.signal.iirnotch

References

Sophocles J. Orfanidis, “Introduction To Signal Processing”,
Prentice-Hall, 1996

5.4. Routines (SciPy) 519

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iircomb.html#scipy.signal.iircomb
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirnotch.html#scipy.signal.iirnotch

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.iirpeak

cupyx.scipy.signal.iirpeak(w0, Q, fs=2.0)
Design second-order IIR peak (resonant) digital filter.

A peak filter is a band-pass filter with a narrow bandwidth (high quality factor). It rejects components outside a
narrow frequency band.

Parameters
• w0 (float) – Frequency to be retained in a signal. If fs is specified, this is in the same

units as fs. By default, it is a normalized scalar that must satisfy 0 < w0 < 1, with w0 = 1
corresponding to half of the sampling frequency.

• Q (float) – Quality factor. Dimensionless parameter that characterizes peak filter -3 dB
bandwidth bw relative to its center frequency, Q = w0/bw.

• fs (float, optional) – The sampling frequency of the digital system.

Returns
b, a – Numerator (b) and denominator (a) polynomials of the IIR filter.

Return type
ndarray, ndarray

See also:
scpy.signal.iirpeak

References

Sophocles J. Orfanidis, “Introduction To Signal Processing”,
Prentice-Hall, 1996

520 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

Low-level filter design functions

abcd_normalize([A, B, C, D]) Check state-space matrices and ensure they are 2-D.
band_stop_obj(wp, ind, passb, stopb, gpass, ...) Band Stop Objective Function for order minimization.
buttap(N) Return (z,p,k) for analog prototype of Nth-order Butter-

worth filter.
cheb1ap(N, rp) Return (z,p,k) for Nth-order Chebyshev type I analog

lowpass filter.
cheb2ap(N, rs) Return (z,p,k) for Nth-order Chebyshev type I analog

lowpass filter.
ellipap(N, rp, rs) Return (z,p,k) of Nth-order elliptic analog lowpass filter.
lp2bp(b, a[, wo, bw]) Transform a lowpass filter prototype to a bandpass filter.
lp2bp_zpk(z, p, k[, wo, bw]) Transform a lowpass filter prototype to a bandpass filter.
lp2bs(b, a[, wo, bw]) Transform a lowpass filter prototype to a bandstop filter.
lp2bs_zpk(z, p, k[, wo, bw]) Transform a lowpass filter prototype to a bandstop filter.
lp2hp(b, a[, wo]) Transform a lowpass filter prototype to a highpass filter.
lp2hp_zpk(z, p, k[, wo]) Transform a lowpass filter prototype to a highpass filter.
lp2lp(b, a[, wo]) Transform a lowpass filter prototype to a different fre-

quency.
lp2lp_zpk(z, p, k[, wo]) Transform a lowpass filter prototype to a different fre-

quency.
normalize(b, a) Normalize numerator/denominator of a continuous-time

transfer function.

cupyx.scipy.signal.abcd_normalize

cupyx.scipy.signal.abcd_normalize(A=None, B=None, C=None, D=None)
Check state-space matrices and ensure they are 2-D.

If enough information on the system is provided, that is, enough properly-shaped arrays are passed to the function,
the missing ones are built from this information, ensuring the correct number of rows and columns. Otherwise
a ValueError is raised.

Parameters
• A (array_like, optional) – State-space matrices. All of them are None (missing) by

default. See ss2tf for format.

• B (array_like, optional) – State-space matrices. All of them are None (missing) by
default. See ss2tf for format.

• C (array_like, optional) – State-space matrices. All of them are None (missing) by
default. See ss2tf for format.

• D (array_like, optional) – State-space matrices. All of them are None (missing) by
default. See ss2tf for format.

Returns
A, B, C, D – Properly shaped state-space matrices.

Return type
array

Raises
ValueError – If not enough information on the system was provided.

5.4. Routines (SciPy) 521

https://docs.python.org/3/library/exceptions.html#ValueError

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.band_stop_obj

cupyx.scipy.signal.band_stop_obj(wp, ind, passb, stopb, gpass, gstop, type)
Band Stop Objective Function for order minimization.

Returns the non-integer order for an analog band stop filter.

Parameters
• wp (scalar) – Edge of passband passb.

• ind (int, {0, 1}) – Index specifying which passb edge to vary (0 or 1).

• passb (ndarray) – Two element sequence of fixed passband edges.

• stopb (ndarray) – Two element sequence of fixed stopband edges.

• gstop (float) – Amount of attenuation in stopband in dB.

• gpass (float) – Amount of ripple in the passband in dB.

• type ({'butter', 'cheby', 'ellip'}) – Type of filter.

Returns
n – Filter order (possibly non-integer).

Return type
scalar

See also:
scipy.signal.band_stop_obj

cupyx.scipy.signal.buttap

cupyx.scipy.signal.buttap(N)

Return (z,p,k) for analog prototype of Nth-order Butterworth filter.

The filter will have an angular (e.g., rad/s) cutoff frequency of 1.

See also:

butter
Filter design function using this prototype

scipy.signal.buttap

cupyx.scipy.signal.cheb1ap

cupyx.scipy.signal.cheb1ap(N, rp)
Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter.

The returned filter prototype has rp decibels of ripple in the passband.

The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first
drops below -rp.

See also:

522 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.band_stop_obj.html#scipy.signal.band_stop_obj
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.buttap.html#scipy.signal.buttap

CuPy Documentation, Release 13.0.0

cheby1
Filter design function using this prototype

cupyx.scipy.signal.cheb2ap

cupyx.scipy.signal.cheb2ap(N, rs)
Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter.

The returned filter prototype has rs decibels of ripple in the stopband.

The filter’s angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first
reaches -rs.

See also:

cheby2
Filter design function using this prototype

cupyx.scipy.signal.ellipap

cupyx.scipy.signal.ellipap(N, rp, rs)
Return (z,p,k) of Nth-order elliptic analog lowpass filter.

The filter is a normalized prototype that has rp decibels of ripple in the passband and a stopband rs decibels
down.

The filter’s angular (e.g., rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first
drops below -rp.

See also:

ellip
Filter design function using this prototype

scipy.signal.elliap

cupyx.scipy.signal.lp2bp

cupyx.scipy.signal.lp2bp(b, a, wo=1.0, bw=1.0)
Transform a lowpass filter prototype to a bandpass filter.

Return an analog band-pass filter with center frequency wo and bandwidth bw from an analog low-pass filter
prototype with unity cutoff frequency, in transfer function (‘ba’) representation.

Parameters
• b (array_like) – Numerator polynomial coefficients.

• a (array_like) – Denominator polynomial coefficients.

• wo (float) – Desired passband center, as angular frequency (e.g., rad/s). Defaults to no
change.

• bw (float) – Desired passband width, as angular frequency (e.g., rad/s). Defaults to 1.

Returns

5.4. Routines (SciPy) 523

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• b (array_like) – Numerator polynomial coefficients of the transformed band-pass filter.

• a (array_like) – Denominator polynomial coefficients of the transformed band-pass filter.

See also:
lp2lp, lp2hp, lp2bs, bilinear, lp2bp_zpk , scipy.signal.lp2bp

Notes

This is derived from the s-plane substitution

𝑠 → 𝑠2 + 𝜔0
2

𝑠 · BW

This is the “wideband” transformation, producing a passband with geometric (log frequency) symmetry about
wo.

cupyx.scipy.signal.lp2bp_zpk

cupyx.scipy.signal.lp2bp_zpk(z, p, k, wo=1.0, bw=1.0)
Transform a lowpass filter prototype to a bandpass filter.

Return an analog band-pass filter with center frequency wo and bandwidth bw from an analog low-pass filter
prototype with unity cutoff frequency, using zeros, poles, and gain (‘zpk’) representation.

Parameters
• z (array_like) – Zeros of the analog filter transfer function.

• p (array_like) – Poles of the analog filter transfer function.

• k (float) – System gain of the analog filter transfer function.

• wo (float) – Desired passband center, as angular frequency (e.g., rad/s). Defaults to no
change.

• bw (float) – Desired passband width, as angular frequency (e.g., rad/s). Defaults to 1.

Returns
• z (ndarray) – Zeros of the transformed band-pass filter transfer function.

• p (ndarray) – Poles of the transformed band-pass filter transfer function.

• k (float) – System gain of the transformed band-pass filter.

See also:
lp2lp_zpk , lp2hp_zpk , lp2bs_zpk , bilinear, lp2bp, scipy.signal.lp2bp_zpk

Notes

This is derived from the s-plane substitution

𝑠 → 𝑠2 + 𝜔0
2

𝑠 · BW

This is the “wideband” transformation, producing a passband with geometric (log frequency) symmetry about
wo.

524 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bp.html#scipy.signal.lp2bp
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bp_zpk.html#scipy.signal.lp2bp_zpk

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.lp2bs

cupyx.scipy.signal.lp2bs(b, a, wo=1.0, bw=1.0)
Transform a lowpass filter prototype to a bandstop filter.

Return an analog band-stop filter with center frequency wo and bandwidth bw from an analog low-pass filter
prototype with unity cutoff frequency, in transfer function (‘ba’) representation.

Parameters
• b (array_like) – Numerator polynomial coefficients.

• a (array_like) – Denominator polynomial coefficients.

• wo (float) – Desired stopband center, as angular frequency (e.g., rad/s). Defaults to no
change.

• bw (float) – Desired stopband width, as angular frequency (e.g., rad/s). Defaults to 1.

Returns
• b (array_like) – Numerator polynomial coefficients of the transformed band-stop filter.

• a (array_like) – Denominator polynomial coefficients of the transformed band-stop filter.

See also:
lp2lp, lp2hp, lp2bp, bilinear, lp2bs_zpk , scipy.signal.lp2bs

Notes

This is derived from the s-plane substitution

𝑠 → 𝑠 · BW
𝑠2 + 𝜔0

2

This is the “wideband” transformation, producing a stopband with geometric (log frequency) symmetry about
wo.

cupyx.scipy.signal.lp2bs_zpk

cupyx.scipy.signal.lp2bs_zpk(z, p, k, wo=1.0, bw=1.0)
Transform a lowpass filter prototype to a bandstop filter.

Return an analog band-stop filter with center frequency wo and stopband width bw from an analog low-pass filter
prototype with unity cutoff frequency, using zeros, poles, and gain (‘zpk’) representation.

Parameters
• z (array_like) – Zeros of the analog filter transfer function.

• p (array_like) – Poles of the analog filter transfer function.

• k (float) – System gain of the analog filter transfer function.

• wo (float) – Desired stopband center, as angular frequency (e.g., rad/s). Defaults to no
change.

• bw (float) – Desired stopband width, as angular frequency (e.g., rad/s). Defaults to 1.

Returns

5.4. Routines (SciPy) 525

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bs.html#scipy.signal.lp2bs
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• z (ndarray) – Zeros of the transformed band-stop filter transfer function.

• p (ndarray) – Poles of the transformed band-stop filter transfer function.

• k (float) – System gain of the transformed band-stop filter.

See also:
lp2lp_zpk , lp2hp_zpk , lp2bp_zpk , bilinear, lp2bs, scipy.signal.lp2bs_zpk

Notes

This is derived from the s-plane substitution

𝑠 → 𝑠 · BW
𝑠2 + 𝜔0

2

This is the “wideband” transformation, producing a stopband with geometric (log frequency) symmetry about
wo.

cupyx.scipy.signal.lp2hp

cupyx.scipy.signal.lp2hp(b, a, wo=1.0)
Transform a lowpass filter prototype to a highpass filter.

Return an analog high-pass filter with cutoff frequency wo from an analog low-pass filter prototype with unity
cutoff frequency, in transfer function (‘ba’) representation.

Parameters
• b (array_like) – Numerator polynomial coefficients.

• a (array_like) – Denominator polynomial coefficients.

• wo (float) – Desired cutoff, as angular frequency (e.g., rad/s). Defaults to no change.

Returns
• b (array_like) – Numerator polynomial coefficients of the transformed high-pass filter.

• a (array_like) – Denominator polynomial coefficients of the transformed high-pass filter.

See also:
lp2lp, lp2bp, lp2bs, bilinear, lp2hp_zpk , scipy.signal.lp2hp

Notes

This is derived from the s-plane substitution

𝑠 → 𝜔0

𝑠

This maintains symmetry of the lowpass and highpass responses on a logarithmic scale.

526 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bs_zpk.html#scipy.signal.lp2bs_zpk
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2hp.html#scipy.signal.lp2hp

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.lp2hp_zpk

cupyx.scipy.signal.lp2hp_zpk(z, p, k, wo=1.0)
Transform a lowpass filter prototype to a highpass filter.

Return an analog high-pass filter with cutoff frequency wo from an analog low-pass filter prototype with unity
cutoff frequency, using zeros, poles, and gain (‘zpk’) representation.

Parameters
• z (array_like) – Zeros of the analog filter transfer function.

• p (array_like) – Poles of the analog filter transfer function.

• k (float) – System gain of the analog filter transfer function.

• wo (float) – Desired cutoff, as angular frequency (e.g., rad/s). Defaults to no change.

Returns
• z (ndarray) – Zeros of the transformed high-pass filter transfer function.

• p (ndarray) – Poles of the transformed high-pass filter transfer function.

• k (float) – System gain of the transformed high-pass filter.

See also:
lp2lp_zpk , lp2bp_zpk , lp2bs_zpk , bilinear, lp2hp, scipy.signal.lp2hp_zpk

Notes

This is derived from the s-plane substitution

𝑠 → 𝜔0

𝑠

This maintains symmetry of the lowpass and highpass responses on a logarithmic scale.

cupyx.scipy.signal.lp2lp

cupyx.scipy.signal.lp2lp(b, a, wo=1.0)
Transform a lowpass filter prototype to a different frequency.

Return an analog low-pass filter with cutoff frequency wo from an analog low-pass filter prototype with unity
cutoff frequency, in transfer function (‘ba’) representation.

Parameters
• b (array_like) – Numerator polynomial coefficients.

• a (array_like) – Denominator polynomial coefficients.

• wo (float) – Desired cutoff, as angular frequency (e.g. rad/s). Defaults to no change.

Returns
• b (array_like) – Numerator polynomial coefficients of the transformed low-pass filter.

• a (array_like) – Denominator polynomial coefficients of the transformed low-pass filter.

See also:
lp2hp, lp2bp, lp2bs, bilinear, lp2lp_zpk , scipy.signal.lp2lp

5.4. Routines (SciPy) 527

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2hp_zpk.html#scipy.signal.lp2hp_zpk
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2lp.html#scipy.signal.lp2lp

CuPy Documentation, Release 13.0.0

Notes

This is derived from the s-plane substitution

𝑠 → 𝑠

𝜔0

cupyx.scipy.signal.lp2lp_zpk

cupyx.scipy.signal.lp2lp_zpk(z, p, k, wo=1.0)
Transform a lowpass filter prototype to a different frequency.

Return an analog low-pass filter with cutoff frequency wo from an analog low-pass filter prototype with unity
cutoff frequency, using zeros, poles, and gain (‘zpk’) representation.

Parameters
• z (array_like) – Zeros of the analog filter transfer function.

• p (array_like) – Poles of the analog filter transfer function.

• k (float) – System gain of the analog filter transfer function.

• wo (float) – Desired cutoff, as angular frequency (e.g., rad/s). Defaults to no change.

Returns
• z (ndarray) – Zeros of the transformed low-pass filter transfer function.

• p (ndarray) – Poles of the transformed low-pass filter transfer function.

• k (float) – System gain of the transformed low-pass filter.

See also:
lp2hp_zpk , lp2bp_zpk , lp2bs_zpk , bilinear, lp2lp, scipy.signal.lp2lp_zpk

cupyx.scipy.signal.normalize

cupyx.scipy.signal.normalize(b, a)
Normalize numerator/denominator of a continuous-time transfer function.

If values of b are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted.

Parameters
• b (array_like) – Numerator of the transfer function. Can be a 2-D array to normalize

multiple transfer functions.

• a (array_like) – Denominator of the transfer function. At most 1-D.

Returns
• num (array) – The numerator of the normalized transfer function. At least a 1-D array. A

2-D array if the input num is a 2-D array.

• den (1-D array) – The denominator of the normalized transfer function.

528 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2lp_zpk.html#scipy.signal.lp2lp_zpk

CuPy Documentation, Release 13.0.0

Notes

Coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., s^2
+ 3s + 5 would be represented as [1, 3, 5]).

See also:
scipy.signal.normalize

LTI representations

zpk2tf (z, p, k) Return polynomial transfer function representation from
zeros and poles

zpk2sos(z, p, k[, pairing, analog]) Return second-order sections from zeros, poles, and gain
of a system

zpk2ss(z, p, k) Zero-pole-gain representation to state-space representa-
tion

tf2zpk(b, a) Return zero, pole, gain (z, p, k) representation from a
numerator, denominator representation of a linear filter.

tf2sos(b, a[, pairing, analog]) Return second-order sections from transfer function rep-
resentation

tf2ss(num, den) Transfer function to state-space representation.
ss2tf (A, B, C, D[, input]) State-space to transfer function.
ss2zpk(A, B, C, D[, input]) State-space representation to zero-pole-gain representa-

tion.
sos2tf (sos) Return a single transfer function from a series of second-

order sections
sos2zpk(sos) Return zeros, poles, and gain of a series of second-order

sections
cont2discrete(system, dt[, method, alpha]) Transform a continuous to a discrete state-space system.
place_poles(A, B, poles[, method, rtol, maxiter]) Compute K such that eigenvalues (A - dot(B, K))=poles.

cupyx.scipy.signal.zpk2tf

cupyx.scipy.signal.zpk2tf(z, p, k)
Return polynomial transfer function representation from zeros and poles

Parameters
• z (array_like) – Zeros of the transfer function.

• p (array_like) – Poles of the transfer function.

• k (float) – System gain.

Returns
• b (ndarray) – Numerator polynomial coefficients.

• a (ndarray) – Denominator polynomial coefficients.

See also:
scipy.signal.zpk2tf

5.4. Routines (SciPy) 529

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.normalize.html#scipy.signal.normalize
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2tf.html#scipy.signal.zpk2tf

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.zpk2sos

cupyx.scipy.signal.zpk2sos(z, p, k, pairing=None, *, analog=False)
Return second-order sections from zeros, poles, and gain of a system

Parameters
• z (array_like) – Zeros of the transfer function.

• p (array_like) – Poles of the transfer function.

• k (float) – System gain.

• pairing ({None, 'nearest', 'keep_odd', 'minimal'}, optional) – The method to
use to combine pairs of poles and zeros into sections. If analog is False and pairing is None,
pairing is set to ‘nearest’; if analog is True, pairing must be ‘minimal’, and is set to that if it
is None.

• analog (bool, optional) – If True, system is analog, otherwise discrete.

Returns
sos – Array of second-order filter coefficients, with shape (n_sections, 6). See sosfilt for the
SOS filter format specification.

Return type
ndarray

See also:
sosfilt, scipy.signal.zpk2sos

cupyx.scipy.signal.zpk2ss

cupyx.scipy.signal.zpk2ss(z, p, k)
Zero-pole-gain representation to state-space representation

Parameters
• z (sequence) – Zeros and poles.

• p (sequence) – Zeros and poles.

• k (float) – System gain.

Returns
A, B, C, D – State space representation of the system, in controller canonical form.

Return type
ndarray

See also:
scipy.signal.zpk2ss

530 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2sos.html#scipy.signal.zpk2sos
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2ss.html#scipy.signal.zpk2ss

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.tf2zpk

cupyx.scipy.signal.tf2zpk(b, a)
Return zero, pole, gain (z, p, k) representation from a numerator, denominator representation of a linear filter.

Parameters
• b (array_like) – Numerator polynomial coefficients.

• a (array_like) – Denominator polynomial coefficients.

Returns
• z (ndarray) – Zeros of the transfer function.

• p (ndarray) – Poles of the transfer function.

• k (float) – System gain.

Warning: This function may synchronize the device.

See also:
scipy.signal.tf2zpk

Notes

If some values of b are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted.

The b and a arrays are interpreted as coefficients for positive, descending powers of the transfer function variable.
So the inputs 𝑏 = [𝑏0, 𝑏1, ..., 𝑏𝑀] and 𝑎 = [𝑎0, 𝑎1, ..., 𝑎𝑁] can represent an analog filter of the form:

𝐻(𝑠) =
𝑏0𝑠

𝑀 + 𝑏1𝑠
(𝑀−1) + · · ·+ 𝑏𝑀

𝑎0𝑠𝑁 + 𝑎1𝑠(𝑁−1) + · · ·+ 𝑎𝑁

or a discrete-time filter of the form:

𝐻(𝑧) =
𝑏0𝑧

𝑀 + 𝑏1𝑧
(𝑀−1) + · · ·+ 𝑏𝑀

𝑎0𝑧𝑁 + 𝑎1𝑧(𝑁−1) + · · ·+ 𝑎𝑁

This “positive powers” form is found more commonly in controls engineering. If M and N are equal (which is
true for all filters generated by the bilinear transform), then this happens to be equivalent to the “negative powers”
discrete-time form preferred in DSP:

𝐻(𝑧) =
𝑏0 + 𝑏1𝑧

−1 + · · ·+ 𝑏𝑀𝑧−𝑀

𝑎0 + 𝑎1𝑧−1 + · · ·+ 𝑎𝑁𝑧−𝑁

Although this is true for common filters, remember that this is not true in the general case. If M and N are not
equal, the discrete-time transfer function coefficients must first be converted to the “positive powers” form before
finding the poles and zeros.

5.4. Routines (SciPy) 531

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2zpk.html#scipy.signal.tf2zpk

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.tf2sos

cupyx.scipy.signal.tf2sos(b, a, pairing=None, *, analog=False)
Return second-order sections from transfer function representation

Parameters
• b (array_like) – Numerator polynomial coefficients.

• a (array_like) – Denominator polynomial coefficients.

• pairing ({None, 'nearest', 'keep_odd', 'minimal'}, optional) – The method to
use to combine pairs of poles and zeros into sections. See zpk2sos for information and re-
strictions on pairing and analog arguments.

• analog (bool, optional) – If True, system is analog, otherwise discrete.

Returns
sos – Array of second-order filter coefficients, with shape (n_sections, 6). See sosfilt for the
SOS filter format specification.

Return type
ndarray

See also:
scipy.signal.tf2sos

Notes

It is generally discouraged to convert from TF to SOS format, since doing so usually will not improve numerical
precision errors. Instead, consider designing filters in ZPK format and converting directly to SOS. TF is converted
to SOS by first converting to ZPK format, then converting ZPK to SOS.

cupyx.scipy.signal.tf2ss

cupyx.scipy.signal.tf2ss(num, den)
Transfer function to state-space representation.

Parameters
• num (array_like) – Sequences representing the coefficients of the numerator and denom-

inator polynomials, in order of descending degree. The denominator needs to be at least as
long as the numerator.

• den (array_like) – Sequences representing the coefficients of the numerator and denom-
inator polynomials, in order of descending degree. The denominator needs to be at least as
long as the numerator.

Returns
A, B, C, D – State space representation of the system, in controller canonical form.

Return type
ndarray

See also:
scipy.signal.tf2ss

532 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2sos.html#scipy.signal.tf2sos
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2ss.html#scipy.signal.tf2ss

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.ss2tf

cupyx.scipy.signal.ss2tf(A, B, C, D, input=0)
State-space to transfer function.

A, B, C, D defines a linear state-space system with p inputs, q outputs, and n state variables.

Parameters
• A (array_like) – State (or system) matrix of shape (n, n)

• B (array_like) – Input matrix of shape (n, p)

• C (array_like) – Output matrix of shape (q, n)

• D (array_like) – Feedthrough (or feedforward) matrix of shape (q, p)

• input (int, optional) – For multiple-input systems, the index of the input to use.

Returns
• num (2-D ndarray) – Numerator(s) of the resulting transfer function(s). num has one row

for each of the system’s outputs. Each row is a sequence representation of the numerator
polynomial.

• den (1-D ndarray) – Denominator of the resulting transfer function(s). den is a sequence
representation of the denominator polynomial.

Warning: This function may synchronize the device.

See also:
scipy.signal.ss2tf

cupyx.scipy.signal.ss2zpk

cupyx.scipy.signal.ss2zpk(A, B, C, D, input=0)
State-space representation to zero-pole-gain representation.

A, B, C, D defines a linear state-space system with p inputs, q outputs, and n state variables.

Parameters
• A (array_like) – State (or system) matrix of shape (n, n)

• B (array_like) – Input matrix of shape (n, p)

• C (array_like) – Output matrix of shape (q, n)

• D (array_like) – Feedthrough (or feedforward) matrix of shape (q, p)

• input (int, optional) – For multiple-input systems, the index of the input to use.

Returns
• z, p (sequence) – Zeros and poles.

• k (float) – System gain.

See also:
scipy.signal.ss2zpk

5.4. Routines (SciPy) 533

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2tf.html#scipy.signal.ss2tf
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2zpk.html#scipy.signal.ss2zpk

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.sos2tf

cupyx.scipy.signal.sos2tf(sos)
Return a single transfer function from a series of second-order sections

Parameters
sos (array_like) – Array of second-order filter coefficients, must have shape (n_sections,
6). See sosfilt for the SOS filter format specification.

Returns
• b (ndarray) – Numerator polynomial coefficients.

• a (ndarray) – Denominator polynomial coefficients.

See also:
scipy.signal.sos2tf

cupyx.scipy.signal.sos2zpk

cupyx.scipy.signal.sos2zpk(sos)
Return zeros, poles, and gain of a series of second-order sections

Parameters
sos (array_like) – Array of second-order filter coefficients, must have shape (n_sections,
6). See sosfilt for the SOS filter format specification.

Returns
• z (ndarray) – Zeros of the transfer function.

• p (ndarray) – Poles of the transfer function.

• k (float) – System gain.

Notes

The number of zeros and poles returned will be n_sections * 2 even if some of these are (effectively) zero.

See also:
scipy.signal.sos2zpk

cupyx.scipy.signal.cont2discrete

cupyx.scipy.signal.cont2discrete(system, dt, method='zoh', alpha=None)
Transform a continuous to a discrete state-space system.

Parameters
• system (a tuple describing the system or an instance of lti) – The following gives the number

of elements in the tuple and the interpretation:

– 1: (instance of lti)

– 2: (num, den)

– 3: (zeros, poles, gain)

534 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sos2tf.html#scipy.signal.sos2tf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sos2zpk.html#scipy.signal.sos2zpk

CuPy Documentation, Release 13.0.0

– 4: (A, B, C, D)

• dt (float) – The discretization time step.

• method (str, optional) – Which method to use:

– gbt: generalized bilinear transformation

– bilinear: Tustin’s approximation (“gbt” with alpha=0.5)

– euler: Euler (or forward differencing) method (“gbt” with alpha=0)

– backward_diff: Backwards differencing (“gbt” with alpha=1.0)

– zoh: zero-order hold (default)

– foh: first-order hold (versionadded: 1.3.0)

– impulse: equivalent impulse response (versionadded: 1.3.0)

• alpha (float within [0, 1], optional) – The generalized bilinear transformation
weighting parameter, which should only be specified with method=”gbt”, and is ignored
otherwise

Returns
sysd – Based on the input type, the output will be of the form

• (num, den, dt) for transfer function input

• (zeros, poles, gain, dt) for zeros-poles-gain input

• (A, B, C, D, dt) for state-space system input

Return type
tuple containing the discrete system

Notes

By default, the routine uses a Zero-Order Hold (zoh) method to perform the transformation. Alternatively, a
generalized bilinear transformation may be used, which includes the common Tustin’s bilinear approximation,
an Euler’s method technique, or a backwards differencing technique.

See also:
scipy.signal.cont2discrete

cupyx.scipy.signal.place_poles

cupyx.scipy.signal.place_poles(A, B, poles, method='YT', rtol=0.001, maxiter=30)
Compute K such that eigenvalues (A - dot(B, K))=poles.

K is the gain matrix such as the plant described by the linear system AX+BU will have its closed-loop poles, i.e
the eigenvalues A - B*K, as close as possible to those asked for in poles.

SISO, MISO and MIMO systems are supported.

Parameters
• A (ndarray) – State-space representation of linear system AX + BU.

• B (ndarray) – State-space representation of linear system AX + BU.

5.4. Routines (SciPy) 535

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cont2discrete.html#scipy.signal.cont2discrete

CuPy Documentation, Release 13.0.0

• poles (array_like) – Desired real poles and/or complex conjugates poles. Complex poles
are only supported with method="YT" (default).

• method ({'YT', 'KNV0'}, optional) – Which method to choose to find the gain matrix K.
One of:

– ’YT’: Yang Tits

– ’KNV0’: Kautsky, Nichols, Van Dooren update method 0

See References and Notes for details on the algorithms.

• rtol (float, optional) – After each iteration the determinant of the eigenvectors of A
- B*K is compared to its previous value, when the relative error between these two values
becomes lower than rtol the algorithm stops. Default is 1e-3.

• maxiter (int, optional) – Maximum number of iterations to compute the gain matrix.
Default is 30.

Returns
full_state_feedback –

full_state_feedback is composed of:
gain_matrix

[1-D ndarray] The closed loop matrix K such as the eigenvalues of A-BK are as close as
possible to the requested poles.

computed_poles
[1-D ndarray] The poles corresponding to A-BK sorted as first the real poles in increasing
order, then the complex congugates in lexicographic order.

requested_poles
[1-D ndarray] The poles the algorithm was asked to place sorted as above, they may differ
from what was achieved.

X
[2-D ndarray] The transfer matrix such as X * diag(poles) = (A - B*K)*X (see
Notes)

rtol
[float] The relative tolerance achieved on det(X) (see Notes). rtol will be NaN if it is
possible to solve the system diag(poles) = (A - B*K), or 0 when the optimization
algorithms can’t do anything i.e when B.shape[1] == 1.

nb_iter
[int] The number of iterations performed before converging. nb_iter will be NaN if it is
possible to solve the system diag(poles) = (A - B*K), or 0 when the optimization
algorithms can’t do anything i.e when B.shape[1] == 1.

Return type
Bunch object

536 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

The Tits and Yang (YT),2 paper is an update of the original Kautsky et al. (KNV) paper1. KNV relies on rank-1
updates to find the transfer matrix X such that X * diag(poles) = (A - B*K)*X, whereas YT uses rank-2
updates. This yields on average more robust solutions (seePage 537, 2 pp 21-22), furthermore the YT algorithm
supports complex poles whereas KNV does not in its original version. Only update method 0 proposed by KNV
has been implemented here, hence the name 'KNV0'.

KNV extended to complex poles is used in Matlab’s place function, YT is distributed under a non-free licence
by Slicot under the name robpole. It is unclear and undocumented how KNV0 has been extended to complex
poles (Tits and Yang claim on page 14 of their paper that their method can not be used to extend KNV to complex
poles), therefore only YT supports them in this implementation.

As the solution to the problem of pole placement is not unique for MIMO systems, both methods start with a
tentative transfer matrix which is altered in various way to increase its determinant. Both methods have been
proven to converge to a stable solution, however depending on the way the initial transfer matrix is chosen they
will converge to different solutions and therefore there is absolutely no guarantee that using 'KNV0' will yield
results similar to Matlab’s or any other implementation of these algorithms.

Using the default method 'YT' should be fine in most cases; 'KNV0' is only provided because it is needed
by 'YT' in some specific cases. Furthermore 'YT' gives on average more robust results than 'KNV0' when
abs(det(X)) is used as a robustness indicator.
2 is available as a technical report on the following URL: https://hdl.handle.net/1903/5598

See also:
scipy.signal.place_poles

References

Continuous-time linear systems

lti(*system) Continuous-time linear time invariant system base class.
StateSpace(*system, **kwargs) Linear Time Invariant system in state-space form.
TransferFunction(*system, **kwargs) Linear Time Invariant system class in transfer function

form.
ZerosPolesGain(*system, **kwargs) Linear Time Invariant system class in zeros, poles, gain

form.
lsim(system, U, T[, X0, interp]) Simulate output of a continuous-time linear system.
impulse(system[, X0, T, N]) Impulse response of continuous-time system.
step(system[, X0, T, N]) Step response of continuous-time system.
freqresp(system[, w, n]) Calculate the frequency response of a continuous-time

system.
bode(system[, w, n]) Calculate Bode magnitude and phase data of a

continuous-time system.

2 A.L. Tits and Y. Yang, “Globally convergent algorithms for robust pole assignment by state feedback”, IEEE Transactions on Automatic Control,
Vol. 41, pp. 1432-1452, 1996.

1 J. Kautsky, N.K. Nichols and P. van Dooren, “Robust pole assignment in linear state feedback”, International Journal of Control, Vol. 41 pp.
1129-1155, 1985.

5.4. Routines (SciPy) 537

https://hdl.handle.net/1903/5598
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.place_poles.html#scipy.signal.place_poles

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.lti

class cupyx.scipy.signal.lti(*system)

Continuous-time linear time invariant system base class.

Parameters
*system (arguments) – The lti class can be instantiated with either 2, 3 or 4 arguments. The
following gives the number of arguments and the corresponding continuous-time subclass that is
created:

• 2: TransferFunction: (numerator, denominator)

• 3: ZerosPolesGain: (zeros, poles, gain)

• 4: StateSpace: (A, B, C, D)

Each argument can be an array or a sequence.

See also:
scipy.signal.lti, ZerosPolesGain, StateSpace, TransferFunction, dlti

Notes

lti instances do not exist directly. Instead, lti creates an instance of one of its subclasses: StateSpace, Transfer-
Function or ZerosPolesGain.

If (numerator, denominator) is passed in for *system, coefficients for both the numerator and denominator should
be specified in descending exponent order (e.g., s^2 + 3s + 5 would be represented as [1, 3, 5]).

Changing the value of properties that are not directly part of the current system representation (such as the zeros
of a StateSpace system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to
the specific system representation first. For example, call sys = sys.to_zpk() before accessing/changing the
zeros, poles or gain.

Methods

bode(w=None, n=100)
Calculate Bode magnitude and phase data of a continuous-time system.

Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See bode for
details.

freqresp(w=None, n=10000)
Calculate the frequency response of a continuous-time system.

Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See freqresp for details.

impulse(X0=None, T=None, N=None)
Return the impulse response of a continuous-time system. See impulse for details.

output(U, T, X0=None)
Return the response of a continuous-time system to input U. See lsim for details.

step(X0=None, T=None, N=None)
Return the step response of a continuous-time system. See step for details.

538 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.html#scipy.signal.lti

CuPy Documentation, Release 13.0.0

to_discrete(dt, method='zoh', alpha=None)
Return a discretized version of the current system.

Parameters: See cont2discrete for details.

Returns
sys

Return type
instance of dlti

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

dt

Return the sampling time of the system, None for lti systems.

poles

Poles of the system.

zeros

Zeros of the system.

cupyx.scipy.signal.StateSpace

class cupyx.scipy.signal.StateSpace(*system, **kwargs)
Linear Time Invariant system in state-space form.

Represents the system as the continuous-time, first order differential equation 𝑥̇ = 𝐴𝑥+𝐵𝑢 or the discrete-time
difference equation 𝑥[𝑘 + 1] = 𝐴𝑥[𝑘] +𝐵𝑢[𝑘]. StateSpace systems inherit additional functionality from the lti,
respectively the dlti classes, depending on which system representation is used.

Parameters
• *system (arguments) – The StateSpace class can be instantiated with 1 or 4 arguments.

The following gives the number of input arguments and their interpretation:

– 1: lti or dlti system: (StateSpace, TransferFunction or ZerosPolesGain)

– 4: array_like: (A, B, C, D)

5.4. Routines (SciPy) 539

CuPy Documentation, Release 13.0.0

• dt (float, optional) – Sampling time [s] of the discrete-time systems. Defaults to None
(continuous-time). Must be specified as a keyword argument, for example, dt=0.1.

See also:
scipy.signal.StateSpace, TransferFunction, ZerosPolesGain, lti, dlti, ss2zpk , ss2tf , zpk2sos

Notes

Changing the value of properties that are not part of the StateSpace system representation (such as zeros or
poles) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system
representation first. For example, call sys = sys.to_zpk() before accessing/changing the zeros, poles or gain.

Methods

to_ss()

Return a copy of the current StateSpace system.

Returns
sys – The current system (copy)

Return type
instance of StateSpace

to_tf(**kwargs)
Convert system representation to TransferFunction.

Parameters
kwargs (dict, optional) – Additional keywords passed to ss2zpk

Returns
sys – Transfer function of the current system

Return type
instance of TransferFunction

to_zpk(**kwargs)
Convert system representation to ZerosPolesGain.

Parameters
kwargs (dict, optional) – Additional keywords passed to ss2zpk

Returns
sys – Zeros, poles, gain representation of the current system

Return type
instance of ZerosPolesGain

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

540 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.html#scipy.signal.StateSpace
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

CuPy Documentation, Release 13.0.0

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

A

State matrix of the StateSpace system.

B

Input matrix of the StateSpace system.

C

Output matrix of the StateSpace system.

D

Feedthrough matrix of the StateSpace system.

dt

Return the sampling time of the system, None for lti systems.

poles

Poles of the system.

zeros

Zeros of the system.

cupyx.scipy.signal.TransferFunction

class cupyx.scipy.signal.TransferFunction(*system, **kwargs)
Linear Time Invariant system class in transfer function form.

Represents the system as the continuous-time transfer function 𝐻(𝑠) =
∑︀𝑁

𝑖=0 𝑏[𝑁 − 𝑖]𝑠𝑖/
∑︀𝑀

𝑗=0 𝑎[𝑀 − 𝑗]𝑠𝑗 or
the discrete-time transfer function 𝐻(𝑧) =

∑︀𝑁
𝑖=0 𝑏[𝑁 − 𝑖]𝑧𝑖/

∑︀𝑀
𝑗=0 𝑎[𝑀 − 𝑗]𝑧𝑗 , where 𝑏 are elements of the

numerator num, 𝑎 are elements of the denominator den, and N == len(b) - 1, M == len(a) - 1. Transfer-
Function systems inherit additional functionality from the lti, respectively the dlti classes, depending on which
system representation is used.

Parameters
• *system (arguments) – The TransferFunction class can be instantiated with 1 or 2 argu-

ments. The following gives the number of input arguments and their interpretation:

– 1: lti or dlti system: (StateSpace, TransferFunction or ZerosPolesGain)

– 2: array_like: (numerator, denominator)

• dt (float, optional) – Sampling time [s] of the discrete-time systems. Defaults to None
(continuous-time). Must be specified as a keyword argument, for example, dt=0.1.

See also:
scipy.signal.TransferFunction, ZerosPolesGain, StateSpace, lti, dlti, tf2ss, tf2zpk , tf2sos

5.4. Routines (SciPy) 541

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.html#scipy.signal.TransferFunction

CuPy Documentation, Release 13.0.0

Notes

Changing the value of properties that are not part of the TransferFunction system representation (such as the A,
B, C, D state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to
the specific system representation first. For example, call sys = sys.to_ss() before accessing/changing the
A, B, C, D system matrices.

If (numerator, denominator) is passed in for *system, coefficients for both the numerator and denominator should
be specified in descending exponent order (e.g. s^2 + 3s + 5 or z^2 + 3z + 5 would be represented as [1,
3, 5])

Methods

to_ss()

Convert system representation to StateSpace.

Returns
sys – State space model of the current system

Return type
instance of StateSpace

to_tf()

Return a copy of the current TransferFunction system.

Returns
sys – The current system (copy)

Return type
instance of TransferFunction

to_zpk()

Convert system representation to ZerosPolesGain.

Returns
sys – Zeros, poles, gain representation of the current system

Return type
instance of ZerosPolesGain

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

542 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Attributes

den

Denominator of the TransferFunction system.

dt

Return the sampling time of the system, None for lti systems.

num

Numerator of the TransferFunction system.

poles

Poles of the system.

zeros

Zeros of the system.

cupyx.scipy.signal.ZerosPolesGain

class cupyx.scipy.signal.ZerosPolesGain(*system, **kwargs)
Linear Time Invariant system class in zeros, poles, gain form.

Represents the system as the continuous- or discrete-time transfer function𝐻(𝑠) = 𝑘
∏︀

𝑖(𝑠−𝑧[𝑖])/
∏︀

𝑗(𝑠−𝑝[𝑗]),
where 𝑘 is the gain, 𝑧 are the zeros and 𝑝 are the poles. ZerosPolesGain systems inherit additional functionality
from the lti, respectively the dlti classes, depending on which system representation is used.

Parameters
• *system (arguments) – The ZerosPolesGain class can be instantiated with 1 or 3 argu-

ments. The following gives the number of input arguments and their interpretation:

– 1: lti or dlti system: (StateSpace, TransferFunction or ZerosPolesGain)

– 3: array_like: (zeros, poles, gain)

• dt (float, optional) – Sampling time [s] of the discrete-time systems. Defaults to None
(continuous-time). Must be specified as a keyword argument, for example, dt=0.1.

See also:
scipy.signal.ZerosPolesGain, TransferFunction, StateSpace, lti, dlti, zpk2ss, zpk2tf ,
zpk2sos

Notes

Changing the value of properties that are not part of the ZerosPolesGain system representation (such as the A,
B, C, D state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to
the specific system representation first. For example, call sys = sys.to_ss() before accessing/changing the
A, B, C, D system matrices.

5.4. Routines (SciPy) 543

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.html#scipy.signal.ZerosPolesGain

CuPy Documentation, Release 13.0.0

Methods

to_ss()

Convert system representation to StateSpace.

Returns
sys – State space model of the current system

Return type
instance of StateSpace

to_tf()

Convert system representation to TransferFunction.

Returns
sys – Transfer function of the current system

Return type
instance of TransferFunction

to_zpk()

Return a copy of the current ‘ZerosPolesGain’ system.

Returns
sys – The current system (copy)

Return type
instance of ZerosPolesGain

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

dt

Return the sampling time of the system, None for lti systems.

gain

Gain of the ZerosPolesGain system.

poles

Poles of the ZerosPolesGain system.

544 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

zeros

Zeros of the ZerosPolesGain system.

cupyx.scipy.signal.lsim

cupyx.scipy.signal.lsim(system, U, T, X0=None, interp=True)
Simulate output of a continuous-time linear system.

Parameters
• system (an instance of the LTI class or a tuple describing the system.

) – The following gives the number of elements in the tuple and the interpretation:

– 1: (instance of lti)

– 2: (num, den)

– 3: (zeros, poles, gain)

– 4: (A, B, C, D)

• U (array_like) – An input array describing the input at each time T (interpolation is as-
sumed between given times). If there are multiple inputs, then each column of the rank-2
array represents an input. If U = 0 or None, a zero input is used.

• T (array_like) – The time steps at which the input is defined and at which the output is
desired. Must be nonnegative, increasing, and equally spaced

• X0 (array_like, optional) – The initial conditions on the state vector (zero by default).

• interp (bool, optional) – Whether to use linear (True, the default) or zero-order-hold
(False) interpolation for the input array.

Returns
• T (1D ndarray) – Time values for the output.

• yout (1D ndarray) – System response.

• xout (ndarray) – Time evolution of the state vector.

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified
in descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

See also:
scipy.signal.lsim

5.4. Routines (SciPy) 545

https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lsim.html#scipy.signal.lsim

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.impulse

cupyx.scipy.signal.impulse(system, X0=None, T=None, N=None)
Impulse response of continuous-time system.

Parameters
• system (an instance of the LTI class or a tuple of array_like) – describ-

ing the system. The following gives the number of elements in the tuple and the interpreta-
tion:

– 1 (instance of lti)

– 2 (num, den)

– 3 (zeros, poles, gain)

– 4 (A, B, C, D)

• X0 (array_like, optional) – Initial state-vector. Defaults to zero.

• T (array_like, optional) – Time points. Computed if not given.

• N (int, optional) – The number of time points to compute (if T is not given).

Returns
• T (ndarray) – A 1-D array of time points.

• yout (ndarray) – A 1-D array containing the impulse response of the system (except for
singularities at zero).

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified
in descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

See also:
scipy.signal.impulse

cupyx.scipy.signal.step

cupyx.scipy.signal.step(system, X0=None, T=None, N=None)
Step response of continuous-time system.

Parameters
• system (an instance of the LTI class or a tuple of array_like) – describ-

ing the system. The following gives the number of elements in the tuple and the interpreta-
tion:

– 1 (instance of lti)

– 2 (num, den)

– 3 (zeros, poles, gain)

– 4 (A, B, C, D)

• X0 (array_like, optional) – Initial state-vector (default is zero).

546 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.impulse.html#scipy.signal.impulse

CuPy Documentation, Release 13.0.0

• T (array_like, optional) – Time points (computed if not given).

• N (int, optional) – Number of time points to compute if T is not given.

Returns
• T (1D ndarray) – Output time points.

• yout (1D ndarray) – Step response of system.

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified
in descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

See also:
scipy.signal.step

cupyx.scipy.signal.freqresp

cupyx.scipy.signal.freqresp(system, w=None, n=10000)
Calculate the frequency response of a continuous-time system.

Parameters
• system (an instance of the lti class or a tuple describing the system.) – The following gives

the number of elements in the tuple and the interpretation:

– 1 (instance of lti)

– 2 (num, den)

– 3 (zeros, poles, gain)

– 4 (A, B, C, D)

• w (array_like, optional) – Array of frequencies (in rad/s). Magnitude and phase data
is calculated for every value in this array. If not given, a reasonable set will be calculated.

• n (int, optional) – Number of frequency points to compute if w is not given. The n
frequencies are logarithmically spaced in an interval chosen to include the influence of the
poles and zeros of the system.

Returns
• w (1D ndarray) – Frequency array [rad/s]

• H (1D ndarray) – Array of complex magnitude values

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified
in descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

See also:
scipy.signal.freqresp

5.4. Routines (SciPy) 547

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.step.html#scipy.signal.step
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqresp.html#scipy.signal.freqresp

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.bode

cupyx.scipy.signal.bode(system, w=None, n=100)
Calculate Bode magnitude and phase data of a continuous-time system.

Parameters
• system (an instance of the LTI class or a tuple describing the system.

) – The following gives the number of elements in the tuple and the interpretation:

– 1 (instance of lti)

– 2 (num, den)

– 3 (zeros, poles, gain)

– 4 (A, B, C, D)

• w (array_like, optional) – Array of frequencies (in rad/s). Magnitude and phase data
is calculated for every value in this array. If not given a reasonable set will be calculated.

• n (int, optional) – Number of frequency points to compute if w is not given. The n
frequencies are logarithmically spaced in an interval chosen to include the influence of the
poles and zeros of the system.

Returns
• w (1D ndarray) – Frequency array [rad/s]

• mag (1D ndarray) – Magnitude array [dB]

• phase (1D ndarray) – Phase array [deg]

See also:
scipy.signal.bode

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified
in descending exponent order (e.g. s^2 + 3s + 5 would be represented as [1, 3, 5]).

Discrete-time linear systems

dlti(*system, **kwargs) Discrete-time linear time invariant system base class.
StateSpace(*system, **kwargs) Linear Time Invariant system in state-space form.
TransferFunction(*system, **kwargs) Linear Time Invariant system class in transfer function

form.
ZerosPolesGain(*system, **kwargs) Linear Time Invariant system class in zeros, poles, gain

form.
dlsim(system, u[, t, x0]) Simulate output of a discrete-time linear system.
dimpulse(system[, x0, t, n]) Impulse response of discrete-time system.
dstep(system[, x0, t, n]) Step response of discrete-time system.
dfreqresp(system[, w, n, whole]) Calculate the frequency response of a discrete-time sys-

tem.
dbode(system[, w, n]) Calculate Bode magnitude and phase data of a discrete-

time system.

548 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bode.html#scipy.signal.bode

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.dlti

class cupyx.scipy.signal.dlti(*system, **kwargs)
Discrete-time linear time invariant system base class.

Parameters
• *system (arguments) – The dlti class can be instantiated with either 2, 3 or 4 arguments.

The following gives the number of arguments and the corresponding discrete-time subclass
that is created:

– 2: TransferFunction: (numerator, denominator)

– 3: ZerosPolesGain: (zeros, poles, gain)

– 4: StateSpace: (A, B, C, D)

Each argument can be an array or a sequence.

• dt (float, optional) – Sampling time [s] of the discrete-time systems. Defaults to True
(unspecified sampling time). Must be specified as a keyword argument, for example, dt=0.
1.

See also:
scipy.signal.dlti, ZerosPolesGain, StateSpace, TransferFunction, lti

Notes

dlti instances do not exist directly. Instead, dlti creates an instance of one of its subclasses: StateSpace, Trans-
ferFunction or ZerosPolesGain.

Changing the value of properties that are not directly part of the current system representation (such as the zeros
of a StateSpace system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to
the specific system representation first. For example, call sys = sys.to_zpk() before accessing/changing the
zeros, poles or gain.

If (numerator, denominator) is passed in for *system, coefficients for both the numerator and denominator should
be specified in descending exponent order (e.g., z^2 + 3z + 5 would be represented as [1, 3, 5]).

Methods

bode(w=None, n=100)
Calculate Bode magnitude and phase data of a discrete-time system.

Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See dbode for
details.

freqresp(w=None, n=10000, whole=False)
Calculate the frequency response of a discrete-time system.

Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See dfreqresp for details.

impulse(x0=None, t=None, n=None)
Return the impulse response of the discrete-time dlti system. See dimpulse for details.

output(u, t, x0=None)
Return the response of the discrete-time system to input u. See dlsim for details.

5.4. Routines (SciPy) 549

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.html#scipy.signal.dlti

CuPy Documentation, Release 13.0.0

step(x0=None, t=None, n=None)
Return the step response of the discrete-time dlti system. See dstep for details.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

dt

Return the sampling time of the system.

poles

Poles of the system.

zeros

Zeros of the system.

cupyx.scipy.signal.dlsim

cupyx.scipy.signal.dlsim(system, u, t=None, x0=None)
Simulate output of a discrete-time linear system.

Parameters
• system (tuple of array_like or instance of dlti) – A tuple describing the system. The follow-

ing gives the number of elements in the tuple and the interpretation:

– 1: (instance of dlti)

– 3: (num, den, dt)

– 4: (zeros, poles, gain, dt)

– 5: (A, B, C, D, dt)

• u (array_like) – An input array describing the input at each time t (interpolation is assumed
between given times). If there are multiple inputs, then each column of the rank-2 array
represents an input.

• t (array_like, optional) – The time steps at which the input is defined. If t is given, it
must be the same length as u, and the final value in t determines the number of steps returned
in the output.

550 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

• x0 (array_like, optional) – The initial conditions on the state vector (zero by default).

Returns
• tout (ndarray) – Time values for the output, as a 1-D array.

• yout (ndarray) – System response, as a 1-D array.

• xout (ndarray, optional) – Time-evolution of the state-vector. Only generated if the input is
a StateSpace system.

See also:
scipy.signal.dlsim, lsim , dstep, dimpulse, cont2discrete

cupyx.scipy.signal.dimpulse

cupyx.scipy.signal.dimpulse(system, x0=None, t=None, n=None)
Impulse response of discrete-time system.

Parameters
• system (tuple of array_like or instance of dlti) – A tuple describing the system. The follow-

ing gives the number of elements in the tuple and the interpretation:

– 1: (instance of dlti)

– 3: (num, den, dt)

– 4: (zeros, poles, gain, dt)

– 5: (A, B, C, D, dt)

• x0 (array_like, optional) – Initial state-vector. Defaults to zero.

• t (array_like, optional) – Time points. Computed if not given.

• n (int, optional) – The number of time points to compute (if t is not given).

Returns
• tout (ndarray) – Time values for the output, as a 1-D array.

• yout (tuple of ndarray) – Impulse response of system. Each element of the tuple represents
the output of the system based on an impulse in each input.

See also:
scipy.signal.dimpulse, impulse, dstep, dlsim , cont2discrete

cupyx.scipy.signal.dstep

cupyx.scipy.signal.dstep(system, x0=None, t=None, n=None)
Step response of discrete-time system.

Parameters
• system (tuple of array_like) – A tuple describing the system. The following gives

the number of elements in the tuple and the interpretation:

– 1: (instance of dlti)

– 3: (num, den, dt)

5.4. Routines (SciPy) 551

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlsim.html#scipy.signal.dlsim
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dimpulse.html#scipy.signal.dimpulse
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

– 4: (zeros, poles, gain, dt)

– 5: (A, B, C, D, dt)

• x0 (array_like, optional) – Initial state-vector. Defaults to zero.

• t (array_like, optional) – Time points. Computed if not given.

• n (int, optional) – The number of time points to compute (if t is not given).

Returns
• tout (ndarray) – Output time points, as a 1-D array.

• yout (tuple of ndarray) – Step response of system. Each element of the tuple represents the
output of the system based on a step response to each input.

See also:
scipy.signal.dlstep, step, dimpulse, dlsim , cont2discrete

cupyx.scipy.signal.dfreqresp

cupyx.scipy.signal.dfreqresp(system, w=None, n=10000, whole=False)
Calculate the frequency response of a discrete-time system.

Parameters
• system (an instance of the dlti class or a tuple describing the system.) – The following gives

the number of elements in the tuple and the interpretation:

– 1 (instance of dlti)

– 2 (numerator, denominator, dt)

– 3 (zeros, poles, gain, dt)

– 4 (A, B, C, D, dt)

• w (array_like, optional) – Array of frequencies (in radians/sample). Magnitude and
phase data is calculated for every value in this array. If not given a reasonable set will be
calculated.

• n (int, optional) – Number of frequency points to compute if w is not given. The n
frequencies are logarithmically spaced in an interval chosen to include the influence of the
poles and zeros of the system.

• whole (bool, optional) – Normally, if ‘w’ is not given, frequencies are computed from
0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If whole is True,
compute frequencies from 0 to 2*pi radians/sample.

Returns
• w (1D ndarray) – Frequency array [radians/sample]

• H (1D ndarray) – Array of complex magnitude values

See also:
scipy.signal.dfeqresp

552 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified
in descending exponent order (e.g. z^2 + 3z + 5 would be represented as [1, 3, 5]).

cupyx.scipy.signal.dbode

cupyx.scipy.signal.dbode(system, w=None, n=100)
Calculate Bode magnitude and phase data of a discrete-time system.

Parameters
• system (an instance of the LTI class or a tuple describing the system.

) – The following gives the number of elements in the tuple and the interpretation:

– 1 (instance of dlti)

– 2 (num, den, dt)

– 3 (zeros, poles, gain, dt)

– 4 (A, B, C, D, dt)

• w (array_like, optional) – Array of frequencies (in radians/sample). Magnitude and
phase data is calculated for every value in this array. If not given a reasonable set will be
calculated.

• n (int, optional) – Number of frequency points to compute if w is not given. The n
frequencies are logarithmically spaced in an interval chosen to include the influence of the
poles and zeros of the system.

Returns
• w (1D ndarray) – Frequency array [rad/time_unit]

• mag (1D ndarray) – Magnitude array [dB]

• phase (1D ndarray) – Phase array [deg]

See also:
scipy.signal.dbode

Notes

If (num, den) is passed in for system, coefficients for both the numerator and denominator should be specified
in descending exponent order (e.g. z^2 + 3z + 5 would be represented as [1, 3, 5]).

Waveforms

chirp(t, f0, t1, f1[, method, phi, vertex_zero]) Frequency-swept cosine generator.
gausspulse(t[, fc, bw, bwr, tpr, retquad, ...]) Return a Gaussian modulated sinusoid:
max_len_seq(nbits[, state, length, taps]) Maximum length sequence (MLS) generator.
sawtooth (t[, width]) Return a periodic sawtooth or triangle waveform.
square(t[, duty]) Return a periodic square-wave waveform.
unit_impulse(shape[, idx, dtype]) Unit impulse signal (discrete delta function) or unit basis

vector.

5.4. Routines (SciPy) 553

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dbode.html#scipy.signal.dbode

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.chirp

cupyx.scipy.signal.chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True)
Frequency-swept cosine generator.

In the following, ‘Hz’ should be interpreted as ‘cycles per unit’; there is no requirement here that the unit is one
second. The important distinction is that the units of rotation are cycles, not radians. Likewise, t could be a
measurement of space instead of time.

Parameters
• t (array_like) – Times at which to evaluate the waveform.

• f0 (float) – Frequency (e.g. Hz) at time t=0.

• t1 (float) – Time at which f1 is specified.

• f1 (float) – Frequency (e.g. Hz) of the waveform at time t1.

• method ({'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional) –
Kind of frequency sweep. If not given, linear is assumed. See Notes below for more details.

• phi (float, optional) – Phase offset, in degrees. Default is 0.

• vertex_zero (bool, optional) – This parameter is only used when method is
‘quadratic’. It determines whether the vertex of the parabola that is the graph of the fre-
quency is at t=0 or t=t1.

Returns
y – A numpy array containing the signal evaluated at t with the requested time-varying frequency.
More precisely, the function returns cos(phase + (pi/180)*phi) where phase is the integral
(from 0 to t) of 2*pi*f(t). f(t) is defined below.

Return type
ndarray

Examples

The following will be used in the examples:

>>> from cupyx.scipy.signal import chirp, spectrogram
>>> import matplotlib.pyplot as plt
>>> import cupy as cp

For the first example, we’ll plot the waveform for a linear chirp from 6 Hz to 1 Hz over 10 seconds:

>>> t = cupy.linspace(0, 10, 5001)
>>> w = chirp(t, f0=6, f1=1, t1=10, method='linear')
>>> plt.plot(cupy.asnumpy(t), cupy.asnumpy(w))
>>> plt.title("Linear Chirp, f(0)=6, f(10)=1")
>>> plt.xlabel('t (sec)')
>>> plt.show()

For the remaining examples, we’ll use higher frequency ranges, and demonstrate the result using cu-
pyx.scipy.signal.spectrogram. We’ll use a 10 second interval sampled at 8000 Hz.

554 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

>>> fs = 8000
>>> T = 10
>>> t = cupy.linspace(0, T, T*fs, endpoint=False)

Quadratic chirp from 1500 Hz to 250 Hz over 10 seconds (vertex of the parabolic curve of the frequency is at
t=0):

>>> w = chirp(t, f0=1500, f1=250, t1=10, method='quadratic')
>>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512,
... nfft=2048)
>>> plt.pcolormesh(cupy.asnumpy(tt), cupy.asnumpy(ff[:513]),

cupy.asnumpy(Sxx[:513]), cmap='gray_r')
>>> plt.title('Quadratic Chirp, f(0)=1500, f(10)=250')
>>> plt.xlabel('t (sec)')
>>> plt.ylabel('Frequency (Hz)')
>>> plt.grid()
>>> plt.show()

cupyx.scipy.signal.gausspulse

cupyx.scipy.signal.gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False)
Return a Gaussian modulated sinusoid:

exp(-a t^2) exp(1j*2*pi*fc*t).

If retquad is True, then return the real and imaginary parts (in-phase and quadrature). If retenv is True, then
return the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid.

Parameters
• t (ndarray or the string 'cutoff') – Input array.

• fc (int, optional) – Center frequency (e.g. Hz). Default is 1000.

• bw (float, optional) – Fractional bandwidth in frequency domain of pulse (e.g. Hz).
Default is 0.5.

• bwr (float, optional) – Reference level at which fractional bandwidth is calculated (dB).
Default is -6.

• tpr (float, optional) – If t is ‘cutoff’, then the function returns the cutoff time for when
the pulse amplitude falls below tpr (in dB). Default is -60.

• retquad (bool, optional) – If True, return the quadrature (imaginary) as well as the real
part of the signal. Default is False.

• retenv (bool, optional) – If True, return the envelope of the signal. Default is False.

Returns
• yI (ndarray) – Real part of signal. Always returned.

• yQ (ndarray) – Imaginary part of signal. Only returned if retquad is True.

• yenv (ndarray) – Envelope of signal. Only returned if retenv is True.

See also:
cupyx.scipy.signal.morlet

5.4. Routines (SciPy) 555

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Examples

Plot real component, imaginary component, and envelope for a 5 Hz pulse, sampled at 100 Hz for 2 seconds:

>>> import cupyx.scipy.signal
>>> import cupy as cp
>>> import matplotlib.pyplot as plt
>>> t = cupy.linspace(-1, 1, 2 * 100, endpoint=False)
>>> i, q, e = cupyx.scipy.signal.gausspulse(t, fc=5, retquad=True, retenv=True)
>>> plt.plot(cupy.asnumpy(t), cupy.asnumpy(i), cupy.asnumpy(t), cupy.asnumpy(q),

cupy.asnumpy(t), cupy.asnumpy(e), '--')

cupyx.scipy.signal.max_len_seq

cupyx.scipy.signal.max_len_seq(nbits, state=None, length=None, taps=None)
Maximum length sequence (MLS) generator.

Parameters
• nbits (int) – Number of bits to use. Length of the resulting sequence will be (2**nbits)
- 1. Note that generating long sequences (e.g., greater than nbits == 16) can take a long
time.

• state (array_like, optional) – If array, must be of length nbits, and will be cast to
binary (bool) representation. If None, a seed of ones will be used, producing a repeatable
representation. If state is all zeros, an error is raised as this is invalid. Default: None.

• length (int, optional) – Number of samples to compute. If None, the entire length
(2**nbits) - 1 is computed.

• taps (array_like, optional) – Polynomial taps to use (e.g., [7, 6, 1] for an 8-bit
sequence). If None, taps will be automatically selected (for up to nbits == 32).

Returns
• seq (array) – Resulting MLS sequence of 0’s and 1’s.

• state (array) – The final state of the shift register.

Notes

The algorithm for MLS generation is generically described in:

https://en.wikipedia.org/wiki/Maximum_length_sequence

The default values for taps are specifically taken from the first option listed for each value of nbits in:

https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/
articles/m_sequence_linear_feedback_shift_register_lfsr.htm

556 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Maximum_length_sequence
https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.sawtooth

cupyx.scipy.signal.sawtooth(t, width=1.0)
Return a periodic sawtooth or triangle waveform.

The sawtooth waveform has a period 2*pi, rises from -1 to 1 on the interval 0 to width*2*pi, then drops from
1 to -1 on the interval width*2*pi to 2*pi. width must be in the interval [0, 1].

Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth
across the frequency spectrum.

Parameters
• t (array_like) – Time.

• width (array_like, optional) – Width of the rising ramp as a proportion of the total
cycle. Default is 1, producing a rising ramp, while 0 produces a falling ramp. width = 0.5
produces a triangle wave. If an array, causes wave shape to change over time, and must be
the same length as t.

Returns
y – Output array containing the sawtooth waveform.

Return type
ndarray

Examples

A 5 Hz waveform sampled at 500 Hz for 1 second:

>>> from cupyx.scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(0, 1, 500)
>>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))

cupyx.scipy.signal.square

cupyx.scipy.signal.square(t, duty=0.5)
Return a periodic square-wave waveform.

The square wave has a period 2*pi, has value +1 from 0 to 2*pi*duty and -1 from 2*pi*duty to 2*pi. duty
must be in the interval [0,1].

Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth
across the frequency spectrum.

Parameters
• t (array_like) – The input time array.

• duty (array_like, optional) – Duty cycle. Default is 0.5 (50% duty cycle). If an array,
causes wave shape to change over time, and must be the same length as t.

Returns
y – Output array containing the square waveform.

Return type
ndarray

5.4. Routines (SciPy) 557

CuPy Documentation, Release 13.0.0

Examples

A 5 Hz waveform sampled at 500 Hz for 1 second:

>>> import cupyx.scipy.signal
>>> import cupy as cp
>>> import matplotlib.pyplot as plt
>>> t = cupy.linspace(0, 1, 500, endpoint=False)
>>> plt.plot(cupy.asnumpy(t), cupy.asnumpy(cupyx.scipy.signal.square(2 * cupy.pi *␣
→˓5 * t)))
>>> plt.ylim(-2, 2)

A pulse-width modulated sine wave:

>>> plt.figure()
>>> sig = cupy.sin(2 * cupy.pi * t)
>>> pwm = cupyx.scipy.signal.square(2 * cupy.pi * 30 * t, duty=(sig + 1)/2)
>>> plt.subplot(2, 1, 1)
>>> plt.plot(cupy.asnumpy(t), cupy.asnumpy(sig))
>>> plt.subplot(2, 1, 2)
>>> plt.plot(cupy.asnumpy(t), cupy.asnumpy(pwm))
>>> plt.ylim(-1.5, 1.5)

cupyx.scipy.signal.unit_impulse

cupyx.scipy.signal.unit_impulse(shape, idx=None, dtype=<class 'float'>)
Unit impulse signal (discrete delta function) or unit basis vector.

Parameters
• shape (int or tuple of int) – Number of samples in the output (1-D), or a tuple that

represents the shape of the output (N-D).

• idx (None or int or tuple of int or 'mid', optional) – Index at which the
value is 1. If None, defaults to the 0th element. If idx='mid', the impulse will be centered
at shape // 2 in all dimensions. If an int, the impulse will be at idx in all dimensions.

• dtype (data-type, optional) – The desired data-type for the array, e.g., numpy.int8.
Default is numpy.float64.

Returns
y – Output array containing an impulse signal.

Return type
ndarray

558 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

The 1D case is also known as the Kronecker delta.

Examples

An impulse at the 0th element (𝛿[𝑛]):

>>> import cupyx.scipy.signal
>>> import cupy as cp
>>> cupyx.scipy.signal.unit_impulse(8)
array([1., 0., 0., 0., 0., 0., 0., 0.])

Impulse offset by 2 samples (𝛿[𝑛− 2]):

>>> cupyx.scipy.signal.unit_impulse(7, 2)
array([0., 0., 1., 0., 0., 0., 0.])

2-dimensional impulse, centered:

>>> cupyx.scipy.signal.unit_impulse((3, 3), 'mid')
array([[0., 0., 0.],

[0., 1., 0.],
[0., 0., 0.]])

Impulse at (2, 2), using broadcasting:

>>> cupyx.scipy.signal.unit_impulse((4, 4), 2)
array([[0., 0., 0., 0.],

[0., 0., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 0.]])

Window functions

For window functions, see the cupyx.scipy.signal.windows namespace.

In the cupyx.scipy.signal namespace, there is a convenience function to obtain these windows by name:

get_window(window, Nx[, fftbins]) Return a window of a given length and type.

cupyx.scipy.signal.get_window

cupyx.scipy.signal.get_window(window, Nx, fftbins=True)
Return a window of a given length and type.

Parameters
• window (string, float, or tuple) – The type of window to create. See below for more

details.

• Nx (int) – The number of samples in the window.

5.4. Routines (SciPy) 559

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• fftbins (bool, optional) – If True (default), create a “periodic” window, ready to use
with ifftshift and be multiplied by the result of an FFT (see also fftpack.fftfreq). If False,
create a “symmetric” window, for use in filter design.

Returns
get_window – Returns a window of length Nx and type window

Return type
ndarray

Notes

Window types:

• boxcar()

• triang()

• blackman()

• hamming()

• hann()

• bartlett()

• flattop()

• parzen()

• bohman()

• blackmanharris()

• nuttall()

• barthann()

• kaiser() (needs beta)

• gaussian() (needs standard deviation)

• general_gaussian() (needs power, width)

• chebwin() (needs attenuation)

• exponential() (needs decay scale)

• tukey() (needs taper fraction)

If the window requires no parameters, then window can be a string.

If the window requires parameters, then window must be a tuple with the first argument the string name of the
window, and the next arguments the needed parameters.

If window is a floating point number, it is interpreted as the beta parameter of the kaiser() window.

Each of the window types listed above is also the name of a function that can be called directly to create a window
of that type.

560 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Examples

>>> import cupyx.scipy.signal.windows
>>> cupyx.scipy.signal.windows.get_window('triang', 7)
array([0.125, 0.375, 0.625, 0.875, 0.875, 0.625, 0.375])
>>> cupyx.scipy.signal.windows.get_window(('kaiser', 4.0), 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1.,

0.89640418, 0.63343178, 0.32578323, 0.08848053])
>>> cupyx.scipy.signal.windows.get_window(4.0, 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1.,

0.89640418, 0.63343178, 0.32578323, 0.08848053])

Wavelets

morlet(M[, w, s, complete]) Complex Morlet wavelet.
qmf (hk) Return high-pass qmf filter from low-pass
ricker(points, a) Return a Ricker wavelet, also known as the "Mexican hat

wavelet".
morlet2(M, s[, w]) Complex Morlet wavelet, designed to work with cwt. Re-

turns the complete version of morlet wavelet, normalised
according to s::.

cwt(data, wavelet, widths) Continuous wavelet transform.

cupyx.scipy.signal.morlet

cupyx.scipy.signal.morlet(M, w=5.0, s=1.0, complete=True)
Complex Morlet wavelet.

Parameters
• M (int) – Length of the wavelet.

• w (float, optional) – Omega0. Default is 5

• s (float, optional) – Scaling factor, windowed from -s*2*pi to +s*2*pi. Default is
1.

• complete (bool, optional) – Whether to use the complete or the standard version.

Returns
morlet

Return type
(M,) ndarray

See also:
cupyx.scipy.signal.gausspulse

5.4. Routines (SciPy) 561

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

The standard version:

pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2))

This commonly used wavelet is often referred to simply as the Morlet wavelet. Note that this simplified version
can cause admissibility problems at low values of w.

The complete version:

pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2))

This version has a correction term to improve admissibility. For w greater than 5, the correction term is negligible.

Note that the energy of the return wavelet is not normalised according to s.

The fundamental frequency of this wavelet in Hz is given by f = 2*s*w*r / M where r is the sampling rate.

Note: This function was created before cwt and is not compatible with it.

cupyx.scipy.signal.qmf

cupyx.scipy.signal.qmf(hk)
Return high-pass qmf filter from low-pass

Parameters
hk (array_like) – Coefficients of high-pass filter.

cupyx.scipy.signal.ricker

cupyx.scipy.signal.ricker(points, a)
Return a Ricker wavelet, also known as the “Mexican hat wavelet”.

It models the function:

A (1 - x^2/a^2) exp(-x^2/2 a^2),

where A = 2/sqrt(3a)pi^1/4.

Parameters
• points (int) – Number of points in vector. Will be centered around 0.

• a (scalar) – Width parameter of the wavelet.

Returns
vector – Array of length points in shape of ricker curve.

Return type
(N,) ndarray

562 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Examples

>>> import cupyx.scipy.signal
>>> import cupy as cp
>>> import matplotlib.pyplot as plt

>>> points = 100
>>> a = 4.0
>>> vec2 = cupyx.scipy.signal.ricker(points, a)
>>> print(len(vec2))
100
>>> plt.plot(cupy.asnumpy(vec2))
>>> plt.show()

cupyx.scipy.signal.morlet2

cupyx.scipy.signal.morlet2(M, s, w=5)
Complex Morlet wavelet, designed to work with cwt. Returns the complete version of morlet wavelet, normalised
according to s:

exp(1j*w*x/s) * exp(-0.5*(x/s)**2) * pi**(-0.25) * sqrt(1/s)

Parameters
• M (int) – Length of the wavelet.

• s (float) – Width parameter of the wavelet.

• w (float, optional) – Omega0. Default is 5

Returns
morlet

Return type
(M,) ndarray

See also:

morlet
Implementation of Morlet wavelet, incompatible with cwt

Notes

This function was designed to work with cwt. Because morlet2 returns an array of complex numbers, the dtype
argument of cwt should be set to complex128 for best results.

Note the difference in implementation with morlet. The fundamental frequency of this wavelet in Hz is given by:

f = w*fs / (2*s*np.pi)

where fs is the sampling rate and s is the wavelet width parameter. Similarly we can get the wavelet width
parameter at f:

5.4. Routines (SciPy) 563

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

s = w*fs / (2*f*np.pi)

Examples

>>> from cupyx.scipy import signal
>>> import matplotlib.pyplot as plt
>>> M = 100
>>> s = 4.0
>>> w = 2.0
>>> wavelet = signal.morlet2(M, s, w)
>>> plt.plot(abs(wavelet))
>>> plt.show()

This example shows basic use of morlet2 with cwt in time-frequency analysis:

>>> from cupyx.scipy import signal
>>> import matplotlib.pyplot as plt
>>> t, dt = np.linspace(0, 1, 200, retstep=True)
>>> fs = 1/dt
>>> w = 6.
>>> sig = np.cos(2*np.pi*(50 + 10*t)*t) + np.sin(40*np.pi*t)
>>> freq = np.linspace(1, fs/2, 100)
>>> widths = w*fs / (2*freq*np.pi)
>>> cwtm = signal.cwt(sig, signal.morlet2, widths, w=w)
>>> plt.pcolormesh(t, freq, np.abs(cwtm),

cmap='viridis', shading='gouraud')
>>> plt.show()

cupyx.scipy.signal.cwt

cupyx.scipy.signal.cwt(data, wavelet, widths)
Continuous wavelet transform.

Performs a continuous wavelet transform on data, using the wavelet function. A CWT performs a convolution
with data using the wavelet function, which is characterized by a width parameter and length parameter.

Parameters
• data ((N,) ndarray) – data on which to perform the transform.

• wavelet (function) – Wavelet function, which should take 2 arguments. The first argu-
ment is the number of points that the returned vector will have (len(wavelet(length,width))
== length). The second is a width parameter, defining the size of the wavelet (e.g. standard
deviation of a gaussian). See ricker, which satisfies these requirements.

• widths ((M,) sequence) – Widths to use for transform.

Returns
cwt – Will have shape of (len(widths), len(data)).

Return type
(M, N) ndarray

564 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Notes

length = min(10 * width[ii], len(data))
cwt[ii,:] = cupyx.scipy.signal.convolve(data, wavelet(length,

width[ii]), mode='same')

Examples

>>> import cupyx.scipy.signal
>>> import cupy as cp
>>> import matplotlib.pyplot as plt
>>> t = cupy.linspace(-1, 1, 200, endpoint=False)
>>> sig = cupy.cos(2 * cupy.pi * 7 * t) + cupyx.scipy.signal.gausspulse(t - 0.4,␣
→˓fc=2)
>>> widths = cupy.arange(1, 31)
>>> cwtmatr = cupyx.scipy.signal.cwt(sig, cupyx.scipy.signal.ricker, widths)
>>> plt.imshow(abs(cupy.asnumpy(cwtmatr)), extent=[-1, 1, 31, 1],

cmap='PRGn', aspect='auto', vmax=abs(cwtmatr).max(),
vmin=-abs(cwtmatr).max())

>>> plt.show()

Peak finding

argrelmin(data[, axis, order, mode]) Calculate the relative minima of data.
argrelmax(data[, axis, order, mode]) Calculate the relative maxima of data.
argrelextrema(data, comparator[, axis, ...]) Calculate the relative extrema of data.
find_peaks(x[, height, threshold, distance, ...]) Find peaks inside a signal based on peak properties.
peak_prominences(x, peaks[, wlen]) Calculate the prominence of each peak in a signal.
peak_widths(x, peaks[, rel_height, ...]) Calculate the width of each peak in a signal.

cupyx.scipy.signal.argrelmin

cupyx.scipy.signal.argrelmin(data, axis=0, order=1, mode='clip')
Calculate the relative minima of data.

Parameters
• data (ndarray) – Array in which to find the relative minima.

• axis (int, optional) – Axis over which to select from data. Default is 0.

• order (int, optional) – How many points on each side to use for the comparison to
consider comparator(n, n+x) to be True.

• mode (str, optional) – How the edges of the vector are treated. Available options are
‘wrap’ (wrap around) or ‘clip’ (treat overflow as the same as the last (or first) element).
Default ‘clip’. See cupy.take.

Returns
extrema – Indices of the minima in arrays of integers. extrema[k] is the array of indices of
axis k of data. Note that the return value is a tuple even when data is one-dimensional.

5.4. Routines (SciPy) 565

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Return type
tuple of ndarrays

See also:
argrelextrema, argrelmax, find_peaks

Notes

This function uses argrelextrema with cupy.less as comparator. Therefore it requires a strict inequality on both
sides of a value to consider it a minimum. This means flat minima (more than one sample wide) are not detected.
In case of one-dimensional data find_peaks can be used to detect all local minima, including flat ones, by calling
it with negated data.

Examples

>>> from cupyx.scipy.signal import argrelmin
>>> import cupy
>>> x = cupy.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelmin(x)
(array([1, 5]),)
>>> y = cupy.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelmin(y, axis=1)
(array([0, 2]), array([2, 1]))

cupyx.scipy.signal.argrelmax

cupyx.scipy.signal.argrelmax(data, axis=0, order=1, mode='clip')
Calculate the relative maxima of data.

Parameters
• data (ndarray) – Array in which to find the relative maxima.

• axis (int, optional) – Axis over which to select from data. Default is 0.

• order (int, optional) – How many points on each side to use for the comparison to
consider comparator(n, n+x) to be True.

• mode (str, optional) – How the edges of the vector are treated. Available options are
‘wrap’ (wrap around) or ‘clip’ (treat overflow as the same as the last (or first) element).
Default ‘clip’. See cupy.take.

Returns
extrema – Indices of the maxima in arrays of integers. extrema[k] is the array of indices of
axis k of data. Note that the return value is a tuple even when data is one-dimensional.

Return type
tuple of ndarrays

See also:
argrelextrema, argrelmin, find_peaks

566 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Notes

This function uses argrelextrema with cupy.greater as comparator. Therefore it requires a strict inequality on
both sides of a value to consider it a maximum. This means flat maxima (more than one sample wide) are not
detected. In case of one-dimensional data find_peaks can be used to detect all local maxima, including flat ones.

Examples

>>> from cupyx.scipy.signal import argrelmax
>>> import cupy
>>> x = cupy.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelmax(x)
(array([3, 6]),)
>>> y = cupy.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelmax(y, axis=1)
(array([0]), array([1]))

cupyx.scipy.signal.argrelextrema

cupyx.scipy.signal.argrelextrema(data, comparator, axis=0, order=1, mode='clip')
Calculate the relative extrema of data.

Parameters
• data (ndarray) – Array in which to find the relative extrema.

• comparator (callable) – Function to use to compare two data points. Should take two
arrays as arguments.

• axis (int, optional) – Axis over which to select from data. Default is 0.

• order (int, optional) – How many points on each side to use for the comparison to
consider comparator(n, n+x) to be True.

• mode (str, optional) – How the edges of the vector are treated. Available options are
‘wrap’ (wrap around) or ‘clip’ (treat overflow as the same as the last (or first) element).
Default ‘clip’. See cupy.take.

Returns
extrema – Indices of the maxima in arrays of integers. extrema[k] is the array of indices of
axis k of data. Note that the return value is a tuple even when data is one-dimensional.

Return type
tuple of ndarrays

See also:
argrelmin, argrelmax

5.4. Routines (SciPy) 567

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Examples

>>> from cupyx.scipy.signal import argrelextrema
>>> import cupy
>>> x = cupy.array([2, 1, 2, 3, 2, 0, 1, 0])
>>> argrelextrema(x, cupy.greater)
(array([3, 6]),)
>>> y = cupy.array([[1, 2, 1, 2],
... [2, 2, 0, 0],
... [5, 3, 4, 4]])
...
>>> argrelextrema(y, cupy.less, axis=1)
(array([0, 2]), array([2, 1]))

cupyx.scipy.signal.find_peaks

cupyx.scipy.signal.find_peaks(x, height=None, threshold=None, distance=None, prominence=None,
width=None, wlen=None, rel_height=0.5, plateau_size=None)

Find peaks inside a signal based on peak properties.

This function takes a 1-D array and finds all local maxima by simple comparison of neighboring values. Option-
ally, a subset of these peaks can be selected by specifying conditions for a peak’s properties.

Parameters
• x (sequence) – A signal with peaks.

• height (number or ndarray or sequence, optional) – Required height of peaks.
Either a number, None, an array matching x or a 2-element sequence of the former. The first
element is always interpreted as the minimal and the second, if supplied, as the maximal
required height.

• threshold (number or ndarray or sequence, optional) – Required threshold of
peaks, the vertical distance to its neighboring samples. Either a number, None, an array
matching x or a 2-element sequence of the former. The first element is always interpreted as
the minimal and the second, if supplied, as the maximal required threshold.

• distance (number, optional) – Required minimal horizontal distance (>= 1) in samples
between neighbouring peaks. Smaller peaks are removed first until the condition is fulfilled
for all remaining peaks.

• prominence (number or ndarray or sequence, optional) – Required prominence
of peaks. Either a number, None, an array matching x or a 2-element sequence of the former.
The first element is always interpreted as the minimal and the second, if supplied, as the
maximal required prominence.

• width (number or ndarray or sequence, optional) – Required width of peaks in
samples. Either a number, None, an array matching x or a 2-element sequence of the former.
The first element is always interpreted as the minimal and the second, if supplied, as the
maximal required width.

• wlen (int, optional) – Used for calculation of the peaks prominences, thus it is only
used if one of the arguments prominence or width is given. See argument wlen in
peak_prominences for a full description of its effects.

568 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• rel_height (float, optional) – Used for calculation of the peaks width, thus it is only
used if width is given. See argument rel_height in peak_widths for a full description of its
effects.

• plateau_size (number or ndarray or sequence, optional) – Required size of the
flat top of peaks in samples. Either a number, None, an array matching x or a 2-element
sequence of the former. The first element is always interpreted as the minimal and the second,
if supplied as the maximal required plateau size.

New in version 1.2.0.

Returns
• peaks (ndarray) – Indices of peaks in x that satisfy all given conditions.

• properties (dict) – A dictionary containing properties of the returned peaks which were
calculated as intermediate results during evaluation of the specified conditions:

– ’peak_heights’
If height is given, the height of each peak in x.

– ’left_thresholds’, ‘right_thresholds’
If threshold is given, these keys contain a peaks vertical distance to its neighbouring
samples.

– ’prominences’, ‘right_bases’, ‘left_bases’
If prominence is given, these keys are accessible. See peak_prominences for a descrip-
tion of their content.

– ’width_heights’, ‘left_ips’, ‘right_ips’
If width is given, these keys are accessible. See peak_widths for a description of their
content.

– ’plateau_sizes’, left_edges’, ‘right_edges’
If plateau_size is given, these keys are accessible and contain the indices of a peak’s
edges (edges are still part of the plateau) and the calculated plateau sizes.

To calculate and return properties without excluding peaks, provide the open interval (None,
None) as a value to the appropriate argument (excluding distance).

Warns
PeakPropertyWarning – Raised if a peak’s properties have unexpected values (see
peak_prominences and peak_widths).

Warning: This function may return unexpected results for data containing NaNs. To avoid this, NaNs
should either be removed or replaced.

See also:

find_peaks_cwt
Find peaks using the wavelet transformation.

peak_prominences
Directly calculate the prominence of peaks.

peak_widths
Directly calculate the width of peaks.

5.4. Routines (SciPy) 569

https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

Notes

In the context of this function, a peak or local maximum is defined as any sample whose two direct neighbours
have a smaller amplitude. For flat peaks (more than one sample of equal amplitude wide) the index of the middle
sample is returned (rounded down in case the number of samples is even). For noisy signals the peak locations
can be off because the noise might change the position of local maxima. In those cases consider smoothing the
signal before searching for peaks or use other peak finding and fitting methods (like find_peaks_cwt).

Some additional comments on specifying conditions:

• Almost all conditions (excluding distance) can be given as half-open or closed intervals, e.g., 1 or (1,
None) defines the half-open interval [1,∞] while (None, 1) defines the interval [−∞, 1]. The open
interval (None, None) can be specified as well, which returns the matching properties without exclusion
of peaks.

• The border is always included in the interval used to select valid peaks.

• For several conditions the interval borders can be specified with arrays matching x in shape which enables
dynamic constrains based on the sample position.

• The conditions are evaluated in the following order: plateau_size, height, threshold, distance, prominence,
width. In most cases this order is the fastest one because faster operations are applied first to reduce the
number of peaks that need to be evaluated later.

• While indices in peaks are guaranteed to be at least distance samples apart, edges of flat peaks may be
closer than the allowed distance.

• Use wlen to reduce the time it takes to evaluate the conditions for prominence or width if x is large or has
many local maxima (see peak_prominences).

cupyx.scipy.signal.peak_prominences

cupyx.scipy.signal.peak_prominences(x, peaks, wlen=None)
Calculate the prominence of each peak in a signal.

The prominence of a peak measures how much a peak stands out from the surrounding baseline of the signal and
is defined as the vertical distance between the peak and its lowest contour line.

Parameters
• x (sequence) – A signal with peaks.

• peaks (sequence) – Indices of peaks in x.

• wlen (int, optional) – A window length in samples that optionally limits the evaluated
area for each peak to a subset of x. The peak is always placed in the middle of the window
therefore the given length is rounded up to the next odd integer. This parameter can speed
up the calculation (see Notes).

Returns
• prominences (ndarray) – The calculated prominences for each peak in peaks.

• left_bases, right_bases (ndarray) – The peaks’ bases as indices in x to the left and right of
each peak. The higher base of each pair is a peak’s lowest contour line.

Raises
ValueError – If a value in peaks is an invalid index for x.

Warns
PeakPropertyWarning – For indices in peaks that don’t point to valid local maxima in x, the

570 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

CuPy Documentation, Release 13.0.0

returned prominence will be 0 and this warning is raised. This also happens if wlen is smaller
than the plateau size of a peak.

Warning: This function may return unexpected results for data containing NaNs. To avoid this, NaNs
should either be removed or replaced.

See also:

find_peaks
Find peaks inside a signal based on peak properties.

peak_widths
Calculate the width of peaks.

Notes

Strategy to compute a peak’s prominence:

1. Extend a horizontal line from the current peak to the left and right until the line either reaches the window
border (see wlen) or intersects the signal again at the slope of a higher peak. An intersection with a peak
of the same height is ignored.

2. On each side find the minimal signal value within the interval defined above. These points are the peak’s
bases.

3. The higher one of the two bases marks the peak’s lowest contour line. The prominence can then be calcu-
lated as the vertical difference between the peaks height itself and its lowest contour line.

Searching for the peak’s bases can be slow for large x with periodic behavior because large chunks or even the full
signal need to be evaluated for the first algorithmic step. This evaluation area can be limited with the parameter
wlen which restricts the algorithm to a window around the current peak and can shorten the calculation time if
the window length is short in relation to x. However, this may stop the algorithm from finding the true global
contour line if the peak’s true bases are outside this window. Instead, a higher contour line is found within the
restricted window leading to a smaller calculated prominence. In practice, this is only relevant for the highest
set of peaks in x. This behavior may even be used intentionally to calculate “local” prominences.

cupyx.scipy.signal.peak_widths

cupyx.scipy.signal.peak_widths(x, peaks, rel_height=0.5, prominence_data=None, wlen=None)
Calculate the width of each peak in a signal.

This function calculates the width of a peak in samples at a relative distance to the peak’s height and prominence.

Parameters
• x (sequence) – A signal with peaks.

• peaks (sequence) – Indices of peaks in x.

• rel_height (float, optional) – Chooses the relative height at which the peak width is
measured as a percentage of its prominence. 1.0 calculates the width of the peak at its lowest
contour line while 0.5 evaluates at half the prominence height. Must be at least 0. See notes
for further explanation.

5.4. Routines (SciPy) 571

https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• prominence_data (tuple, optional) – A tuple of three arrays matching the output of
peak_prominences when called with the same arguments x and peaks. This data are calcu-
lated internally if not provided.

• wlen (int, optional) – A window length in samples passed to peak_prominences as an
optional argument for internal calculation of prominence_data. This argument is ignored if
prominence_data is given.

Returns
• widths (ndarray) – The widths for each peak in samples.

• width_heights (ndarray) – The height of the contour lines at which the widths where eval-
uated.

• left_ips, right_ips (ndarray) – Interpolated positions of left and right intersection points of
a horizontal line at the respective evaluation height.

Raises
ValueError – If prominence_data is supplied but doesn’t satisfy the condition 0 <=
left_base <= peak <= right_base < x.shape[0] for each peak, has the wrong dtype,
is not C-contiguous or does not have the same shape.

Warns
PeakPropertyWarning – Raised if any calculated width is 0. This may stem from the supplied
prominence_data or if rel_height is set to 0.

Warning: This function may return unexpected results for data containing NaNs. To avoid this, NaNs
should either be removed or replaced.

See also:

find_peaks
Find peaks inside a signal based on peak properties.

peak_prominences
Calculate the prominence of peaks.

Notes

The basic algorithm to calculate a peak’s width is as follows:

• Calculate the evaluation height ℎ𝑒𝑣𝑎𝑙 with the formula ℎ𝑒𝑣𝑎𝑙 = ℎ𝑃𝑒𝑎𝑘 − 𝑃 ·𝑅, where ℎ𝑃𝑒𝑎𝑘 is the height
of the peak itself, 𝑃 is the peak’s prominence and 𝑅 a positive ratio specified with the argument rel_height.

• Draw a horizontal line at the evaluation height to both sides, starting at the peak’s current vertical position
until the lines either intersect a slope, the signal border or cross the vertical position of the peak’s base (see
peak_prominences for an definition). For the first case, intersection with the signal, the true intersection
point is estimated with linear interpolation.

• Calculate the width as the horizontal distance between the chosen endpoints on both sides. As a conse-
quence of this the maximal possible width for each peak is the horizontal distance between its bases.

As shown above to calculate a peak’s width its prominence and bases must be known. You can supply these
yourself with the argument prominence_data. Otherwise, they are internally calculated (see peak_prominences).

572 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

CuPy Documentation, Release 13.0.0

Spectral analysis

periodogram(x[, fs, window, nfft, detrend, ...]) Estimate power spectral density using a periodogram.
welch (x[, fs, window, nperseg, noverlap, ...]) Estimate power spectral density using Welch's method.
csd(x, y[, fs, window, nperseg, noverlap, ...]) Estimate the cross power spectral density, Pxy, using

Welch's method.
coherence(x, y[, fs, window, nperseg, ...]) Estimate the magnitude squared coherence estimate,

Cxy, of discrete-time signals X and Y using Welch's
method.

spectrogram(x[, fs, window, nperseg, ...]) Compute a spectrogram with consecutive Fourier trans-
forms.

lombscargle(x, y, freqs) Computes the Lomb-Scargle periodogram.
vectorstrength (events, period) Determine the vector strength of the events correspond-

ing to the given period.
stft(x[, fs, window, nperseg, noverlap, ...]) Compute the Short Time Fourier Transform (STFT).
istft(Zxx[, fs, window, nperseg, noverlap, ...]) Perform the inverse Short Time Fourier transform

(iSTFT).
check_COLA(window, nperseg, noverlap[, tol]) Check whether the Constant OverLap Add (COLA) con-

straint is met.
check_NOLA(window, nperseg, noverlap[, tol]) Check whether the Nonzero Overlap Add (NOLA) con-

straint is met.

cupyx.scipy.signal.periodogram

cupyx.scipy.signal.periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant',
return_onesided=True, scaling='density', axis=-1)

Estimate power spectral density using a periodogram.

Parameters
• x (array_like) – Time series of measurement values

• fs (float, optional) – Sampling frequency of the x time series. Defaults to 1.0.

• window (str or tuple or array_like, optional) – Desired window to use. If win-
dow is a string or tuple, it is passed to get_window to generate the window values, which
are DFT-even by default. See get_window for a list of windows and required parameters. If
window is array_like it will be used directly as the window and its length must be nperseg.
Defaults to ‘boxcar’.

• nfft (int, optional) – Length of the FFT used. If None the length of x will be used.

• detrend (str or function or False, optional) – Specifies how to detrend each segment. If
detrend is a string, it is passed as the type argument to the detrend function. If it is a function,
it takes a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to ‘constant’.

• return_onesided (bool, optional) – If True, return a one-sided spectrum for real data.
If False return a two-sided spectrum. Defaults to True, but for complex data, a two-sided
spectrum is always returned.

• scaling ({ 'density', 'spectrum' }, optional) – Selects between computing the
power spectral density (‘density’) where Pxx has units of V**2/Hz and computing the power
spectrum (‘spectrum’) where Pxx has units of V**2, if x is measured in V and fs is measured
in Hz. Defaults to ‘density’

5.4. Routines (SciPy) 573

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• axis (int, optional) – Axis along which the periodogram is computed; the default is
over the last axis (i.e. axis=-1).

Returns
• f (ndarray) – Array of sample frequencies.

• Pxx (ndarray) – Power spectral density or power spectrum of x.

See also:

welch
Estimate power spectral density using Welch’s method

lombscargle
Lomb-Scargle periodogram for unevenly sampled data

cupyx.scipy.signal.welch

cupyx.scipy.signal.welch(x, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
detrend='constant', return_onesided=True, scaling='density', axis=-1,
average='mean')

Estimate power spectral density using Welch’s method.

Welch’s method1 computes an estimate of the power spectral density by dividing the data into overlapping seg-
ments, computing a modified periodogram for each segment and averaging the periodograms.

Parameters
• x (array_like) – Time series of measurement values

• fs (float, optional) – Sampling frequency of the x time series. Defaults to 1.0.

• window (str or tuple or array_like, optional) – Desired window to use. If win-
dow is a string or tuple, it is passed to get_window to generate the window values, which
are DFT-even by default. See get_window for a list of windows and required parameters. If
window is array_like it will be used directly as the window and its length must be nperseg.
Defaults to a Hann window.

• nperseg (int, optional) – Length of each segment. Defaults to None, but if window is
str or tuple, is set to 256, and if window is array_like, is set to the length of the window.

• noverlap (int, optional) – Number of points to overlap between segments. If None,
noverlap = nperseg // 2. Defaults to None.

• nfft (int, optional) – Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is nperseg. Defaults to None.

• detrend (str or function or False, optional) – Specifies how to detrend each segment. If
detrend is a string, it is passed as the type argument to the detrend function. If it is a function,
it takes a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to ‘constant’.

• return_onesided (bool, optional) – If True, return a one-sided spectrum for real data.
If False return a two-sided spectrum. Defaults to True, but for complex data, a two-sided
spectrum is always returned.

1 P. Welch, “The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified
periodograms”, IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967.

574 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• scaling ({ 'density', 'spectrum' }, optional) – Selects between computing the
power spectral density (‘density’) where Pxx has units of V**2/Hz and computing the power
spectrum (‘spectrum’) where Pxx has units of V**2, if x is measured in V and fs is measured
in Hz. Defaults to ‘density’

• axis (int, optional) – Axis along which the periodogram is computed; the default is
over the last axis (i.e. axis=-1).

• average ({ 'mean', 'median' }, optional) – Method to use when averaging peri-
odograms. Defaults to ‘mean’.

Returns
• f (ndarray) – Array of sample frequencies.

• Pxx (ndarray) – Power spectral density or power spectrum of x.

See also:

periodogram
Simple, optionally modified periodogram

lombscargle
Lomb-Scargle periodogram for unevenly sampled data

Notes

An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default
Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while
not over counting any of the data. Narrower windows may require a larger overlap.

If noverlap is 0, this method is equivalent to Bartlett’s method2.

References

cupyx.scipy.signal.csd

cupyx.scipy.signal.csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
detrend='constant', return_onesided=True, scaling='density', axis=-1,
average='mean')

Estimate the cross power spectral density, Pxy, using Welch’s method.

Parameters
• x (array_like) – Time series of measurement values

• y (array_like) – Time series of measurement values

• fs (float, optional) – Sampling frequency of the x and y time series. Defaults to 1.0.

• window (str or tuple or array_like, optional) – Desired window to use. If win-
dow is a string or tuple, it is passed to get_window to generate the window values, which
are DFT-even by default. See get_window for a list of windows and required parameters. If
window is array_like it will be used directly as the window and its length must be nperseg.
Defaults to a Hann window.

2 M.S. Bartlett, “Periodogram Analysis and Continuous Spectra”, Biometrika, vol. 37, pp. 1-16, 1950.

5.4. Routines (SciPy) 575

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

• nperseg (int, optional) – Length of each segment. Defaults to None, but if window is
str or tuple, is set to 256, and if window is array_like, is set to the length of the window.

• noverlap (int, optional) – Number of points to overlap between segments. If None,
noverlap = nperseg // 2. Defaults to None.

• nfft (int, optional) – Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is nperseg. Defaults to None.

• detrend (str or function or False, optional) – Specifies how to detrend each segment. If
detrend is a string, it is passed as the type argument to the detrend function. If it is a function,
it takes a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to ‘constant’.

• return_onesided (bool, optional) – If True, return a one-sided spectrum for real data.
If False return a two-sided spectrum. Defaults to True, but for complex data, a two-sided
spectrum is always returned.

• scaling ({ 'density', 'spectrum' }, optional) – Selects between computing the
cross spectral density (‘density’) where Pxy has units of V**2/Hz and computing the cross
spectrum (‘spectrum’) where Pxy has units of V**2, if x and y are measured in V and fs is
measured in Hz. Defaults to ‘density’

• axis (int, optional) – Axis along which the CSD is computed for both inputs; the default
is over the last axis (i.e. axis=-1).

• average ({ 'mean', 'median' }, optional) – Method to use when averaging peri-
odograms. Defaults to ‘mean’.

Returns
• f (ndarray) – Array of sample frequencies.

• Pxy (ndarray) – Cross spectral density or cross power spectrum of x,y.

See also:

periodogram
Simple, optionally modified periodogram

lombscargle
Lomb-Scargle periodogram for unevenly sampled data

welch
Power spectral density by Welch’s method. [Equivalent to csd(x,x)]

coherence
Magnitude squared coherence by Welch’s method.

Notes

By convention, Pxy is computed with the conjugate FFT of X multiplied by the FFT of Y.

If the input series differ in length, the shorter series will be zero-padded to match.

An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default
Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while
not over counting any of the data. Narrower windows may require a larger overlap.

576 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.coherence

cupyx.scipy.signal.coherence(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
detrend='constant', axis=-1)

Estimate the magnitude squared coherence estimate, Cxy, of discrete-time signals X and Y using Welch’s method.

Cxy = abs(Pxy)**2/(Pxx*Pyy), where Pxx and Pyy are power spectral density estimates of X and Y, and
Pxy is the cross spectral density estimate of X and Y.

Parameters
• x (array_like) – Time series of measurement values

• y (array_like) – Time series of measurement values

• fs (float, optional) – Sampling frequency of the x and y time series. Defaults to 1.0.

• window (str or tuple or array_like, optional) – Desired window to use. If win-
dow is a string or tuple, it is passed to get_window to generate the window values, which
are DFT-even by default. See get_window for a list of windows and required parameters. If
window is array_like it will be used directly as the window and its length must be nperseg.
Defaults to a Hann window.

• nperseg (int, optional) – Length of each segment. Defaults to None, but if window is
str or tuple, is set to 256, and if window is array_like, is set to the length of the window.

• noverlap (int, optional) – Number of points to overlap between segments. If None,
noverlap = nperseg // 2. Defaults to None.

• nfft (int, optional) – Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is nperseg. Defaults to None.

• detrend (str or function or False, optional) – Specifies how to detrend each segment. If
detrend is a string, it is passed as the type argument to the detrend function. If it is a function,
it takes a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to ‘constant’.

• axis (int, optional) – Axis along which the coherence is computed for both inputs; the
default is over the last axis (i.e. axis=-1).

Returns
• f (ndarray) – Array of sample frequencies.

• Cxy (ndarray) – Magnitude squared coherence of x and y.

See also:

periodogram
Simple, optionally modified periodogram

lombscargle
Lomb-Scargle periodogram for unevenly sampled data

welch
Power spectral density by Welch’s method.

csd
Cross spectral density by Welch’s method.

5.4. Routines (SciPy) 577

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

An appropriate amount of overlap will depend on the choice of window and on your requirements. For the
default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power,
while not over counting any of the data. Narrower windows may require a larger overlap. See1 and2 for more
information.

References

Examples

>>> import cupy as cp
>>> from cupyx.scipy.signal import butter, lfilter, coherence
>>> import matplotlib.pyplot as plt

Generate two test signals with some common features.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 20
>>> freq = 1234.0
>>> noise_power = 0.001 * fs / 2
>>> time = cupy.arange(N) / fs
>>> b, a = butter(2, 0.25, 'low')
>>> x = cupy.random.normal(
... scale=cupy.sqrt(noise_power), size=time.shape)
>>> y = lfilter(b, a, x)
>>> x += amp * cupy.sin(2*cupy.pi*freq*time)
>>> y += cupy.random.normal(
... scale=0.1*cupy.sqrt(noise_power), size=time.shape)

Compute and plot the coherence.

>>> f, Cxy = coherence(x, y, fs, nperseg=1024)
>>> plt.semilogy(cupy.asnumpy(f), cupy.asnumpy(Cxy))
>>> plt.xlabel('frequency [Hz]')
>>> plt.ylabel('Coherence')
>>> plt.show()

cupyx.scipy.signal.spectrogram

cupyx.scipy.signal.spectrogram(x, fs=1.0, window=('tukey', 0.25), nperseg=None, noverlap=None,
nfft=None, detrend='constant', return_onesided=True, scaling='density',
axis=-1, mode='psd')

Compute a spectrogram with consecutive Fourier transforms.

Spectrograms can be used as a way of visualizing the change of a nonstationary signal’s frequency content over
time.

1 P. Welch, “The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified
periodograms”, IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967.

2 Stoica, Petre, and Randolph Moses, “Spectral Analysis of Signals” Prentice Hall, 2005

578 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Parameters
• x (array_like) – Time series of measurement values

• fs (float, optional) – Sampling frequency of the x time series. Defaults to 1.0.

• window (str or tuple or array_like, optional) – Desired window to use. If win-
dow is a string or tuple, it is passed to get_window to generate the window values, which
are DFT-even by default. See get_window for a list of windows and required parameters. If
window is array_like it will be used directly as the window and its length must be nperseg.
Defaults to a Tukey window with shape parameter of 0.25.

• nperseg (int, optional) – Length of each segment. Defaults to None, but if window is
str or tuple, is set to 256, and if window is array_like, is set to the length of the window.

• noverlap (int, optional) – Number of points to overlap between segments. If None,
noverlap = nperseg // 8. Defaults to None.

• nfft (int, optional) – Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is nperseg. Defaults to None.

• detrend (str or function or False, optional) – Specifies how to detrend each segment. If
detrend is a string, it is passed as the type argument to the detrend function. If it is a function,
it takes a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to ‘constant’.

• return_onesided (bool, optional) – If True, return a one-sided spectrum for real data.
If False return a two-sided spectrum. Defaults to True, but for complex data, a two-sided
spectrum is always returned.

• scaling ({ 'density', 'spectrum' }, optional) – Selects between computing the
power spectral density (‘density’) where Sxx has units of V**2/Hz and computing the power
spectrum (‘spectrum’) where Sxx has units of V**2, if x is measured in V and fs is measured
in Hz. Defaults to ‘density’.

• axis (int, optional) – Axis along which the spectrogram is computed; the default is
over the last axis (i.e. axis=-1).

• mode (str, optional) – Defines what kind of return values are expected. Options are
[‘psd’, ‘complex’, ‘magnitude’, ‘angle’, ‘phase’]. ‘complex’ is equivalent to the output of
stft with no padding or boundary extension. ‘magnitude’ returns the absolute magnitude
of the STFT. ‘angle’ and ‘phase’ return the complex angle of the STFT, with and without
unwrapping, respectively.

Returns
• f (ndarray) – Array of sample frequencies.

• t (ndarray) – Array of segment times.

• Sxx (ndarray) – Spectrogram of x. By default, the last axis of Sxx corresponds to the segment
times.

See also:

periodogram
Simple, optionally modified periodogram

lombscargle
Lomb-Scargle periodogram for unevenly sampled data

welch
Power spectral density by Welch’s method.

5.4. Routines (SciPy) 579

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

csd
Cross spectral density by Welch’s method.

Notes

An appropriate amount of overlap will depend on the choice of window and on your requirements. In contrast to
welch’s method, where the entire data stream is averaged over, one may wish to use a smaller overlap (or perhaps
none at all) when computing a spectrogram, to maintain some statistical independence between individual seg-
ments. It is for this reason that the default window is a Tukey window with 1/8th of a window’s length overlap
at each end. See1 for more information.

References

Examples

>>> import cupy
>>> from cupyx.scipy.signal import spectrogram
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz, corrupted by
white noise of exponentially decreasing magnitude sampled at 10 kHz.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2 * cupy.sqrt(2)
>>> noise_power = 0.01 * fs / 2
>>> time = cupy.arange(N) / float(fs)
>>> mod = 500*cupy.cos(2*cupy.pi*0.25*time)
>>> carrier = amp * cupy.sin(2*cupy.pi*3e3*time + mod)
>>> noise = cupy.random.normal(
... scale=cupy.sqrt(noise_power), size=time.shape)
>>> noise *= cupy.exp(-time/5)
>>> x = carrier + noise

Compute and plot the spectrogram.

>>> f, t, Sxx = spectrogram(x, fs)
>>> plt.pcolormesh(cupy.asnumpy(t), cupy.asnumpy(f), cupy.asnumpy(Sxx))
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()

Note, if using output that is not one sided, then use the following:

>>> f, t, Sxx = spectrogram(x, fs, return_onesided=False)
>>> plt.pcolormesh(cupy.asnumpy(t), cupy.fft.fftshift(f), cupy.fft.
→˓fftshift(Sxx, axes=0))
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()

1 Oppenheim, Alan V., Ronald W. Schafer, John R. Buck “Discrete-Time Signal Processing”, Prentice Hall, 1999.

580 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.lombscargle

cupyx.scipy.signal.lombscargle(x, y, freqs)
Computes the Lomb-Scargle periodogram.

The Lomb-Scargle periodogram was developed by Lomb1 and further extended by Scargle2 to find, and test the
significance of weak periodic signals with uneven temporal sampling.

When normalize is False (default) the computed periodogram is unnormalized, it takes the value (A**2) * N/4
for a harmonic signal with amplitude A for sufficiently large N.

When normalize is True the computed periodogram is normalized by the residuals of the data around a constant
reference model (at zero).

Input arrays should be one-dimensional and will be cast to float64.

Parameters
• x (array_like) – Sample times.

• y (array_like) – Measurement values.

• freqs (array_like) – Angular frequencies for output periodogram.

• precenter (bool, optional) – Pre-center amplitudes by subtracting the mean.

• normalize (bool, optional) – Compute normalized periodogram.

Returns
pgram – Lomb-Scargle periodogram.

Return type
array_like

Raises
ValueError – If the input arrays x and y do not have the same shape.

Notes

This subroutine calculates the periodogram using a slightly modified algorithm due to Townsend3 which allows
the periodogram to be calculated using only a single pass through the input arrays for each frequency. The
algorithm running time scales roughly as O(x * freqs) or O(N^2) for a large number of samples and frequencies.

References

See also:

istft
Inverse Short Time Fourier Transform

check_COLA
Check whether the Constant OverLap Add (COLA) constraint is met

welch
Power spectral density by Welch’s method

1 N.R. Lomb “Least-squares frequency analysis of unequally spaced data”, Astrophysics and Space Science, vol 39, pp. 447-462, 1976
2 J.D. Scargle “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data”, The Astrophysical

Journal, vol 263, pp. 835-853, 1982
3 R.H.D. Townsend, “Fast calculation of the Lomb-Scargle periodogram using graphics processing units.”, The Astrophysical Journal Supplement

Series, vol 191, pp. 247-253, 2010

5.4. Routines (SciPy) 581

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

CuPy Documentation, Release 13.0.0

spectrogram
Spectrogram by Welch’s method

csd
Cross spectral density by Welch’s method

cupyx.scipy.signal.vectorstrength

cupyx.scipy.signal.vectorstrength(events, period)
Determine the vector strength of the events corresponding to the given period.

The vector strength is a measure of phase synchrony, how well the timing of the events is synchronized to a single
period of a periodic signal.

If multiple periods are used, calculate the vector strength of each. This is called the “resonating vector strength”.

Parameters
• events (1D array_like) – An array of time points containing the timing of the events.

• period (float or array_like) – The period of the signal that the events should syn-
chronize to. The period is in the same units as events. It can also be an array of periods, in
which case the outputs are arrays of the same length.

Returns
• strength (float or 1D array) – The strength of the synchronization. 1.0 is perfect synchro-

nization and 0.0 is no synchronization. If period is an array, this is also an array with each
element containing the vector strength at the corresponding period.

• phase (float or array) – The phase that the events are most strongly synchronized to in radi-
ans. If period is an array, this is also an array with each element containing the phase for the
corresponding period.

Notes

See1,2 and3 for more information.

References

cupyx.scipy.signal.stft

cupyx.scipy.signal.stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None, detrend=False,
return_onesided=True, boundary='zeros', padded=True, axis=-1,
scaling='spectrum')

Compute the Short Time Fourier Transform (STFT).

STFTs can be used as a way of quantifying the change of a nonstationary signal’s frequency and phase content
over time.

Parameters
1 van Hemmen, JL, Longtin, A, and Vollmayr, AN. Testing resonating vector strength: Auditory system, electric fish, and noise. Chaos 21,

047508 (2011).
2 van Hemmen, JL. Vector strength after Goldberg, Brown, and von Mises: biological and mathematical perspectives. Biol Cybern. 2013

Aug;107(4):385-96.
3 van Hemmen, JL and Vollmayr, AN. Resonating vector strength: what happens when we vary the “probing” frequency while keeping the spike

times fixed. Biol Cybern. 2013 Aug;107(4):491-94.

582 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• x (array_like) – Time series of measurement values

• fs (float, optional) – Sampling frequency of the x time series. Defaults to 1.0.

• window (str or tuple or array_like, optional) – Desired window to use. If win-
dow is a string or tuple, it is passed to get_window to generate the window values, which
are DFT-even by default. See get_window for a list of windows and required parameters. If
window is array_like it will be used directly as the window and its length must be nperseg.
Defaults to a Hann window.

• nperseg (int, optional) – Length of each segment. Defaults to 256.

• noverlap (int, optional) – Number of points to overlap between segments. If None,
noverlap = nperseg // 2. Defaults to None. When specified, the COLA constraint
must be met (see Notes below).

• nfft (int, optional) – Length of the FFT used, if a zero padded FFT is desired. If None,
the FFT length is nperseg. Defaults to None.

• detrend (str or function or False, optional) – Specifies how to detrend each segment. If
detrend is a string, it is passed as the type argument to the detrend function. If it is a function,
it takes a segment and returns a detrended segment. If detrend is False, no detrending is done.
Defaults to False.

• return_onesided (bool, optional) – If True, return a one-sided spectrum for real data.
If False return a two-sided spectrum. Defaults to True, but for complex data, a two-sided
spectrum is always returned.

• boundary (str or None, optional) – Specifies whether the input signal is extended at
both ends, and how to generate the new values, in order to center the first windowed segment
on the first input point. This has the benefit of enabling reconstruction of the first input point
when the employed window function starts at zero. Valid options are ['even', 'odd',
'constant', 'zeros', None]. Defaults to ‘zeros’, for zero padding extension. I.e. [1,
2, 3, 4] is extended to [0, 1, 2, 3, 4, 0] for nperseg=3.

• padded (bool, optional) – Specifies whether the input signal is zero-padded at the end
to make the signal fit exactly into an integer number of window segments, so that all of the
signal is included in the output. Defaults to True. Padding occurs after boundary extension,
if boundary is not None, and padded is True, as is the default.

• axis (int, optional) – Axis along which the STFT is computed; the default is over the
last axis (i.e. axis=-1).

• scaling ({'spectrum', 'psd'}) – The default ‘spectrum’ scaling allows each frequency
line of Zxx to be interpreted as a magnitude spectrum. The ‘psd’ option scales each line to a
power spectral density - it allows to calculate the signal’s energy by numerically integrating
over abs(Zxx)**2.

Returns
• f (ndarray) – Array of sample frequencies.

• t (ndarray) – Array of segment times.

• Zxx (ndarray) – STFT of x. By default, the last axis of Zxx corresponds to the segment
times.

See also:

welch
Power spectral density by Welch’s method.

5.4. Routines (SciPy) 583

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

spectrogram
Spectrogram by Welch’s method.

csd
Cross spectral density by Welch’s method.

lombscargle
Lomb-Scargle periodogram for unevenly sampled data

Notes

In order to enable inversion of an STFT via the inverse STFT in istft, the signal windowing must obey the
constraint of “Nonzero OverLap Add” (NOLA), and the input signal must have complete windowing coverage
(i.e. (x.shape[axis] - nperseg) % (nperseg-noverlap) == 0). The padded argument may be used to
accomplish this.

Given a time-domain signal 𝑥[𝑛], a window 𝑤[𝑛], and a hop size 𝐻 = nperseg - noverlap, the windowed frame
at time index 𝑡 is given by

𝑥𝑡[𝑛] = 𝑥[𝑛]𝑤[𝑛− 𝑡𝐻]

The overlap-add (OLA) reconstruction equation is given by

𝑥[𝑛] =

∑︀
𝑡 𝑥𝑡[𝑛]𝑤[𝑛− 𝑡𝐻]∑︀

𝑡 𝑤
2[𝑛− 𝑡𝐻]

The NOLA constraint ensures that every normalization term that appears in the denomimator of the OLA recon-
struction equation is nonzero. Whether a choice of window, nperseg, and noverlap satisfy this constraint can be
tested with check_NOLA.

See1,2 for more information.

References

Examples

>>> import cupy
>>> import cupyx.scipy.signal import stft
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz, corrupted by
white noise of exponentially decreasing magnitude sampled at 10 kHz.

>>> fs = 10e3
>>> N = 1e5
>>> amp = 2 * cupy.sqrt(2)
>>> noise_power = 0.01 * fs / 2
>>> time = cupy.arange(N) / float(fs)
>>> mod = 500*cupy.cos(2*cupy.pi*0.25*time)
>>> carrier = amp * cupy.sin(2*cupy.pi*3e3*time + mod)
>>> noise = cupy.random.normal(scale=cupy.sqrt(noise_power),
... size=time.shape)
>>> noise *= cupy.exp(-time/5)
>>> x = carrier + noise

1 Oppenheim, Alan V., Ronald W. Schafer, John R. Buck “Discrete-Time Signal Processing”, Prentice Hall, 1999.
2 Daniel W. Griffin, Jae S. Lim “Signal Estimation from Modified Short-Time Fourier Transform”, IEEE 1984, 10.1109/TASSP.1984.1164317

584 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Compute and plot the STFT’s magnitude.

>>> f, t, Zxx = stft(x, fs, nperseg=1000)
>>> plt.pcolormesh(cupy.asnumpy(t), cupy.asnumpy(f),
... cupy.asnumpy(cupy.abs(Zxx)), vmin=0, vmax=amp)
>>> plt.title('STFT Magnitude')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()

cupyx.scipy.signal.istft

cupyx.scipy.signal.istft(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2,
scaling='spectrum')

Perform the inverse Short Time Fourier transform (iSTFT).

Parameters
• Zxx (array_like) – STFT of the signal to be reconstructed. If a purely real array is passed,

it will be cast to a complex data type.

• fs (float, optional) – Sampling frequency of the time series. Defaults to 1.0.

• window (str or tuple or array_like, optional) – Desired window to use. If win-
dow is a string or tuple, it is passed to get_window to generate the window values, which
are DFT-even by default. See get_window for a list of windows and required parameters. If
window is array_like it will be used directly as the window and its length must be nperseg.
Defaults to a Hann window. Must match the window used to generate the STFT for faithful
inversion.

• nperseg (int, optional) – Number of data points corresponding to each STFT segment.
This parameter must be specified if the number of data points per segment is odd, or if the
STFT was padded via nfft > nperseg. If None, the value depends on the shape of Zxx
and input_onesided. If input_onesided is True, nperseg=2*(Zxx.shape[freq_axis] -
1). Otherwise, nperseg=Zxx.shape[freq_axis]. Defaults to None.

• noverlap (int, optional) – Number of points to overlap between segments. If None,
half of the segment length. Defaults to None. When specified, the COLA constraint must be
met (see Notes below), and should match the parameter used to generate the STFT. Defaults
to None.

• nfft (int, optional) – Number of FFT points corresponding to each STFT segment.
This parameter must be specified if the STFT was padded via nfft > nperseg. If None,
the default values are the same as for nperseg, detailed above, with one exception: if in-
put_onesided is True and nperseg==2*Zxx.shape[freq_axis] - 1, nfft also takes on
that value. This case allows the proper inversion of an odd-length unpadded STFT using
nfft=None. Defaults to None.

• input_onesided (bool, optional) – If True, interpret the input array as one-sided FFTs,
such as is returned by stft with return_onesided=True and numpy.fft.rfft. If False, inter-
pret the input as a two-sided FFT. Defaults to True.

• boundary (bool, optional) – Specifies whether the input signal was extended at its
boundaries by supplying a non-None boundary argument to stft. Defaults to True.

5.4. Routines (SciPy) 585

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• time_axis (int, optional) – Where the time segments of the STFT is located; the de-
fault is the last axis (i.e. axis=-1).

• freq_axis (int, optional) – Where the frequency axis of the STFT is located; the de-
fault is the penultimate axis (i.e. axis=-2).

• scaling ({'spectrum', 'psd'}) – The default ‘spectrum’ scaling allows each frequency
line of Zxx to be interpreted as a magnitude spectrum. The ‘psd’ option scales each line to a
power spectral density - it allows to calculate the signal’s energy by numerically integrating
over abs(Zxx)**2.

Returns
• t (ndarray) – Array of output data times.

• x (ndarray) – iSTFT of Zxx.

See also:

stft
Short Time Fourier Transform

check_COLA
Check whether the Constant OverLap Add (COLA) constraint is met

check_NOLA
Check whether the Nonzero Overlap Add (NOLA) constraint is met

Notes

In order to enable inversion of an STFT via the inverse STFT with istft, the signal windowing must obey the
constraint of “nonzero overlap add” (NOLA):∑︁

𝑡

𝑤2[𝑛− 𝑡𝐻] ̸= 0

This ensures that the normalization factors that appear in the denominator of the overlap-add reconstruction
equation

𝑥[𝑛] =

∑︀
𝑡 𝑥𝑡[𝑛]𝑤[𝑛− 𝑡𝐻]∑︀

𝑡 𝑤
2[𝑛− 𝑡𝐻]

are not zero. The NOLA constraint can be checked with the check_NOLA function.

An STFT which has been modified (via masking or otherwise) is not guaranteed to correspond to a exactly
realizible signal. This function implements the iSTFT via the least-squares estimation algorithm detailed in2,
which produces a signal that minimizes the mean squared error between the STFT of the returned signal and the
modified STFT.

See1,Page 586, 2 for more information.
2 Daniel W. Griffin, Jae S. Lim “Signal Estimation from Modified Short-Time Fourier Transform”, IEEE 1984, 10.1109/TASSP.1984.1164317
1 Oppenheim, Alan V., Ronald W. Schafer, John R. Buck “Discrete-Time Signal Processing”, Prentice Hall, 1999.

586 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

References

Examples

>>> import cupy
>>> from cupyx.scipy.signal import stft, istft
>>> import matplotlib.pyplot as plt

Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by 0.001 V**2/Hz of white noise sampled at 1024
Hz.

>>> fs = 1024
>>> N = 10*fs
>>> nperseg = 512
>>> amp = 2 * np.sqrt(2)
>>> noise_power = 0.001 * fs / 2
>>> time = cupy.arange(N) / float(fs)
>>> carrier = amp * cupy.sin(2*cupy.pi*50*time)
>>> noise = cupy.random.normal(scale=cupy.sqrt(noise_power),
... size=time.shape)
>>> x = carrier + noise

Compute the STFT, and plot its magnitude

>>> f, t, Zxx = cusignal.stft(x, fs=fs, nperseg=nperseg)
>>> f = cupy.asnumpy(f)
>>> t = cupy.asnumpy(t)
>>> Zxx = cupy.asnumpy(Zxx)
>>> plt.figure()
>>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
>>> plt.ylim([f[1], f[-1]])
>>> plt.title('STFT Magnitude')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.yscale('log')
>>> plt.show()

Zero the components that are 10% or less of the carrier magnitude, then convert back to a time series via inverse
STFT

>>> Zxx = cupy.where(cupy.abs(Zxx) >= amp/10, Zxx, 0)
>>> _, xrec = cusignal.istft(Zxx, fs)
>>> xrec = cupy.asnumpy(xrec)
>>> x = cupy.asnumpy(x)
>>> time = cupy.asnumpy(time)
>>> carrier = cupy.asnumpy(carrier)

Compare the cleaned signal with the original and true carrier signals.

>>> plt.figure()
>>> plt.plot(time, x, time, xrec, time, carrier)
>>> plt.xlim([2, 2.1])*+
>>> plt.xlabel('Time [sec]')
>>> plt.ylabel('Signal')

(continues on next page)

5.4. Routines (SciPy) 587

CuPy Documentation, Release 13.0.0

(continued from previous page)

>>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
>>> plt.show()

Note that the cleaned signal does not start as abruptly as the original, since some of the coefficients of the transient
were also removed:

>>> plt.figure()
>>> plt.plot(time, x, time, xrec, time, carrier)
>>> plt.xlim([0, 0.1])
>>> plt.xlabel('Time [sec]')
>>> plt.ylabel('Signal')
>>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
>>> plt.show()

cupyx.scipy.signal.check_COLA

cupyx.scipy.signal.check_COLA(window, nperseg, noverlap, tol=1e-10)
Check whether the Constant OverLap Add (COLA) constraint is met.

Parameters
• window (str or tuple or array_like) – Desired window to use. If window is a string

or tuple, it is passed to get_window to generate the window values, which are DFT-even
by default. See get_window for a list of windows and required parameters. If window is
array_like it will be used directly as the window and its length must be nperseg.

• nperseg (int) – Length of each segment.

• noverlap (int) – Number of points to overlap between segments.

• tol (float, optional) – The allowed variance of a bin’s weighted sum from the median
bin sum.

Returns
verdict – True if chosen combination satisfies COLA within tol, False otherwise

Return type
bool

See also:

check_NOLA
Check whether the Nonzero Overlap Add (NOLA) constraint is met

stft
Short Time Fourier Transform

istft
Inverse Short Time Fourier Transform

588 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

In order to enable inversion of an STFT via the inverse STFT in istft, it is sufficient that the signal windowing
obeys the constraint of “Constant OverLap Add” (COLA). This ensures that every point in the input data is
equally weighted, thereby avoiding aliasing and allowing full reconstruction.

Some examples of windows that satisfy COLA:
• Rectangular window at overlap of 0, 1/2, 2/3, 3/4, . . .

• Bartlett window at overlap of 1/2, 3/4, 5/6, . . .

• Hann window at 1/2, 2/3, 3/4, . . .

• Any Blackman family window at 2/3 overlap

• Any window with noverlap = nperseg-1

A very comprehensive list of other windows may be found in2, wherein the COLA condition is satisfied when
the “Amplitude Flatness” is unity. See1 for more information.

References

cupyx.scipy.signal.check_NOLA

cupyx.scipy.signal.check_NOLA(window, nperseg, noverlap, tol=1e-10)
Check whether the Nonzero Overlap Add (NOLA) constraint is met.

Parameters
• window (str or tuple or array_like) – Desired window to use. If window is a string

or tuple, it is passed to get_window to generate the window values, which are DFT-even
by default. See get_window for a list of windows and required parameters. If window is
array_like it will be used directly as the window and its length must be nperseg.

• nperseg (int) – Length of each segment.

• noverlap (int) – Number of points to overlap between segments.

• tol (float, optional) – The allowed variance of a bin’s weighted sum from the median
bin sum.

Returns
verdict – True if chosen combination satisfies the NOLA constraint within tol, False otherwise

Return type
bool

See also:

check_COLA
Check whether the Constant OverLap Add (COLA) constraint is met

stft
Short Time Fourier Transform

istft
Inverse Short Time Fourier Transform

2 G. Heinzel, A. Ruediger and R. Schilling, “Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a
comprehensive list of window functions and some new at-top windows”, 2002, http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

1 Julius O. Smith III, “Spectral Audio Signal Processing”, W3K Publishing, 2011,ISBN 978-0-9745607-3-1.

5.4. Routines (SciPy) 589

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

CuPy Documentation, Release 13.0.0

Notes

In order to enable inversion of an STFT via the inverse STFT in istft, the signal windowing must obey the
constraint of “nonzero overlap add” (NOLA):∑︁

𝑡

𝑤2[𝑛− 𝑡𝐻] ̸= 0

for all 𝑛, where 𝑤 is the window function, 𝑡 is the frame index, and 𝐻 is the hop size (𝐻 = nperseg - noverlap).

This ensures that the normalization factors in the denominator of the overlap-add inversion equation are not zero.
Only very pathological windows will fail the NOLA constraint.

See1,2 for more information.

References

Chirp Z-transform and Zoom FFT

czt(x[, m, w, a, axis]) Compute the frequency response around a spiral in the
Z plane.

zoom_fft(x, fn[, m, fs, endpoint, axis]) Compute the DFT of x only for frequencies in range fn.
CZT(n[, m, w, a]) Create a callable chirp z-transform function.
ZoomFFT(n, fn[, m, fs, endpoint]) Create a callable zoom FFT transform function.
czt_points(m[, w, a]) Return the points at which the chirp z-transform is com-

puted.

cupyx.scipy.signal.czt

cupyx.scipy.signal.czt(x, m=None, w=None, a=1 + 0j, *, axis=-1)
Compute the frequency response around a spiral in the Z plane.

Parameters
• x (array) – The signal to transform.

• m (int, optional) – The number of output points desired. Default is the length of the
input data.

• w (complex, optional) – The ratio between points in each step. This must be precise or
the accumulated error will degrade the tail of the output sequence. Defaults to equally spaced
points around the entire unit circle.

• a (complex, optional) – The starting point in the complex plane. Default is 1+0j.

• axis (int, optional) – Axis over which to compute the FFT. If not given, the last axis is
used.

Returns
out – An array of the same dimensions as x, but with the length of the transformed axis set to m.

Return type
ndarray

1 Julius O. Smith III, “Spectral Audio Signal Processing”, W3K Publishing, 2011,ISBN 978-0-9745607-3-1.
2 G. Heinzel, A. Ruediger and R. Schilling, “Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a

comprehensive list of window functions and some new at-top windows”, 2002, http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

590 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#int
http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

CuPy Documentation, Release 13.0.0

See also:

CZT
Class that creates a callable chirp z-transform function.

zoom_fft
Convenience function for partial FFT calculations.

scipy.signal.czt

Notes

The defaults are chosen such that signal.czt(x) is equivalent to fft.fft(x) and, if m > len(x), that
signal.czt(x, m) is equivalent to fft.fft(x, m).

If the transform needs to be repeated, use CZT to construct a specialized transform function which can be reused
without recomputing constants.

An example application is in system identification, repeatedly evaluating small slices of the z-transform of a
system, around where a pole is expected to exist, to refine the estimate of the pole’s true location.1

References

cupyx.scipy.signal.zoom_fft

cupyx.scipy.signal.zoom_fft(x, fn, m=None, *, fs=2, endpoint=False, axis=-1)
Compute the DFT of x only for frequencies in range fn.

Parameters
• x (array) – The signal to transform.

• fn (array_like) – A length-2 sequence [f1, f2] giving the frequency range, or a scalar, for
which the range [0, fn] is assumed.

• m (int, optional) – The number of points to evaluate. The default is the length of x.

• fs (float, optional) – The sampling frequency. If fs=10 represented 10 kHz, for ex-
ample, then f1 and f2 would also be given in kHz. The default sampling frequency is 2, so
f1 and f2 should be in the range [0, 1] to keep the transform below the Nyquist frequency.

• endpoint (bool, optional) – If True, f2 is the last sample. Otherwise, it is not included.
Default is False.

• axis (int, optional) – Axis over which to compute the FFT. If not given, the last axis is
used.

Returns
out – The transformed signal. The Fourier transform will be calculated at the points f1, f1+df,
f1+2df, . . . , f2, where df=(f2-f1)/m.

Return type
ndarray

See also:
1 Steve Alan Shilling, “A study of the chirp z-transform and its applications”, pg 20 (1970) https://krex.k-state.edu/dspace/bitstream/handle/

2097/7844/LD2668R41972S43.pdf

5.4. Routines (SciPy) 591

https://docs.scipy.org/doc/scipy/reference/generated/czt-function.html#scipy.signal.czt
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf

CuPy Documentation, Release 13.0.0

ZoomFFT
Class that creates a callable partial FFT function.

scipy.signal.zoom_fft

Notes

The defaults are chosen such that signal.zoom_fft(x, 2) is equivalent to fft.fft(x) and, if m > len(x),
that signal.zoom_fft(x, 2, m) is equivalent to fft.fft(x, m).

To graph the magnitude of the resulting transform, use:

plot(linspace(f1, f2, m, endpoint=False),
abs(zoom_fft(x, [f1, f2], m)))

If the transform needs to be repeated, use ZoomFFT to construct a specialized transform function which can be
reused without recomputing constants.

cupyx.scipy.signal.CZT

class cupyx.scipy.signal.CZT(n, m=None, w=None, a=1 + 0j)
Create a callable chirp z-transform function.

Transform to compute the frequency response around a spiral. Objects of this class are callables which can
compute the chirp z-transform on their inputs. This object precalculates the constant chirps used in the given
transform.

Parameters
• n (int) – The size of the signal.

• m (int, optional) – The number of output points desired. Default is n.

• w (complex, optional) – The ratio between points in each step. This must be precise or
the accumulated error will degrade the tail of the output sequence. Defaults to equally spaced
points around the entire unit circle.

• a (complex, optional) – The starting point in the complex plane. Default is 1+0j.

Returns
f – Callable object f(x, axis=-1) for computing the chirp z-transform on x.

Return type
CZT

See also:

czt
Convenience function for quickly calculating CZT.

ZoomFFT
Class that creates a callable partial FFT function.

scipy.signal.CZT

592 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zoom_fft.html#scipy.signal.zoom_fft
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#complex
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.CZT.html#scipy.signal.CZT

CuPy Documentation, Release 13.0.0

Notes

The defaults are chosen such that f(x) is equivalent to fft.fft(x) and, if m > len(x), that f(x, m) is
equivalent to fft.fft(x, m).

If w does not lie on the unit circle, then the transform will be around a spiral with exponentially-increasing radius.
Regardless, angle will increase linearly.

For transforms that do lie on the unit circle, accuracy is better when using ZoomFFT, since any numerical error
in w is accumulated for long data lengths, drifting away from the unit circle.

The chirp z-transform can be faster than an equivalent FFT with zero padding. Try it with your own array sizes
to see.

However, the chirp z-transform is considerably less precise than the equivalent zero-padded FFT.

As this CZT is implemented using the Bluestein algorithm1, it can compute large prime-length Fourier transforms
in O(N log N) time, rather than the O(N**2) time required by the direct DFT calculation. (scipy.fft also uses
Bluestein’s algorithm’.)

(The name “chirp z-transform” comes from the use of a chirp in the Bluestein algorithm2. It does not decompose
signals into chirps, like other transforms with “chirp” in the name.)

References

Methods

__call__(x, *, axis=-1)
Calculate the chirp z-transform of a signal.

Parameters
• x (array) – The signal to transform.

• axis (int, optional) – Axis over which to compute the FFT. If not given, the last axis
is used.

Returns
out – An array of the same dimensions as x, but with the length of the transformed axis set to
m.

Return type
ndarray

points()

Return the points at which the chirp z-transform is computed.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

1 Leo I. Bluestein, “A linear filtering approach to the computation of the discrete Fourier transform,” Northeast Electronics Research and Engi-
neering Meeting Record 10, 218-219 (1968).

2 Rabiner, Schafer, and Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249-1292 (1969).

5.4. Routines (SciPy) 593

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

cupyx.scipy.signal.ZoomFFT

class cupyx.scipy.signal.ZoomFFT(n, fn, m=None, *, fs=2, endpoint=False)
Create a callable zoom FFT transform function.

This is a specialization of the chirp z-transform (CZT) for a set of equally-spaced frequencies around the unit
circle, used to calculate a section of the FFT more efficiently than calculating the entire FFT and truncating.1

Parameters
• n (int) – The size of the signal.

• fn (array_like) – A length-2 sequence [f1, f2] giving the frequency range, or a scalar, for
which the range [0, fn] is assumed.

• m (int, optional) – The number of points to evaluate. Default is n.

• fs (float, optional) – The sampling frequency. If fs=10 represented 10 kHz, for ex-
ample, then f1 and f2 would also be given in kHz. The default sampling frequency is 2, so
f1 and f2 should be in the range [0, 1] to keep the transform below the Nyquist frequency.

• endpoint (bool, optional) – If True, f2 is the last sample. Otherwise, it is not included.
Default is False.

Returns
f – Callable object f(x, axis=-1) for computing the zoom FFT on x.

Return type
ZoomFFT

See also:

zoom_fft
Convenience function for calculating a zoom FFT.

scipy.signal.ZoomFFT

1 Steve Alan Shilling, “A study of the chirp z-transform and its applications”, pg 29 (1970) https://krex.k-state.edu/dspace/bitstream/handle/
2097/7844/LD2668R41972S43.pdf

594 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZoomFFT.html#scipy.signal.ZoomFFT
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf

CuPy Documentation, Release 13.0.0

Notes

The defaults are chosen such that f(x, 2) is equivalent to fft.fft(x) and, if m > len(x), that f(x, 2, m)
is equivalent to fft.fft(x, m).

Sampling frequency is 1/dt, the time step between samples in the signal x. The unit circle corresponds to fre-
quencies from 0 up to the sampling frequency. The default sampling frequency of 2 means that f1, f2 values up
to the Nyquist frequency are in the range [0, 1). For f1, f2 values expressed in radians, a sampling frequency of
2*pi should be used.

Remember that a zoom FFT can only interpolate the points of the existing FFT. It cannot help to resolve two
separate nearby frequencies. Frequency resolution can only be increased by increasing acquisition time.

These functions are implemented using Bluestein’s algorithm (as is scipy.fft).2

References

Methods

__call__(x, *, axis=-1)
Calculate the chirp z-transform of a signal.

Parameters
• x (array) – The signal to transform.

• axis (int, optional) – Axis over which to compute the FFT. If not given, the last axis
is used.

Returns
out – An array of the same dimensions as x, but with the length of the transformed axis set to
m.

Return type
ndarray

points()

Return the points at which the chirp z-transform is computed.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

2 Leo I. Bluestein, “A linear filtering approach to the computation of the discrete Fourier transform,” Northeast Electronics Research and Engi-
neering Meeting Record 10, 218-219 (1968).

5.4. Routines (SciPy) 595

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.czt_points

cupyx.scipy.signal.czt_points(m, w=None, a=1 + 0j)
Return the points at which the chirp z-transform is computed.

Parameters
• m (int) – The number of points desired.

• w (complex, optional) – The ratio between points in each step. Defaults to equally spaced
points around the entire unit circle.

• a (complex, optional) – The starting point in the complex plane. Default is 1+0j.

Returns
out – The points in the Z plane at which CZT samples the z-transform, when called with argu-
ments m, w, and a, as complex numbers.

Return type
ndarray

See also:

CZT
Class that creates a callable chirp z-transform function.

czt
Convenience function for quickly calculating CZT.

scipy.signal.czt_points

5.4.7 Signal processing windows (cupyx.scipy.signal.windows)

The suite of window functions for filtering and spectral estimation.

Hint: SciPy API Reference: Signal processing windows (scipy.signal.windows)

596 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#complex
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.czt_points.html#scipy.signal.czt_points
https://docs.scipy.org/doc/scipy/reference/signal.windows.html

CuPy Documentation, Release 13.0.0

get_window(window, Nx[, fftbins]) Return a window of a given length and type.
barthann(M[, sym]) Return a modified Bartlett-Hann window.
bartlett(M[, sym]) Return a Bartlett window.
blackman(M[, sym]) Return a Blackman window.
blackmanharris(M[, sym]) Return a minimum 4-term Blackman-Harris window.
bohman(M[, sym]) Return a Bohman window.
boxcar(M[, sym]) Return a boxcar or rectangular window.
chebwin(M, at[, sym]) Return a Dolph-Chebyshev window.
cosine(M[, sym]) Return a window with a simple cosine shape.
exponential(M[, center, tau, sym]) Return an exponential (or Poisson) window.
flattop(M[, sym]) Return a flat top window.
gaussian(M, std[, sym]) Return a Gaussian window.
general_cosine(M, a[, sym]) Generic weighted sum of cosine terms window
general_gaussian(M, p, sig[, sym]) Return a window with a generalized Gaussian shape.
general_hamming(M, alpha[, sym]) Return a generalized Hamming window.
hamming(M[, sym]) Return a Hamming window.
hann(M[, sym]) Return a Hann window.
kaiser(M, beta[, sym]) Return a Kaiser window.
nuttall(M[, sym]) Return a minimum 4-term Blackman-Harris window ac-

cording to Nuttall.
parzen(M[, sym]) Return a Parzen window.
taylor(M[, nbar, sll, norm, sym]) Return a Taylor window.
triang(M[, sym]) Return a triangular window.
tukey(M[, alpha, sym]) Return a Tukey window, also known as a tapered cosine

window.

cupyx.scipy.signal.windows.get_window

cupyx.scipy.signal.windows.get_window(window, Nx, fftbins=True)
Return a window of a given length and type.

Parameters
• window (string, float, or tuple) – The type of window to create. See below for more

details.

• Nx (int) – The number of samples in the window.

• fftbins (bool, optional) – If True (default), create a “periodic” window, ready to use
with ifftshift and be multiplied by the result of an FFT (see also fftpack.fftfreq). If False,
create a “symmetric” window, for use in filter design.

Returns
get_window – Returns a window of length Nx and type window

Return type
ndarray

5.4. Routines (SciPy) 597

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

Window types:

• boxcar()

• triang()

• blackman()

• hamming()

• hann()

• bartlett()

• flattop()

• parzen()

• bohman()

• blackmanharris()

• nuttall()

• barthann()

• kaiser() (needs beta)

• gaussian() (needs standard deviation)

• general_gaussian() (needs power, width)

• chebwin() (needs attenuation)

• exponential() (needs decay scale)

• tukey() (needs taper fraction)

If the window requires no parameters, then window can be a string.

If the window requires parameters, then window must be a tuple with the first argument the string name of the
window, and the next arguments the needed parameters.

If window is a floating point number, it is interpreted as the beta parameter of the kaiser() window.

Each of the window types listed above is also the name of a function that can be called directly to create a window
of that type.

Examples

>>> import cupyx.scipy.signal.windows
>>> cupyx.scipy.signal.windows.get_window('triang', 7)
array([0.125, 0.375, 0.625, 0.875, 0.875, 0.625, 0.375])
>>> cupyx.scipy.signal.windows.get_window(('kaiser', 4.0), 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1.,

0.89640418, 0.63343178, 0.32578323, 0.08848053])
>>> cupyx.scipy.signal.windows.get_window(4.0, 9)
array([0.08848053, 0.32578323, 0.63343178, 0.89640418, 1.,

0.89640418, 0.63343178, 0.32578323, 0.08848053])

598 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.windows.barthann

cupyx.scipy.signal.windows.barthann(M, sym=True)
Return a modified Bartlett-Hann window.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.barthann(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Bartlett-Hann window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Bartlett-Hann window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.bartlett

cupyx.scipy.signal.windows.bartlett(M, sym=True)
Return a Bartlett window.

The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used
in signal processing for tapering a signal, without generating too much ripple in the frequency domain.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

5.4. Routines (SciPy) 599

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The triangular window, with the first and last samples equal to zero and the maximum value
normalized to 1 (though the value 1 does not appear if M is even and sym is True).

Return type
ndarray

See also:

triang
A triangular window that does not touch zero at the ends

Notes

The Bartlett window is defined as

𝑤(𝑛) =
2

𝑀 − 1

(︂
𝑀 − 1

2
−
⃒⃒⃒⃒
𝑛− 𝑀 − 1

2

⃒⃒⃒⃒)︂
Most references to the Bartlett window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. Note that convolution with this window produces linear inter-
polation. It is also known as an apodization (which means”removing the foot”, i.e. smoothing discontinuities at
the beginning and end of the sampled signal) or tapering function. The Fourier transform of the Bartlett is the
product of two sinc functions. Note the excellent discussion in Kanasewich.2

For more information, see1,Page 600, 2,3,4 and5

References

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.bartlett(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Bartlett window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

2 E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 109-110.
1 M.S. Bartlett, “Periodogram Analysis and Continuous Spectra”, Biometrika 37, 1-16, 1950.
3 A.V. Oppenheim and R.W. Schafer, “Discrete-Time Signal Processing”, Prentice-Hall, 1999, pp. 468-471.
4 Wikipedia, “Window function”, https://en.wikipedia.org/wiki/Window_function
5 W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University Press, 1986, page 429.

600 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/Window_function

CuPy Documentation, Release 13.0.0

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Bartlett window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.blackman

cupyx.scipy.signal.windows.blackman(M, sym=True)
Return a Blackman window.

The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed
to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

Notes

The Blackman window is defined as

𝑤(𝑛) = 0.42− 0.5 cos(2𝜋𝑛/𝑀) + 0.08 cos(4𝜋𝑛/𝑀)

The “exact Blackman” window was designed to null out the third and fourth sidelobes, but has discontinuities at
the boundaries, resulting in a 6 dB/oct fall-off. This window is an approximation of the “exact” window, which
does not null the sidelobes as well, but is smooth at the edges, improving the fall-off rate to 18 dB/oct.3

Most references to the Blackman window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. It is also known as an apodization (which means “removing
the foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It
is known as a “near optimal” tapering function, almost as good (by some measures) as the Kaiser window.

For more information, see1,2, andPage 601, 3

3 Harris, Fredric J. (Jan 1978). “On the use of Windows for Harmonic Analysis with the Discrete Fourier Transform”. Proceedings of the IEEE
66 (1): 51-83. 10.1109/PROC.1978.10837

1 Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.
2 Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

5.4. Routines (SciPy) 601

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://doi.org/10.1109/PROC.1978.10837

CuPy Documentation, Release 13.0.0

References

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal import blackman
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = blackman(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Blackman window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = cupy.abs(fftshift(A / cupy.abs(A).max()))
>>> response = 20 * cupy.log10(cupy.maximum(response, 1e-10))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Blackman window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.blackmanharris

cupyx.scipy.signal.windows.blackmanharris(M, sym=True)
Return a minimum 4-term Blackman-Harris window.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

602 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import blackmanharris
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = blackmanharris(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Blackman-Harris window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Blackman-Harris window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.bohman

cupyx.scipy.signal.windows.bohman(M, sym=True)
Return a Bohman window.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import bohman
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

5.4. Routines (SciPy) 603

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

>>> window = bohman(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Bohman window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Bohman window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.boxcar

cupyx.scipy.signal.windows.boxcar(M, sym=True)
Return a boxcar or rectangular window.

Also known as a rectangular window or Dirichlet window, this is equivalent to no window at all.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• sym (bool, optional) – Whether the window is symmetric. (Has no effect for boxcar.)

Returns
w – The window, with the maximum value normalized to 1.

Return type
ndarray

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import boxcar
>>> import cupy
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = boxcar(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Boxcar window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))

(continues on next page)

604 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

(continued from previous page)

>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the boxcar window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.chebwin

cupyx.scipy.signal.windows.chebwin(M, at, sym=True)
Return a Dolph-Chebyshev window.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• at (float) – Attenuation (in dB).

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value always normalized to 1

Return type
ndarray

Notes

This window optimizes for the narrowest main lobe width for a given order M and sidelobe equiripple attenuation
at, using Chebyshev polynomials. It was originally developed by Dolph to optimize the directionality of radio
antenna arrays.

Unlike most windows, the Dolph-Chebyshev is defined in terms of its frequency response:

𝑊 (𝑘) =
cos{𝑀 cos−1[𝛽 cos(𝜋𝑘𝑀)]}

cosh[𝑀 cosh−1(𝛽)]

where

𝛽 = cosh

[︂
1

𝑀
cosh−1(10

𝐴
20)

]︂
and 0 <= abs(k) <= M-1. A is the attenuation in decibels (at).

The time domain window is then generated using the IFFT, so power-of-two M are the fastest to generate, and
prime number M are the slowest.

The equiripple condition in the frequency domain creates impulses in the time domain, which appear at the ends
of the window.

For more information, see1,2 and3

1 C. Dolph, “A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level”, Proceedings
of the IEEE, Vol. 34, Issue 6

2 Peter Lynch, “The Dolph-Chebyshev Window: A Simple Optimal Filter”, American Meteorological Society (April 1997) http://mathsci.ucd.
ie/~plynch/Publications/Dolph.pdf

3 F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transforms”, Proceedings of the IEEE, Vol. 66, No. 1,
January 1978

5.4. Routines (SciPy) 605

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
http://mathsci.ucd.ie/~plynch/Publications/Dolph.pdf
http://mathsci.ucd.ie/~plynch/Publications/Dolph.pdf

CuPy Documentation, Release 13.0.0

References

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.chebwin(51, at=100)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Dolph-Chebyshev window (100 dB)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Dolph-Chebyshev window (100 dB)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.cosine

cupyx.scipy.signal.windows.cosine(M, sym=True)
Return a window with a simple cosine shape.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

606 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

New in version 0.13.0.

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.cosine(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Cosine window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the cosine window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.show()

cupyx.scipy.signal.windows.exponential

cupyx.scipy.signal.windows.exponential(M, center=None, tau=1.0, sym=True)
Return an exponential (or Poisson) window.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• center (float, optional) – Parameter defining the center location of the window func-
tion. The default value if not given is center = (M-1) / 2. This parameter must take its
default value for symmetric windows.

• tau (float, optional) – Parameter defining the decay. For center = 0 use tau =
-(M-1) / ln(x) if x is the fraction of the window remaining at the end.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

5.4. Routines (SciPy) 607

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

The Exponential window is defined as

𝑤(𝑛) = 𝑒−|𝑛−𝑐𝑒𝑛𝑡𝑒𝑟|/𝜏

References

S. Gade and H. Herlufsen, “Windows to FFT analysis (Part I)”, Technical Review 3, Bruel & Kjaer, 1987.

Examples

Plot the symmetric window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> M = 51
>>> tau = 3.0
>>> window = cupyx.scipy.signal.windows.exponential(M, tau=tau)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Exponential Window (tau=3.0)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -35, 0])
>>> plt.title("Frequency response of the Exponential window (tau=3.0)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

This function can also generate non-symmetric windows:

>>> tau2 = -(M-1) / np.log(0.01)
>>> window2 = cupyx.scipy.signal.windows.exponential(M, 0, tau2, False)
>>> plt.figure()
>>> plt.plot(cupy.asnumpy(window2))
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

608 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.windows.flattop

cupyx.scipy.signal.windows.flattop(M, sym=True)
Return a flat top window.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

Notes

Flat top windows are used for taking accurate measurements of signal amplitude in the frequency domain, with
minimal scalloping error from the center of a frequency bin to its edges, compared to others. This is a 5th-order
cosine window, with the 5 terms optimized to make the main lobe maximally flat.1

References

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import flattop
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = flattop(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Flat top window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the flat top window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

1 D’Antona, Gabriele, and A. Ferrero, “Digital Signal Processing for Measurement Systems”, Springer Media, 2006, p. 70 10.1007/0-387-28666-
7

5.4. Routines (SciPy) 609

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://doi.org/10.1007/0-387-28666-7
https://doi.org/10.1007/0-387-28666-7

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.windows.gaussian

cupyx.scipy.signal.windows.gaussian(M, std, sym=True)
Return a Gaussian window.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• std (float) – The standard deviation, sigma.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

Notes

The Gaussian window is defined as

𝑤(𝑛) = 𝑒−
1
2 (

𝑛
𝜎)

2

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.gaussian(51, std=7)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title(r"Gaussian window (σ=7)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title(r"Frequency response of the Gaussian window (σ=7)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

610 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

cupyx.scipy.signal.windows.general_cosine

cupyx.scipy.signal.windows.general_cosine(M, a, sym=True)
Generic weighted sum of cosine terms window

Parameters
• M (int) – Number of points in the output window

• a (array_like) – Sequence of weighting coefficients. This uses the convention of being
centered on the origin, so these will typically all be positive numbers, not alternating sign.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Notes

For more information, see1 and2

References

Examples

Heinzel describes a flat-top window named “HFT90D” with formula:Page 611, 2

𝑤𝑗 = 1− 1.942604 cos(𝑧) + 1.340318 cos(2𝑧)− 0.440811 cos(3𝑧) + 0.043097 cos(4𝑧)

where

𝑧 =
2𝜋𝑗

𝑁
, 𝑗 = 0...𝑁 − 1

Since this uses the convention of starting at the origin, to reproduce the window, we need to convert every other
coefficient to a positive number:

>>> HFT90D = [1, 1.942604, 1.340318, 0.440811, 0.043097]

The paper states that the highest sidelobe is at -90.2 dB. Reproduce Figure 42 by plotting the window and its
frequency response, and confirm the sidelobe level in red:

>>> from cupyx.scipy.signal.windows import general_cosine
>>> from cupy.fft import fft, fftshift
>>> import cupy
>>> import matplotlib.pyplot as plt

>>> window = general_cosine(1000, HFT90D, sym=False)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("HFT90D window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

1 A. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no.
1, pp. 84-91, Feb 1981. 10.1109/TASSP.1981.1163506

2 Heinzel G. et al., “Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window
functions and some new flat-top windows”, February 15, 2002 https://holometer.fnal.gov/GH_FFT.pdf

5.4. Routines (SciPy) 611

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://doi.org/10.1109/TASSP.1981.1163506
https://holometer.fnal.gov/GH_FFT.pdf

CuPy Documentation, Release 13.0.0

>>> plt.figure()
>>> A = fft(window, 10000) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = cupy.abs(fftshift(A / cupy.abs(A).max()))
>>> response = 20 * cupy.log10(cupy.maximum(response, 1e-10))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-50/1000, 50/1000, -140, 0])
>>> plt.title("Frequency response of the HFT90D window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.axhline(-90.2, color='red')
>>> plt.show()

cupyx.scipy.signal.windows.general_gaussian

cupyx.scipy.signal.windows.general_gaussian(M, p, sig, sym=True)
Return a window with a generalized Gaussian shape.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• p (float) – Shape parameter. p = 1 is identical to gaussian, p = 0.5 is the same shape as the
Laplace distribution.

• sig (float) – The standard deviation, sigma.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

Notes

The generalized Gaussian window is defined as

𝑤(𝑛) = 𝑒−
1
2 |𝑛𝜎 |2𝑝

the half-power point is at

(2 log(2))1/(2𝑝)𝜎

612 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.general_gaussian(51, p=1.5, sig=7)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title(r"Generalized Gaussian window (p=1.5, σ=7)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title(r"Freq. resp. of the gen. Gaussian "
... r"window (p=1.5, σ=7)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.general_hamming

cupyx.scipy.signal.windows.general_hamming(M, alpha, sym=True)
Return a generalized Hamming window.

The generalized Hamming window is constructed by multiplying a rectangular window by one period of a cosine
function1.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• alpha (float) – The window coefficient, 𝛼

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

1 DSPRelated, “Generalized Hamming Window Family”, https://www.dsprelated.com/freebooks/sasp/Generalized_Hamming_Window_
Family.html

5.4. Routines (SciPy) 613

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://www.dsprelated.com/freebooks/sasp/Generalized_Hamming_Window_Family.html
https://www.dsprelated.com/freebooks/sasp/Generalized_Hamming_Window_Family.html

CuPy Documentation, Release 13.0.0

Notes

The generalized Hamming window is defined as

𝑤(𝑛) = 𝛼− (1− 𝛼) cos

(︂
2𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

Both the common Hamming window and Hann window are special cases of the generalized Hamming window
with 𝛼 = 0.54 and 𝛼 = 0.5, respectively2.

See also:
hamming, hann

Examples

The Sentinel-1A/B Instrument Processing Facility uses generalized Hamming windows in the processing of
spaceborne Synthetic Aperture Radar (SAR) data3. The facility uses various values for the 𝛼 parameter based
on operating mode of the SAR instrument. Some common 𝛼 values include 0.75, 0.7 and 0.524. As an example,
we plot these different windows.

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> fig1, spatial_plot = plt.subplots()
>>> spatial_plot.set_title("Generalized Hamming Windows")
>>> spatial_plot.set_ylabel("Amplitude")
>>> spatial_plot.set_xlabel("Sample")

>>> fig2, freq_plot = plt.subplots()
>>> freq_plot.set_title("Frequency Responses")
>>> freq_plot.set_ylabel("Normalized magnitude [dB]")
>>> freq_plot.set_xlabel("Normalized frequency [cycles per sample]")

>>> for alpha in [0.75, 0.7, 0.52]:
... window = cupyx.scipy.signal.windows.general_hamming(41, alpha)
... spatial_plot.plot(cupy.asnumpy(window), label="{:.2f}".format(alpha))
... A = fft(window, 2048) / (len(window)/2.0)
... freq = cupy.linspace(-0.5, 0.5, len(A))
... response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
... freq_plot.plot(
... cupy.asnumpy(freq), cupy.asnumpy(response),
... label="{:.2f}".format(alpha)
...)
>>> freq_plot.legend(loc="upper right")
>>> spatial_plot.legend(loc="upper right")

2 Wikipedia, “Window function”, https://en.wikipedia.org/wiki/Window_function
3 Riccardo Piantanida ESA, “Sentinel-1 Level 1 Detailed Algorithm Definition”, https://sentinel.esa.int/documents/247904/1877131/

Sentinel-1-Level-1-Detailed-Algorithm-Definition
4 Matthieu Bourbigot ESA, “Sentinel-1 Product Definition”, https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Definition

614 Chapter 5. API Reference

https://en.wikipedia.org/wiki/Window_function
https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Level-1-Detailed-Algorithm-Definition
https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Level-1-Detailed-Algorithm-Definition
https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Definition

CuPy Documentation, Release 13.0.0

References

cupyx.scipy.signal.windows.hamming

cupyx.scipy.signal.windows.hamming(M, sym=True)
Return a Hamming window.

The Hamming window is a taper formed by using a raised cosine with non-zero endpoints, optimized to minimize
the nearest side lobe.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

Notes

The Hamming window is defined as

𝑤(𝑛) = 0.54− 0.46 cos

(︂
2𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and
Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most
references to the Hamming window come from the signal processing literature, where it is used as one of many
windowing functions for smoothing values. It is also known as an apodization (which means “removing the
foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

For more information, see1,2,3 and4

References

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

1 Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.
2 E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 109-110.
3 Wikipedia, “Window function”, https://en.wikipedia.org/wiki/Window_function
4 W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University Press, 1986, page 425.

5.4. Routines (SciPy) 615

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/Window_function

CuPy Documentation, Release 13.0.0

>>> window = cupyx.scipy.signal.windows.hamming(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Hamming window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Hamming window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.hann

cupyx.scipy.signal.windows.hann(M, sym=True)
Return a Hann window.

The Hann window is a taper formed by using a raised cosine or sine-squared with ends that touch zero.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

Notes

The Hann window is defined as

𝑤(𝑛) = 0.5− 0.5 cos

(︂
2𝜋𝑛

𝑀 − 1

)︂
0 ≤ 𝑛 ≤ 𝑀 − 1

The window was named for Julius von Hann, an Austrian meteorologist. It is also known as the Cosine Bell. It
is sometimes erroneously referred to as the “Hanning” window, from the use of “hann” as a verb in the original
paper and confusion with the very similar Hamming window.

Most references to the Hann window come from the signal processing literature, where it is used as one of many
windowing functions for smoothing values. It is also known as an apodization (which means “removing the
foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

For more information, see1,2,3, and4

1 Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York.
2 E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 106-108.
3 Wikipedia, “Window function”, https://en.wikipedia.org/wiki/Window_function
4 W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, “Numerical Recipes”, Cambridge University Press, 1986, page 425.

616 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://en.wikipedia.org/wiki/Window_function

CuPy Documentation, Release 13.0.0

References

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.hann(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Hann window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = cupy.abs(fftshift(A / cupy.abs(A).max()))
>>> response = 20 * cupy.log10(np.maximum(response, 1e-10))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Hann window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.kaiser

cupyx.scipy.signal.windows.kaiser(M, beta, sym=True)
Return a Kaiser window.

The Kaiser window is a taper formed by using a Bessel function.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• beta (float) – Shape parameter, determines trade-off between main-lobe width and side
lobe level. As beta gets large, the window narrows.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

5.4. Routines (SciPy) 617

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

The Kaiser window is defined as

𝑤(𝑛) = 𝐼0

(︃
𝛽

√︃
1− 4𝑛2

(𝑀 − 1)2

)︃
/𝐼0(𝛽)

with

−𝑀 − 1

2
≤ 𝑛 ≤ 𝑀 − 1

2
,

where 𝐼0 is the modified zeroth-order Bessel function.

The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on
Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence,
or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative
to total energy.

The Kaiser can approximate other windows by varying the beta parameter. (Some literature uses alpha = beta/pi.)4

beta Window shape
0 Rectangular
5 Similar to a Hamming
6 Similar to a Hann
8.6 Similar to a Blackman

A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so
the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will
be returned.

Most references to the Kaiser window come from the signal processing literature, where it is used as one of
many windowing functions for smoothing values. It is also known as an apodization (which means “removing
the foot”, i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function.

For more information, see1,2,3, andPage 618, 4

References

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

4 F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp.
51-83, Jan. 1978. 10.1109/PROC.1978.10837

1 J. F. Kaiser, “Digital Filters” - Ch 7 in “Systems analysis by digital computer”, Editors: F.F. Kuo and J.F. Kaiser, p 218-285. John Wiley and
Sons, New York, (1966).

2 E.R. Kanasewich, “Time Sequence Analysis in Geophysics”, The University of Alberta Press, 1975, pp. 177-178.
3 Wikipedia, “Window function”, https://en.wikipedia.org/wiki/Window_function

618 Chapter 5. API Reference

https://doi.org/10.1109/PROC.1978.10837
https://en.wikipedia.org/wiki/Window_function

CuPy Documentation, Release 13.0.0

>>> window = cupyx.scipy.signal.windows.kaiser(51, beta=14)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title(r"Kaiser window (β=14)")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title(r"Frequency response of the Kaiser window (β=14)")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.nuttall

cupyx.scipy.signal.windows.nuttall(M, sym=True)
Return a minimum 4-term Blackman-Harris window according to Nuttall.

This variation is called “Nuttall4c” by Heinzel.2

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

Notes

For more information, see1 andPage 619, 2

2 Heinzel G. et al., “Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window
functions and some new flat-top windows”, February 15, 2002 https://holometer.fnal.gov/GH_FFT.pdf

1 A. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no.
1, pp. 84-91, Feb 1981. 10.1109/TASSP.1981.1163506

5.4. Routines (SciPy) 619

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://holometer.fnal.gov/GH_FFT.pdf
https://doi.org/10.1109/TASSP.1981.1163506

CuPy Documentation, Release 13.0.0

References

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import nuttall
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = nuttall(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Nuttall window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Nuttall window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.parzen

cupyx.scipy.signal.windows.parzen(M, sym=True)
Return a Parzen window.

Parameters
• M (int) – Number of points in the output window. If zero, an empty array is returned. An

exception is thrown when it is negative.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

620 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

For more information, see1.

References

Examples

Plot the window and its frequency response:

>>> import cupy as cp
>>> from cupyx.scipy import signal
>>> from cupyx.scipy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = signal.windows.parzen(51)
>>> plt.plot(window)
>>> plt.title("Parzen window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cp.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cp.log10(cp.abs(fftshift(A / abs(A).max())))
>>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Parzen window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.taylor

cupyx.scipy.signal.windows.taylor(M, nbar=4, sll=30, norm=True, sym=True)
Return a Taylor window. The Taylor window taper function approximates the Dolph-Chebyshev window’s con-
stant sidelobe level for a parameterized number of near-in sidelobes, but then allows a taper beyond2. The SAR
(synthetic aperature radar) community commonly uses Taylor weighting for image formation processing because
it provides strong, selectable sidelobe suppression with minimum broadening of the mainlobe1.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• nbar (int, optional) – Number of nearly constant level sidelobes adjacent to the main-
lobe.

• sll (float, optional) – Desired suppression of sidelobe level in decibels (dB) relative
to the DC gain of the mainlobe. This should be a positive number.

1 E. Parzen, “Mathematical Considerations in the Estimation of Spectra”, Technometrics, Vol. 3, No. 2 (May, 1961), pp. 167-190
2 Armin Doerry, “Catalog of Window Taper Functions for Sidelobe Control”, 2017. https://www.researchgate.net/profile/

Armin_Doerry/publication/316281181_Catalog_of_Window_Taper_Functions_for_Sidelobe_Control/links/58f92cb2a6fdccb121c9d54d/
Catalog-of-Window-Taper-Functions-for-Sidelobe-Control.pdf

1 W. Carrara, R. Goodman, and R. Majewski, “Spotlight Synthetic Aperture Radar: Signal Processing Algorithms” Pages 512-513, July 1995.

5.4. Routines (SciPy) 621

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://www.researchgate.net/profile/Armin_Doerry/publication/316281181_Catalog_of_Window_Taper_Functions_for_Sidelobe_Control/links/58f92cb2a6fdccb121c9d54d/Catalog-of-Window-Taper-Functions-for-Sidelobe-Control.pdf
https://www.researchgate.net/profile/Armin_Doerry/publication/316281181_Catalog_of_Window_Taper_Functions_for_Sidelobe_Control/links/58f92cb2a6fdccb121c9d54d/Catalog-of-Window-Taper-Functions-for-Sidelobe-Control.pdf
https://www.researchgate.net/profile/Armin_Doerry/publication/316281181_Catalog_of_Window_Taper_Functions_for_Sidelobe_Control/links/58f92cb2a6fdccb121c9d54d/Catalog-of-Window-Taper-Functions-for-Sidelobe-Control.pdf

CuPy Documentation, Release 13.0.0

• norm (bool, optional) – When True (default), divides the window by the largest (middle)
value for odd-length windows or the value that would occur between the two repeated middle
values for even-length windows such that all values are less than or equal to 1. When False
the DC gain will remain at 1 (0 dB) and the sidelobes will be sll dB down.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
out – The window. When norm is True (default), the maximum value is normalized to 1 (though
the value 1 does not appear if M is even and sym is True).

Return type
array

See also:
chebwin, kaiser, bartlett, blackman, hamming, hanning

References

Examples

Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fft import
fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.windows.taylor(51, nbar=20, sll=100,
norm=False) >>> plt.plot(window) >>> plt.title(“Taylor window (100 dB)”) >>> plt.ylabel(“Amplitude”) >>>
plt.xlabel(“Sample”) >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-
0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response)
>>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title(“Frequency response of the Taylor window (100 dB)”) >>>
plt.ylabel(“Normalized magnitude [dB]”) >>> plt.xlabel(“Normalized frequency [cycles per sample]”)

cupyx.scipy.signal.windows.triang

cupyx.scipy.signal.windows.triang(M, sym=True)
Return a triangular window.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

See also:

bartlett
A triangular window that touches zero

622 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Examples

Plot the window and its frequency response:

>>> from cupyx.scipy.signal.windows import triang
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = triang(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Triangular window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = cupy.abs(fftshift(A / cupy.abs(A).max()))
>>> response = 20 * cupy.log10(cupy.maximum(response, 1e-10))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the triangular window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

cupyx.scipy.signal.windows.tukey

cupyx.scipy.signal.windows.tukey(M, alpha=0.5, sym=True)
Return a Tukey window, also known as a tapered cosine window.

Parameters
• M (int) – Number of points in the output window. If zero or less, an empty array is returned.

• alpha (float, optional) – Shape parameter of the Tukey window, representing the frac-
tion of the window inside the cosine tapered region. If zero, the Tukey window is equivalent
to a rectangular window. If one, the Tukey window is equivalent to a Hann window.

• sym (bool, optional) – When True (default), generates a symmetric window, for use in
filter design. When False, generates a periodic window, for use in spectral analysis.

Returns
w – The window, with the maximum value normalized to 1 (though the value 1 does not appear
if M is even and sym is True).

Return type
ndarray

5.4. Routines (SciPy) 623

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Notes

For more information, see1 and2.

References

Examples

Plot the window and its frequency response:

>>> import cupyx.scipy.signal.windows
>>> import cupy as cp
>>> from cupy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = cupyx.scipy.signal.windows.tukey(51)
>>> plt.plot(cupy.asnumpy(window))
>>> plt.title("Tukey window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")
>>> plt.ylim([0, 1.1])

>>> plt.figure()
>>> A = fft(window, 2048) / (len(window)/2.0)
>>> freq = cupy.linspace(-0.5, 0.5, len(A))
>>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max())))
>>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response))
>>> plt.axis([-0.5, 0.5, -120, 0])
>>> plt.title("Frequency response of the Tukey window")
>>> plt.ylabel("Normalized magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")

5.4.8 Sparse matrices (cupyx.scipy.sparse)

Hint: SciPy API Reference: Sparse matrices (scipy.sparse)

CuPy supports sparse matrices using cuSPARSE. These matrices have the same interfaces of SciPy’s sparse matrices.
1 Harris, Fredric J. (Jan 1978). “On the use of Windows for Harmonic Analysis with the Discrete Fourier Transform”. Proceedings of the IEEE

66 (1): 51-83. 10.1109/PROC.1978.10837
2 Wikipedia, “Window function”, https://en.wikipedia.org/wiki/Window_function#Tukey_window

624 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://developer.nvidia.com/cusparse
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://doi.org/10.1109/PROC.1978.10837
https://en.wikipedia.org/wiki/Window_function#Tukey_window

CuPy Documentation, Release 13.0.0

Conversion to/from SciPy sparse matrices

cupyx.scipy.sparse.*_matrix and scipy.sparse.*_matrix are not implicitly convertible to each other. That
means, SciPy functions cannot take cupyx.scipy.sparse.*_matrix objects as inputs, and vice versa.

• To convert SciPy sparse matrices to CuPy, pass it to the constructor of each CuPy sparse matrix class.

• To convert CuPy sparse matrices to SciPy, use get method of each CuPy sparse matrix class.

Note that converting between CuPy and SciPy incurs data transfer between the host (CPU) device and the GPU device,
which is costly in terms of performance.

Conversion to/from CuPy ndarrays

• To convert CuPy ndarray to CuPy sparse matrices, pass it to the constructor of each CuPy sparse matrix class.

• To convert CuPy sparse matrices to CuPy ndarray, use toarray of each CuPy sparse matrix instance (e.g.,
cupyx.scipy.sparse.csr_matrix.toarray()).

Converting between CuPy ndarray and CuPy sparse matrices does not incur data transfer; it is copied inside the GPU
device.

Contents

Sparse matrix classes

coo_matrix(arg1[, shape, dtype, copy]) COOrdinate format sparse matrix.
csc_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Column matrix.
csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix.
dia_matrix(arg1[, shape, dtype, copy]) Sparse matrix with DIAgonal storage.
spmatrix([maxprint]) Base class of all sparse matrixes.

cupyx.scipy.sparse.coo_matrix

class cupyx.scipy.sparse.coo_matrix(arg1, shape=None, dtype=None, copy=False)
COOrdinate format sparse matrix.

This can be instantiated in several ways.

coo_matrix(D)
D is a rank-2 cupy.ndarray.

coo_matrix(S)
S is another sparse matrix. It is equivalent to S.tocoo().

coo_matrix((M, N), [dtype])
It constructs an empty matrix whose shape is (M, N). Default dtype is float64.

coo_matrix((data, (row, col)))
All data, row and col are one-dimenaional cupy.ndarray.

Parameters
• arg1 – Arguments for the initializer.

• shape (tuple) – Shape of a matrix. Its length must be two.

5.4. Routines (SciPy) 625

https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

• dtype – Data type. It must be an argument of numpy.dtype.

• copy (bool) – If True, copies of given data are always used.

See also:
scipy.sparse.coo_matrix

Methods

__len__()

__iter__()

arcsin()

Elementwise arcsin.

arcsinh()

Elementwise arcsinh.

arctan()

Elementwise arctan.

arctanh()

Elementwise arctanh.

asformat(format)
Return this matrix in a given sparse format.

Parameters
format (str or None) – Format you need.

asfptype()

Upcasts matrix to a floating point format.

When the matrix has floating point type, the method returns itself. Otherwise it makes a copy with floating
point type and the same format.

Returns
A matrix with float type.

Return type
cupyx.scipy.sparse.spmatrix

astype(t)
Casts the array to given data type.

Parameters
dtype – Type specifier.

Returns
A copy of the array with a given type.

ceil()

Elementwise ceil.

626 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

conj(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters
copy (bool) – If True, the result is guaranteed to not share data with self.

Returns
The element-wise complex conjugate.

Return type
cupyx.scipy.sparse.spmatrix

conjugate(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters
copy (bool) – If True, the result is guaranteed to not share data with self.

Returns
The element-wise complex conjugate.

Return type
cupyx.scipy.sparse.spmatrix

copy()

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

count_nonzero()

Returns number of non-zero entries.

Note: This method counts the actual number of non-zero entories, which does not include explicit zero
entries. Instead nnz returns the number of entries including explicit zeros.

Returns
Number of non-zero entries.

deg2rad()

Elementwise deg2rad.

diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters
• k (int, optional) – Which diagonal to get, corresponding to elements

• a[i – 0 (the main diagonal).

• Default (i+k].) – 0 (the main diagonal).

Returns
The k-th diagonal.

5.4. Routines (SciPy) 627

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

dot(other)
Ordinary dot product

eliminate_zeros()

Removes zero entories in place.

expm1()

Elementwise expm1.

floor()

Elementwise floor.

get(stream=None)
Returns a copy of the array on host memory.

Parameters
stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the copy runs asyn-
chronously. Otherwise, the copy is synchronous.

Returns
Copy of the array on host memory.

Return type
scipy.sparse.coo_matrix

getH()

get_shape()

Returns the shape of the matrix.

Returns
Shape of the matrix.

Return type
tuple

getformat()

getmaxprint()

getnnz(axis=None)
Returns the number of stored values, including explicit zeros.

log1p()

Elementwise log1p.

maximum(other)

mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Parameters
axis (int or None) – Axis along which the sum is computed. If it is None, it computes the
average of all the elements. Select from {None, 0, 1, -2, -1}.

Returns
Summed array.

628 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
scipy.sparse.spmatrix.mean()

minimum(other)

multiply(other)
Point-wise multiplication by another matrix

power(n, dtype=None)
Elementwise power function.

Parameters
• n – Exponent.

• dtype – Type specifier.

rad2deg()

Elementwise rad2deg.

reshape(*shape, order='C')
Gives a new shape to a sparse matrix without changing its data.

Parameters
• shape (tuple) – The new shape should be compatible with the original shape.

• order – {‘C’, ‘F’} (optional) Read the elements using this index order. ‘C’ means to read
and write the elements using C-like index order. ‘F’ means to read and write the elements
using Fortran-like index order. Default: C.

Returns
sparse matrix

Return type
cupyx.scipy.sparse.coo_matrix

rint()

Elementwise rint.

set_shape(shape)

setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters
• values (ndarray) – New values of the diagonal elements. Values may have any length.

If the diagonal is longer than values, then the remaining diagonal entries will not be set. If
values are longer than the diagonal, then the remaining values are ignored. If a scalar value
is given, all of the diagonal is set to it.

• k (int, optional) – Which off-diagonal to set, corresponding to elements a[i,i+k]. De-
fault: 0 (the main diagonal).

sign()

Elementwise sign.

5.4. Routines (SciPy) 629

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

sin()

Elementwise sin.

sinh()

Elementwise sinh.

sqrt()

Elementwise sqrt.

sum(axis=None, dtype=None, out=None)
Sums the matrix elements over a given axis.

Parameters
• axis (int or None) – Axis along which the sum is comuted. If it is None, it computes the

sum of all the elements. Select from {None, 0, 1, -2, -1}.

• dtype – The type of returned matrix. If it is not specified, type of the array is used.

• out (cupy.ndarray) – Output matrix.

Returns
Summed array.

Return type
cupy.ndarray

See also:
scipy.sparse.spmatrix.sum()

sum_duplicates()

Eliminate duplicate matrix entries by adding them together.

Warning: When sorting the indices, CuPy follows the convention of cuSPARSE, which is different
from that of SciPy. Therefore, the order of the output indices may differ:

>>> # 1 0 0
>>> # A = 1 1 0
>>> # 1 1 1
>>> data = cupy.array([1, 1, 1, 1, 1, 1], 'f')
>>> row = cupy.array([0, 1, 1, 2, 2, 2], 'i')
>>> col = cupy.array([0, 0, 1, 0, 1, 2], 'i')
>>> A = cupyx.scipy.sparse.coo_matrix((data, (row, col)),
... shape=(3, 3))
>>> a = A.get()
>>> A.sum_duplicates()
>>> a.sum_duplicates() # a is scipy.sparse.coo_matrix
>>> A.row
array([0, 1, 1, 2, 2, 2], dtype=int32)
>>> a.row
array([0, 1, 2, 1, 2, 2], dtype=int32)
>>> A.col
array([0, 0, 1, 0, 1, 2], dtype=int32)
>>> a.col
array([0, 0, 0, 1, 1, 2], dtype=int32)

630 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Warning: Calling this function might synchronize the device.

See also:
scipy.sparse.coo_matrix.sum_duplicates()

tan()

Elementwise tan.

tanh()

Elementwise tanh.

toarray(order=None, out=None)
Returns a dense matrix representing the same value.

Parameters
• order (str) – Not supported.

• out – Not supported.

Returns
Dense array representing the same value.

Return type
cupy.ndarray

See also:
scipy.sparse.coo_matrix.toarray()

tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.

tocoo(copy=False)
Converts the matrix to COOdinate format.

Parameters
copy (bool) – If False, it shares data arrays as much as possible.

Returns
Converted matrix.

Return type
cupyx.scipy.sparse.coo_matrix

tocsc(copy=False)
Converts the matrix to Compressed Sparse Column format.

Parameters
copy (bool) – If False, it shares data arrays as much as possible. Actually this option is
ignored because all arrays in a matrix cannot be shared in coo to csc conversion.

Returns
Converted matrix.

Return type
cupyx.scipy.sparse.csc_matrix

5.4. Routines (SciPy) 631

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.sum_duplicates.html#scipy.sparse.coo_matrix.sum_duplicates
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.toarray.html#scipy.sparse.coo_matrix.toarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

tocsr(copy=False)
Converts the matrix to Compressed Sparse Row format.

Parameters
copy (bool) – If False, it shares data arrays as much as possible. Actually this option is
ignored because all arrays in a matrix cannot be shared in coo to csr conversion.

Returns
Converted matrix.

Return type
cupyx.scipy.sparse.csr_matrix

todense(order=None, out=None)
Return a dense matrix representation of this matrix.

todia(copy=False)
Convert this matrix to sparse DIAgonal format.

todok(copy=False)
Convert this matrix to Dictionary Of Keys format.

tolil(copy=False)
Convert this matrix to LInked List format.

transpose(axes=None, copy=False)
Returns a transpose matrix.

Parameters
• axes – This option is not supported.

• copy (bool) – If True, a returned matrix shares no data. Otherwise, it shared data arrays
as much as possible.

Returns
Transpose matrix.

Return type
cupyx.scipy.sparse.spmatrix

trunc()

Elementwise trunc.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__(other)
Return self<value.

__le__(other)
Return self<=value.

__gt__(other)
Return self>value.

__ge__(other)
Return self>=value.

632 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

__nonzero__()

__bool__()

Attributes

A

Dense ndarray representation of this matrix.

This property is equivalent to toarray() method.

H

T

device

CUDA device on which this array resides.

dtype

Data type of the matrix.

format = 'coo'

ndim

nnz

shape

size

cupyx.scipy.sparse.csc_matrix

class cupyx.scipy.sparse.csc_matrix(arg1, shape=None, dtype=None, copy=False)
Compressed Sparse Column matrix.

This can be instantiated in several ways.

csc_matrix(D)
D is a rank-2 cupy.ndarray.

csc_matrix(S)
S is another sparse matrix. It is equivalent to S.tocsc().

csc_matrix((M, N), [dtype])
It constructs an empty matrix whose shape is (M, N). Default dtype is float64.

csc_matrix((data, (row, col)))
All data, row and col are one-dimenaional cupy.ndarray.

csc_matrix((data, indices, indptr))
All data, indices and indptr are one-dimenaional cupy.ndarray.

Parameters
• arg1 – Arguments for the initializer.

• shape (tuple) – Shape of a matrix. Its length must be two.

5.4. Routines (SciPy) 633

https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

• dtype – Data type. It must be an argument of numpy.dtype.

• copy (bool) – If True, copies of given arrays are always used.

See also:
scipy.sparse.csc_matrix

Methods

__getitem__(key)

__setitem__(key, x)

__len__()

__iter__()

arcsin()

Elementwise arcsin.

arcsinh()

Elementwise arcsinh.

arctan()

Elementwise arctan.

arctanh()

Elementwise arctanh.

argmax(axis=None, out=None)
Returns indices of maximum elements along an axis.

Implicit zero elements are taken into account. If there are several maximum values, the index of the first oc-
currence is returned. If NaN values occur in the matrix, the output defaults to a zero entry for the row/column
in which the NaN occurs.

Parameters
• axis (int) – {-2, -1, 0, 1, None} (optional) Axis along which the argmax is computed. If
None (default), index of the maximum element in the flatten data is returned.

• out (None) – (optional) This argument is in the signature solely for NumPy compatibility
reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns
Indices of maximum elements. If array, its size along axis is 1.

Return type
(cupy.narray or int)

argmin(axis=None, out=None)
Returns indices of minimum elements along an axis.

Implicit zero elements are taken into account. If there are several minimum values, the index of the first oc-
currence is returned. If NaN values occur in the matrix, the output defaults to a zero entry for the row/column
in which the NaN occurs.

Parameters

634 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• axis (int) – {-2, -1, 0, 1, None} (optional) Axis along which the argmin is computed. If
None (default), index of the minimum element in the flatten data is returned.

• out (None) – (optional) This argument is in the signature solely for NumPy compatibility
reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns
Indices of minimum elements. If matrix, its size along axis is 1.

Return type
(cupy.narray or int)

asformat(format)
Return this matrix in a given sparse format.

Parameters
format (str or None) – Format you need.

asfptype()

Upcasts matrix to a floating point format.

When the matrix has floating point type, the method returns itself. Otherwise it makes a copy with floating
point type and the same format.

Returns
A matrix with float type.

Return type
cupyx.scipy.sparse.spmatrix

astype(t)
Casts the array to given data type.

Parameters
dtype – Type specifier.

Returns
A copy of the array with a given type.

ceil()

Elementwise ceil.

conj(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters
copy (bool) – If True, the result is guaranteed to not share data with self.

Returns
The element-wise complex conjugate.

Return type
cupyx.scipy.sparse.spmatrix

conjugate(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

5.4. Routines (SciPy) 635

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Parameters
copy (bool) – If True, the result is guaranteed to not share data with self.

Returns
The element-wise complex conjugate.

Return type
cupyx.scipy.sparse.spmatrix

copy()

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

count_nonzero()

Returns number of non-zero entries.

Note: This method counts the actual number of non-zero entories, which does not include explicit zero
entries. Instead nnz returns the number of entries including explicit zeros.

Returns
Number of non-zero entries.

deg2rad()

Elementwise deg2rad.

diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters
• k (int, optional) – Which diagonal to get, corresponding to elements

• a[i – 0 (the main diagonal).

• Default (i+k].) – 0 (the main diagonal).

Returns
The k-th diagonal.

Return type
cupy.ndarray

dot(other)
Ordinary dot product

eliminate_zeros()

Removes zero entories in place.

expm1()

Elementwise expm1.

floor()

Elementwise floor.

get(stream=None)
Returns a copy of the array on host memory.

636 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Warning: You need to install SciPy to use this method.

Parameters
stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the copy runs asyn-
chronously. Otherwise, the copy is synchronous.

Returns
Copy of the array on host memory.

Return type
scipy.sparse.csc_matrix

getH()

get_shape()

Returns the shape of the matrix.

Returns
Shape of the matrix.

Return type
tuple

getcol(i)
Returns a copy of column i of the matrix, as a (m x 1) CSC matrix (column vector).

Parameters
i (integer) – Column

Returns
Sparse matrix with single column

Return type
cupyx.scipy.sparse.csc_matrix

getformat()

getmaxprint()

getnnz(axis=None)
Returns the number of stored values, including explicit zeros.

Parameters
axis – Not supported yet.

Returns
The number of stored values.

Return type
int

getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

Parameters
i (integer) – Row

Returns
Sparse matrix with single row

5.4. Routines (SciPy) 637

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
cupyx.scipy.sparse.csc_matrix

log1p()

Elementwise log1p.

max(axis=None, out=None, *, explicit=False)
Returns the maximum of the matrix or maximum along an axis.

Parameters
• axis (int) – {-2, -1, 0, 1, None} (optional) Axis along which the sum is computed. The

default is to compute the maximum over all the matrix elements, returning a scalar (i.e.
axis = None).

• out (None) – (optional) This argument is in the signature solely for NumPy compatibility
reasons. Do not pass in anything except for the default value, as this argument is not used.

• explicit (bool) – Return the maximum value explicitly specified and ignore all implicit
zero entries. If the dimension has no explicit values, a zero is then returned to indicate that
it is the only implicit value. This parameter is experimental and may change in the future.

Returns
Maximum of a. If axis is None, the result is a scalar value. If axis is given, the result is an
array of dimension a.ndim - 1. This differs from numpy for computational efficiency.

Return type
(cupy.ndarray or float)

See also:
min : The minimum value of a sparse matrix along a given axis.

See also:
numpy.matrix.max : NumPy’s implementation of max for matrices

maximum(other)

mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Parameters
axis (int or None) – Axis along which the sum is computed. If it is None, it computes the
average of all the elements. Select from {None, 0, 1, -2, -1}.

Returns
Summed array.

Return type
cupy.ndarray

See also:
scipy.sparse.spmatrix.mean()

min(axis=None, out=None, *, explicit=False)
Returns the minimum of the matrix or maximum along an axis.

Parameters
• axis (int) – {-2, -1, 0, 1, None} (optional) Axis along which the sum is computed. The

default is to compute the minimum over all the matrix elements, returning a scalar (i.e.
axis = None).

638 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• out (None) – (optional) This argument is in the signature solely for NumPy compatibility
reasons. Do not pass in anything except for the default value, as this argument is not used.

• explicit (bool) – Return the minimum value explicitly specified and ignore all implicit
zero entries. If the dimension has no explicit values, a zero is then returned to indicate that
it is the only implicit value. This parameter is experimental and may change in the future.

Returns
Minimum of a. If axis is None, the result is a scalar value. If axis is given, the result is an
array of dimension a.ndim - 1. This differs from numpy for computational efficiency.

Return type
(cupy.ndarray or float)

See also:
max : The maximum value of a sparse matrix along a given axis.

See also:
numpy.matrix.min : NumPy’s implementation of ‘min’ for matrices

minimum(other)

multiply(other)
Point-wise multiplication by another matrix

power(n, dtype=None)
Elementwise power function.

Parameters
• n – Exponent.

• dtype – Type specifier.

rad2deg()

Elementwise rad2deg.

reshape(*shape, order='C')
Gives a new shape to a sparse matrix without changing its data.

Parameters
• shape (tuple) – The new shape should be compatible with the original shape.

• order – {‘C’, ‘F’} (optional) Read the elements using this index order. ‘C’ means to read
and write the elements using C-like index order. ‘F’ means to read and write the elements
using Fortran-like index order. Default: C.

Returns
sparse matrix

Return type
cupyx.scipy.sparse.coo_matrix

rint()

Elementwise rint.

set_shape(shape)

5.4. Routines (SciPy) 639

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters
• values (cupy.ndarray) – New values of the diagonal elements. Values may have any

length. If the diagonal is longer than values, then the remaining diagonal entries will not
be set. If values is longer than the diagonal, then the remaining values are ignored. If a
scalar value is given, all of the diagonal is set to it.

• k (int, optional) – Which diagonal to set, corresponding to elements a[i, i+k]. Default:
0 (the main diagonal).

sign()

Elementwise sign.

sin()

Elementwise sin.

sinh()

Elementwise sinh.

sort_indices()

Sorts the indices of this matrix in place.

Warning: Calling this function might synchronize the device.

sorted_indices()

Return a copy of this matrix with sorted indices

Warning: Calling this function might synchronize the device.

sqrt()

Elementwise sqrt.

sum(axis=None, dtype=None, out=None)
Sums the matrix elements over a given axis.

Parameters
• axis (int or None) – Axis along which the sum is comuted. If it is None, it computes the

sum of all the elements. Select from {None, 0, 1, -2, -1}.

• dtype – The type of returned matrix. If it is not specified, type of the array is used.

• out (cupy.ndarray) – Output matrix.

Returns
Summed array.

Return type
cupy.ndarray

See also:
scipy.sparse.spmatrix.sum()

640 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

sum_duplicates()

Eliminate duplicate matrix entries by adding them together.

Note: This is an in place operation.

Warning: Calling this function might synchronize the device.

See also:
scipy.sparse.csr_matrix.sum_duplicates(), scipy.sparse.csc_matrix.
sum_duplicates()

tan()

Elementwise tan.

tanh()

Elementwise tanh.

toarray(order=None, out=None)
Returns a dense matrix representing the same value.

Parameters
• order ({'C', 'F', None}) – Whether to store data in C (row-major) order or F (column-

major) order. Default is C-order.

• out – Not supported.

Returns
Dense array representing the same matrix.

Return type
cupy.ndarray

See also:
scipy.sparse.csc_matrix.toarray()

tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.

tocoo(copy=False)
Converts the matrix to COOdinate format.

Parameters
copy (bool) – If False, it shares data arrays as much as possible.

Returns
Converted matrix.

Return type
cupyx.scipy.sparse.coo_matrix

tocsc(copy=None)
Converts the matrix to Compressed Sparse Column format.

Parameters
copy (bool) – If False, the method returns itself. Otherwise it makes a copy of the matrix.

5.4. Routines (SciPy) 641

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sum_duplicates.html#scipy.sparse.csr_matrix.sum_duplicates
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sum_duplicates.html#scipy.sparse.csc_matrix.sum_duplicates
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sum_duplicates.html#scipy.sparse.csc_matrix.sum_duplicates
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.toarray.html#scipy.sparse.csc_matrix.toarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Returns
Converted matrix.

Return type
cupyx.scipy.sparse.csc_matrix

tocsr(copy=False)
Converts the matrix to Compressed Sparse Row format.

Parameters
copy (bool) – If False, it shares data arrays as much as possible. Actually this option is
ignored because all arrays in a matrix cannot be shared in csr to csc conversion.

Returns
Converted matrix.

Return type
cupyx.scipy.sparse.csr_matrix

todense(order=None, out=None)
Return a dense matrix representation of this matrix.

todia(copy=False)
Convert this matrix to sparse DIAgonal format.

todok(copy=False)
Convert this matrix to Dictionary Of Keys format.

tolil(copy=False)
Convert this matrix to LInked List format.

transpose(axes=None, copy=False)
Returns a transpose matrix.

Parameters
• axes – This option is not supported.

• copy (bool) – If True, a returned matrix shares no data. Otherwise, it shared data arrays
as much as possible.

Returns
self with the dimensions reversed.

Return type
cupyx.scipy.sparse.csr_matrix

trunc()

Elementwise trunc.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__(other)
Return self<value.

__le__(other)
Return self<=value.

642 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

__gt__(other)
Return self>value.

__ge__(other)
Return self>=value.

__nonzero__()

__bool__()

Attributes

A

Dense ndarray representation of this matrix.

This property is equivalent to toarray() method.

H

T

device

CUDA device on which this array resides.

dtype

Data type of the matrix.

format = 'csc'

has_canonical_format

Determine whether the matrix has sorted indices and no duplicates.

Returns
bool: True if the above applies, otherwise False.

Note: has_canonical_format implies has_sorted_indices, so if the latter flag is False, so will the
former be; if the former is found True, the latter flag is also set.

Warning: Getting this property might synchronize the device.

has_sorted_indices

Determine whether the matrix has sorted indices.

Returns
bool:

True if the indices of the matrix are in sorted order, otherwise False.

Warning: Getting this property might synchronize the device.

ndim

5.4. Routines (SciPy) 643

CuPy Documentation, Release 13.0.0

nnz

shape

size

cupyx.scipy.sparse.csr_matrix

class cupyx.scipy.sparse.csr_matrix(arg1, shape=None, dtype=None, copy=False)
Compressed Sparse Row matrix.

This can be instantiated in several ways.

csr_matrix(D)
D is a rank-2 cupy.ndarray.

csr_matrix(S)
S is another sparse matrix. It is equivalent to S.tocsr().

csr_matrix((M, N), [dtype])
It constructs an empty matrix whose shape is (M, N). Default dtype is float64.

csr_matrix((data, (row, col)))
All data, row and col are one-dimenaional cupy.ndarray.

csr_matrix((data, indices, indptr))
All data, indices and indptr are one-dimenaional cupy.ndarray.

Parameters
• arg1 – Arguments for the initializer.

• shape (tuple) – Shape of a matrix. Its length must be two.

• dtype – Data type. It must be an argument of numpy.dtype.

• copy (bool) – If True, copies of given arrays are always used.

See also:
scipy.sparse.csr_matrix

Methods

__getitem__(key)

__setitem__(key, x)

__len__()

__iter__()

arcsin()

Elementwise arcsin.

arcsinh()

Elementwise arcsinh.

644 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix

CuPy Documentation, Release 13.0.0

arctan()

Elementwise arctan.

arctanh()

Elementwise arctanh.

argmax(axis=None, out=None)
Returns indices of maximum elements along an axis.

Implicit zero elements are taken into account. If there are several maximum values, the index of the first oc-
currence is returned. If NaN values occur in the matrix, the output defaults to a zero entry for the row/column
in which the NaN occurs.

Parameters
• axis (int) – {-2, -1, 0, 1, None} (optional) Axis along which the argmax is computed. If
None (default), index of the maximum element in the flatten data is returned.

• out (None) – (optional) This argument is in the signature solely for NumPy compatibility
reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns
Indices of maximum elements. If array, its size along axis is 1.

Return type
(cupy.narray or int)

argmin(axis=None, out=None)
Returns indices of minimum elements along an axis.

Implicit zero elements are taken into account. If there are several minimum values, the index of the first oc-
currence is returned. If NaN values occur in the matrix, the output defaults to a zero entry for the row/column
in which the NaN occurs.

Parameters
• axis (int) – {-2, -1, 0, 1, None} (optional) Axis along which the argmin is computed. If
None (default), index of the minimum element in the flatten data is returned.

• out (None) – (optional) This argument is in the signature solely for NumPy compatibility
reasons. Do not pass in anything except for the default value, as this argument is not used.

Returns
Indices of minimum elements. If matrix, its size along axis is 1.

Return type
(cupy.narray or int)

asformat(format)
Return this matrix in a given sparse format.

Parameters
format (str or None) – Format you need.

asfptype()

Upcasts matrix to a floating point format.

When the matrix has floating point type, the method returns itself. Otherwise it makes a copy with floating
point type and the same format.

Returns
A matrix with float type.

5.4. Routines (SciPy) 645

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Return type
cupyx.scipy.sparse.spmatrix

astype(t)
Casts the array to given data type.

Parameters
dtype – Type specifier.

Returns
A copy of the array with a given type.

ceil()

Elementwise ceil.

conj(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters
copy (bool) – If True, the result is guaranteed to not share data with self.

Returns
The element-wise complex conjugate.

Return type
cupyx.scipy.sparse.spmatrix

conjugate(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters
copy (bool) – If True, the result is guaranteed to not share data with self.

Returns
The element-wise complex conjugate.

Return type
cupyx.scipy.sparse.spmatrix

copy()

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

count_nonzero()

Returns number of non-zero entries.

Note: This method counts the actual number of non-zero entories, which does not include explicit zero
entries. Instead nnz returns the number of entries including explicit zeros.

Returns
Number of non-zero entries.

646 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

deg2rad()

Elementwise deg2rad.

diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters
• k (int, optional) – Which diagonal to get, corresponding to elements

• a[i – 0 (the main diagonal).

• Default (i+k].) – 0 (the main diagonal).

Returns
The k-th diagonal.

Return type
cupy.ndarray

dot(other)
Ordinary dot product

eliminate_zeros()

Removes zero entories in place.

expm1()

Elementwise expm1.

floor()

Elementwise floor.

get(stream=None)
Returns a copy of the array on host memory.

Parameters
stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the copy runs asyn-
chronously. Otherwise, the copy is synchronous.

Returns
Copy of the array on host memory.

Return type
scipy.sparse.csr_matrix

getH()

get_shape()

Returns the shape of the matrix.

Returns
Shape of the matrix.

Return type
tuple

getcol(i)
Returns a copy of column i of the matrix, as a (m x 1) CSR matrix (column vector).

Parameters
i (integer) – Column

5.4. Routines (SciPy) 647

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Returns
Sparse matrix with single column

Return type
cupyx.scipy.sparse.csr_matrix

getformat()

getmaxprint()

getnnz(axis=None)
Returns the number of stored values, including explicit zeros.

Parameters
axis – Not supported yet.

Returns
The number of stored values.

Return type
int

getrow(i)
Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector).

Parameters
i (integer) – Row

Returns
Sparse matrix with single row

Return type
cupyx.scipy.sparse.csr_matrix

log1p()

Elementwise log1p.

max(axis=None, out=None, *, explicit=False)
Returns the maximum of the matrix or maximum along an axis.

Parameters
• axis (int) – {-2, -1, 0, 1, None} (optional) Axis along which the sum is computed. The

default is to compute the maximum over all the matrix elements, returning a scalar (i.e.
axis = None).

• out (None) – (optional) This argument is in the signature solely for NumPy compatibility
reasons. Do not pass in anything except for the default value, as this argument is not used.

• explicit (bool) – Return the maximum value explicitly specified and ignore all implicit
zero entries. If the dimension has no explicit values, a zero is then returned to indicate that
it is the only implicit value. This parameter is experimental and may change in the future.

Returns
Maximum of a. If axis is None, the result is a scalar value. If axis is given, the result is an
array of dimension a.ndim - 1. This differs from numpy for computational efficiency.

Return type
(cupy.ndarray or float)

See also:
min : The minimum value of a sparse matrix along a given axis.

648 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

See also:
numpy.matrix.max : NumPy’s implementation of max for matrices

maximum(other)

mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Parameters
axis (int or None) – Axis along which the sum is computed. If it is None, it computes the
average of all the elements. Select from {None, 0, 1, -2, -1}.

Returns
Summed array.

Return type
cupy.ndarray

See also:
scipy.sparse.spmatrix.mean()

min(axis=None, out=None, *, explicit=False)
Returns the minimum of the matrix or maximum along an axis.

Parameters
• axis (int) – {-2, -1, 0, 1, None} (optional) Axis along which the sum is computed. The

default is to compute the minimum over all the matrix elements, returning a scalar (i.e.
axis = None).

• out (None) – (optional) This argument is in the signature solely for NumPy compatibility
reasons. Do not pass in anything except for the default value, as this argument is not used.

• explicit (bool) – Return the minimum value explicitly specified and ignore all implicit
zero entries. If the dimension has no explicit values, a zero is then returned to indicate that
it is the only implicit value. This parameter is experimental and may change in the future.

Returns
Minimum of a. If axis is None, the result is a scalar value. If axis is given, the result is an
array of dimension a.ndim - 1. This differs from numpy for computational efficiency.

Return type
(cupy.ndarray or float)

See also:
max : The maximum value of a sparse matrix along a given axis.

See also:
numpy.matrix.min : NumPy’s implementation of ‘min’ for matrices

minimum(other)

multiply(other)
Point-wise multiplication by another matrix, vector or scalar

power(n, dtype=None)
Elementwise power function.

Parameters
• n – Exponent.

5.4. Routines (SciPy) 649

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

• dtype – Type specifier.

rad2deg()

Elementwise rad2deg.

reshape(*shape, order='C')
Gives a new shape to a sparse matrix without changing its data.

Parameters
• shape (tuple) – The new shape should be compatible with the original shape.

• order – {‘C’, ‘F’} (optional) Read the elements using this index order. ‘C’ means to read
and write the elements using C-like index order. ‘F’ means to read and write the elements
using Fortran-like index order. Default: C.

Returns
sparse matrix

Return type
cupyx.scipy.sparse.coo_matrix

rint()

Elementwise rint.

set_shape(shape)

setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

sign()

Elementwise sign.

sin()

Elementwise sin.

sinh()

Elementwise sinh.

sort_indices()

Sorts the indices of this matrix in place.

Warning: Calling this function might synchronize the device.

sorted_indices()

Return a copy of this matrix with sorted indices

Warning: Calling this function might synchronize the device.

sqrt()

Elementwise sqrt.

sum(axis=None, dtype=None, out=None)
Sums the matrix elements over a given axis.

Parameters

650 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

• axis (int or None) – Axis along which the sum is comuted. If it is None, it computes the
sum of all the elements. Select from {None, 0, 1, -2, -1}.

• dtype – The type of returned matrix. If it is not specified, type of the array is used.

• out (cupy.ndarray) – Output matrix.

Returns
Summed array.

Return type
cupy.ndarray

See also:
scipy.sparse.spmatrix.sum()

sum_duplicates()

Eliminate duplicate matrix entries by adding them together.

Note: This is an in place operation.

Warning: Calling this function might synchronize the device.

See also:
scipy.sparse.csr_matrix.sum_duplicates(), scipy.sparse.csc_matrix.
sum_duplicates()

tan()

Elementwise tan.

tanh()

Elementwise tanh.

toarray(order=None, out=None)
Returns a dense matrix representing the same value.

Parameters
• order ({'C', 'F', None}) – Whether to store data in C (row-major) order or F (column-

major) order. Default is C-order.

• out – Not supported.

Returns
Dense array representing the same matrix.

Return type
cupy.ndarray

See also:
scipy.sparse.csr_matrix.toarray()

tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.

5.4. Routines (SciPy) 651

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.sum_duplicates.html#scipy.sparse.csr_matrix.sum_duplicates
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sum_duplicates.html#scipy.sparse.csc_matrix.sum_duplicates
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.sum_duplicates.html#scipy.sparse.csc_matrix.sum_duplicates
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.toarray.html#scipy.sparse.csr_matrix.toarray

CuPy Documentation, Release 13.0.0

tocoo(copy=False)
Converts the matrix to COOdinate format.

Parameters
copy (bool) – If False, it shares data arrays as much as possible.

Returns
Converted matrix.

Return type
cupyx.scipy.sparse.coo_matrix

tocsc(copy=False)
Converts the matrix to Compressed Sparse Column format.

Parameters
copy (bool) – If False, it shares data arrays as much as possible. Actually this option is
ignored because all arrays in a matrix cannot be shared in csr to csc conversion.

Returns
Converted matrix.

Return type
cupyx.scipy.sparse.csc_matrix

tocsr(copy=False)
Converts the matrix to Compressed Sparse Row format.

Parameters
copy (bool) – If False, the method returns itself. Otherwise it makes a copy of the matrix.

Returns
Converted matrix.

Return type
cupyx.scipy.sparse.csr_matrix

todense(order=None, out=None)
Return a dense matrix representation of this matrix.

todia(copy=False)
Convert this matrix to sparse DIAgonal format.

todok(copy=False)
Convert this matrix to Dictionary Of Keys format.

tolil(copy=False)
Convert this matrix to LInked List format.

transpose(axes=None, copy=False)
Returns a transpose matrix.

Parameters
• axes – This option is not supported.

• copy (bool) – If True, a returned matrix shares no data. Otherwise, it shared data arrays
as much as possible.

Returns
self with the dimensions reversed.

652 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Return type
cupyx.scipy.sparse.csc_matrix

trunc()

Elementwise trunc.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__(other)
Return self<value.

__le__(other)
Return self<=value.

__gt__(other)
Return self>value.

__ge__(other)
Return self>=value.

__nonzero__()

__bool__()

Attributes

A

Dense ndarray representation of this matrix.

This property is equivalent to toarray() method.

H

T

device

CUDA device on which this array resides.

dtype

Data type of the matrix.

format = 'csr'

has_canonical_format

Determine whether the matrix has sorted indices and no duplicates.

Returns
bool: True if the above applies, otherwise False.

Note: has_canonical_format implies has_sorted_indices, so if the latter flag is False, so will the
former be; if the former is found True, the latter flag is also set.

5.4. Routines (SciPy) 653

CuPy Documentation, Release 13.0.0

Warning: Getting this property might synchronize the device.

has_sorted_indices

Determine whether the matrix has sorted indices.

Returns
bool:

True if the indices of the matrix are in sorted order, otherwise False.

Warning: Getting this property might synchronize the device.

ndim

nnz

shape

size

cupyx.scipy.sparse.dia_matrix

class cupyx.scipy.sparse.dia_matrix(arg1, shape=None, dtype=None, copy=False)
Sparse matrix with DIAgonal storage.

Now it has only one initializer format below:

dia_matrix((data, offsets))

Parameters
• arg1 – Arguments for the initializer.

• shape (tuple) – Shape of a matrix. Its length must be two.

• dtype – Data type. It must be an argument of numpy.dtype.

• copy (bool) – If True, copies of given arrays are always used.

See also:
scipy.sparse.dia_matrix

Methods

__len__()

__iter__()

arcsin()

Elementwise arcsin.

arcsinh()

Elementwise arcsinh.

654 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix

CuPy Documentation, Release 13.0.0

arctan()

Elementwise arctan.

arctanh()

Elementwise arctanh.

asformat(format)
Return this matrix in a given sparse format.

Parameters
format (str or None) – Format you need.

asfptype()

Upcasts matrix to a floating point format.

When the matrix has floating point type, the method returns itself. Otherwise it makes a copy with floating
point type and the same format.

Returns
A matrix with float type.

Return type
cupyx.scipy.sparse.spmatrix

astype(t)
Casts the array to given data type.

Parameters
dtype – Type specifier.

Returns
A copy of the array with a given type.

ceil()

Elementwise ceil.

conj(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters
copy (bool) – If True, the result is guaranteed to not share data with self.

Returns
The element-wise complex conjugate.

Return type
cupyx.scipy.sparse.spmatrix

conjugate(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters
copy (bool) – If True, the result is guaranteed to not share data with self.

Returns
The element-wise complex conjugate.

5.4. Routines (SciPy) 655

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Return type
cupyx.scipy.sparse.spmatrix

copy()

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

count_nonzero()

Returns number of non-zero entries.

Note: This method counts the actual number of non-zero entories, which does not include explicit zero
entries. Instead nnz returns the number of entries including explicit zeros.

Returns
Number of non-zero entries.

deg2rad()

Elementwise deg2rad.

diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters
• k (int, optional) – Which diagonal to get, corresponding to elements

• a[i – 0 (the main diagonal).

• Default (i+k].) – 0 (the main diagonal).

Returns
The k-th diagonal.

Return type
cupy.ndarray

dot(other)
Ordinary dot product

expm1()

Elementwise expm1.

floor()

Elementwise floor.

get(stream=None)
Returns a copy of the array on host memory.

Parameters
stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the copy runs asyn-
chronously. Otherwise, the copy is synchronous.

Returns
Copy of the array on host memory.

Return type
scipy.sparse.dia_matrix

656 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

getH()

get_shape()

Returns the shape of the matrix.

Returns
Shape of the matrix.

Return type
tuple

getformat()

getmaxprint()

getnnz(axis=None)
Returns the number of stored values, including explicit zeros.

Parameters
axis – Not supported yet.

Returns
The number of stored values.

Return type
int

log1p()

Elementwise log1p.

maximum(other)

mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Parameters
axis (int or None) – Axis along which the sum is computed. If it is None, it computes the
average of all the elements. Select from {None, 0, 1, -2, -1}.

Returns
Summed array.

Return type
cupy.ndarray

See also:
scipy.sparse.spmatrix.mean()

minimum(other)

multiply(other)
Point-wise multiplication by another matrix

power(n, dtype=None)
Elementwise power function.

Parameters
• n – Exponent.

• dtype – Type specifier.

5.4. Routines (SciPy) 657

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

rad2deg()

Elementwise rad2deg.

reshape(*shape, order='C')
Gives a new shape to a sparse matrix without changing its data.

Parameters
• shape (tuple) – The new shape should be compatible with the original shape.

• order – {‘C’, ‘F’} (optional) Read the elements using this index order. ‘C’ means to read
and write the elements using C-like index order. ‘F’ means to read and write the elements
using Fortran-like index order. Default: C.

Returns
sparse matrix

Return type
cupyx.scipy.sparse.coo_matrix

rint()

Elementwise rint.

set_shape(shape)

setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters
• values (cupy.ndarray) – New values of the diagonal elements. Values may have any

length. If the diagonal is longer than values, then the remaining diagonal entries will not
be set. If values is longer than the diagonal, then the remaining values are ignored. If a
scalar value is given, all of the diagonal is set to it.

• k (int, optional) – Which diagonal to set, corresponding to elements a[i, i+k]. Default:
0 (the main diagonal).

sign()

Elementwise sign.

sin()

Elementwise sin.

sinh()

Elementwise sinh.

sqrt()

Elementwise sqrt.

sum(axis=None, dtype=None, out=None)
Sums the matrix elements over a given axis.

Parameters
• axis (int or None) – Axis along which the sum is comuted. If it is None, it computes the

sum of all the elements. Select from {None, 0, 1, -2, -1}.

• dtype – The type of returned matrix. If it is not specified, type of the array is used.

• out (cupy.ndarray) – Output matrix.

658 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Returns
Summed array.

Return type
cupy.ndarray

See also:
scipy.sparse.spmatrix.sum()

tan()

Elementwise tan.

tanh()

Elementwise tanh.

toarray(order=None, out=None)
Returns a dense matrix representing the same value.

tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.

tocoo(copy=False)
Convert this matrix to COOrdinate format.

tocsc(copy=False)
Converts the matrix to Compressed Sparse Column format.

Parameters
copy (bool) – If False, it shares data arrays as much as possible. Actually this option is
ignored because all arrays in a matrix cannot be shared in dia to csc conversion.

Returns
Converted matrix.

Return type
cupyx.scipy.sparse.csc_matrix

tocsr(copy=False)
Converts the matrix to Compressed Sparse Row format.

Parameters
copy (bool) – If False, it shares data arrays as much as possible. Actually this option is
ignored because all arrays in a matrix cannot be shared in dia to csr conversion.

Returns
Converted matrix.

Return type
cupyx.scipy.sparse.csc_matrix

todense(order=None, out=None)
Return a dense matrix representation of this matrix.

todia(copy=False)
Convert this matrix to sparse DIAgonal format.

todok(copy=False)
Convert this matrix to Dictionary Of Keys format.

5.4. Routines (SciPy) 659

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

tolil(copy=False)
Convert this matrix to LInked List format.

transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

trunc()

Elementwise trunc.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__(other)
Return self<value.

__le__(other)
Return self<=value.

__gt__(other)
Return self>value.

__ge__(other)
Return self>=value.

__nonzero__()

__bool__()

Attributes

A

Dense ndarray representation of this matrix.

This property is equivalent to toarray() method.

H

T

device

CUDA device on which this array resides.

dtype

Data type of the matrix.

format = 'dia'

ndim

nnz

shape

size

660 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupyx.scipy.sparse.spmatrix

class cupyx.scipy.sparse.spmatrix(maxprint=50)
Base class of all sparse matrixes.

See scipy.sparse.spmatrix

Methods

__len__()

__iter__()

asformat(format)
Return this matrix in a given sparse format.

Parameters
format (str or None) – Format you need.

asfptype()

Upcasts matrix to a floating point format.

When the matrix has floating point type, the method returns itself. Otherwise it makes a copy with floating
point type and the same format.

Returns
A matrix with float type.

Return type
cupyx.scipy.sparse.spmatrix

astype(t)
Casts the array to given data type.

Parameters
t – Type specifier.

Returns
A copy of the array with the given type and the same format.

Return type
cupyx.scipy.sparse.spmatrix

conj(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters
copy (bool) – If True, the result is guaranteed to not share data with self.

Returns
The element-wise complex conjugate.

Return type
cupyx.scipy.sparse.spmatrix

5.4. Routines (SciPy) 661

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

conjugate(copy=True)
Element-wise complex conjugation.

If the matrix is of non-complex data type and copy is False, this method does nothing and the data is not
copied.

Parameters
copy (bool) – If True, the result is guaranteed to not share data with self.

Returns
The element-wise complex conjugate.

Return type
cupyx.scipy.sparse.spmatrix

copy()

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

count_nonzero()

Number of non-zero entries, equivalent to

diagonal(k=0)
Returns the k-th diagonal of the matrix.

Parameters
• k (int, optional) – Which diagonal to get, corresponding to elements

• a[i – 0 (the main diagonal).

• Default (i+k].) – 0 (the main diagonal).

Returns
The k-th diagonal.

Return type
cupy.ndarray

dot(other)
Ordinary dot product

get(stream=None)
Return a copy of the array on host memory.

Parameters
stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the copy runs asyn-
chronously. Otherwise, the copy is synchronous.

Returns
An array on host memory.

Return type
scipy.sparse.spmatrix

getH()

get_shape()

getformat()

662 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

getmaxprint()

getnnz(axis=None)
Number of stored values, including explicit zeros.

maximum(other)

mean(axis=None, dtype=None, out=None)
Compute the arithmetic mean along the specified axis.

Returns the average of the matrix elements. The average is taken over all elements in the matrix by default,
otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters
• {-2 (axis) – optional Axis along which the mean is computed. The default is to compute

the mean of all elements in the matrix (i.e., axis = None).

• -1 – optional Axis along which the mean is computed. The default is to compute the mean
of all elements in the matrix (i.e., axis = None).

• 0 – optional Axis along which the mean is computed. The default is to compute the mean
of all elements in the matrix (i.e., axis = None).

• 1 – optional Axis along which the mean is computed. The default is to compute the mean
of all elements in the matrix (i.e., axis = None).

• None} – optional Axis along which the mean is computed. The default is to compute the
mean of all elements in the matrix (i.e., axis = None).

• dtype (dtype) – optional Type to use in computing the mean. For integer inputs, the
default is float64; for floating point inputs, it is the same as the input dtype.

• out (cupy.ndarray) – optional Alternative output matrix in which to place the result. It
must have the same shape as the expected output, but the type of the output values will be
cast if necessary.

Returns
Output array of means

Return type
m (cupy.ndarray)

See also:
scipy.sparse.spmatrix.mean()

minimum(other)

multiply(other)
Point-wise multiplication by another matrix

power(n, dtype=None)

reshape(*shape, order='C')
Gives a new shape to a sparse matrix without changing its data.

Parameters
• shape (tuple) – The new shape should be compatible with the original shape.

• order – {‘C’, ‘F’} (optional) Read the elements using this index order. ‘C’ means to read
and write the elements using C-like index order. ‘F’ means to read and write the elements
using Fortran-like index order. Default: C.

5.4. Routines (SciPy) 663

https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Returns
sparse matrix

Return type
cupyx.scipy.sparse.coo_matrix

set_shape(shape)

setdiag(values, k=0)
Set diagonal or off-diagonal elements of the array.

Parameters
• values (cupy.ndarray) – New values of the diagonal elements. Values may have any

length. If the diagonal is longer than values, then the remaining diagonal entries will not
be set. If values is longer than the diagonal, then the remaining values are ignored. If a
scalar value is given, all of the diagonal is set to it.

• k (int, optional) – Which diagonal to set, corresponding to elements a[i, i+k]. Default:
0 (the main diagonal).

sum(axis=None, dtype=None, out=None)
Sums the matrix elements over a given axis.

Parameters
• axis (int or None) – Axis along which the sum is comuted. If it is None, it computes the

sum of all the elements. Select from {None, 0, 1, -2, -1}.

• dtype – The type of returned matrix. If it is not specified, type of the array is used.

• out (cupy.ndarray) – Output matrix.

Returns
Summed array.

Return type
cupy.ndarray

See also:
scipy.sparse.spmatrix.sum()

toarray(order=None, out=None)
Return a dense ndarray representation of this matrix.

tobsr(blocksize=None, copy=False)
Convert this matrix to Block Sparse Row format.

tocoo(copy=False)
Convert this matrix to COOrdinate format.

tocsc(copy=False)
Convert this matrix to Compressed Sparse Column format.

tocsr(copy=False)
Convert this matrix to Compressed Sparse Row format.

todense(order=None, out=None)
Return a dense matrix representation of this matrix.

664 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

todia(copy=False)
Convert this matrix to sparse DIAgonal format.

todok(copy=False)
Convert this matrix to Dictionary Of Keys format.

tolil(copy=False)
Convert this matrix to LInked List format.

transpose(axes=None, copy=False)
Reverses the dimensions of the sparse matrix.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__(other)
Return self<value.

__le__(other)
Return self<=value.

__gt__(other)
Return self>value.

__ge__(other)
Return self>=value.

__nonzero__()

__bool__()

Attributes

A

Dense ndarray representation of this matrix.

This property is equivalent to toarray() method.

H

T

device

CUDA device on which this array resides.

ndim

nnz

shape

size

5.4. Routines (SciPy) 665

CuPy Documentation, Release 13.0.0

Functions

Building sparse matrices:

eye(m[, n, k, dtype, format]) Creates a sparse matrix with ones on diagonal.
identity(n[, dtype, format]) Creates an identity matrix in sparse format.
kron(A, B[, format]) Kronecker product of sparse matrices A and B.
kronsum(A, B[, format]) Kronecker sum of sparse matrices A and B.
diags(diagonals[, offsets, shape, format, dtype]) Construct a sparse matrix from diagonals.
spdiags(data, diags, m, n[, format]) Creates a sparse matrix from diagonals.
tril(A[, k, format]) Returns the lower triangular portion of a matrix in sparse

format
triu(A[, k, format]) Returns the upper triangular portion of a matrix in sparse

format
bmat(blocks[, format, dtype]) Builds a sparse matrix from sparse sub-blocks
hstack(blocks[, format, dtype]) Stacks sparse matrices horizontally (column wise)
vstack(blocks[, format, dtype]) Stacks sparse matrices vertically (row wise)
rand(m, n[, density, format, dtype, ...]) Generates a random sparse matrix.
random(m, n[, density, format, dtype, ...]) Generates a random sparse matrix.

cupyx.scipy.sparse.eye

cupyx.scipy.sparse.eye(m, n=None, k=0, dtype='d', format=None)
Creates a sparse matrix with ones on diagonal.

Parameters
• m (int) – Number of rows.

• n (int or None) – Number of columns. If it is None, it makes a square matrix.

• k (int) – Diagonal to place ones on.

• dtype – Type of a matrix to create.

• format (str or None) – Format of the result, e.g. format="csr".

Returns
Created sparse matrix.

Return type
cupyx.scipy.sparse.spmatrix

See also:
scipy.sparse.eye()

666 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.eye.html#scipy.sparse.eye

CuPy Documentation, Release 13.0.0

cupyx.scipy.sparse.identity

cupyx.scipy.sparse.identity(n, dtype='d', format=None)
Creates an identity matrix in sparse format.

Note: Currently it only supports csr, csc and coo formats.

Parameters
• n (int) – Number of rows and columns.

• dtype – Type of a matrix to create.

• format (str or None) – Format of the result, e.g. format="csr".

Returns
Created identity matrix.

Return type
cupyx.scipy.sparse.spmatrix

See also:
scipy.sparse.identity()

cupyx.scipy.sparse.kron

cupyx.scipy.sparse.kron(A, B, format=None)
Kronecker product of sparse matrices A and B.

Parameters
• A (cupyx.scipy.sparse.spmatrix) – a sparse matrix.

• B (cupyx.scipy.sparse.spmatrix) – a sparse matrix.

• format (str) – the format of the returned sparse matrix.

Returns
Generated sparse matrix with the specified format.

Return type
cupyx.scipy.sparse.spmatrix

See also:
scipy.sparse.kron()

5.4. Routines (SciPy) 667

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.identity.html#scipy.sparse.identity
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.kron.html#scipy.sparse.kron

CuPy Documentation, Release 13.0.0

cupyx.scipy.sparse.kronsum

cupyx.scipy.sparse.kronsum(A, B, format=None)
Kronecker sum of sparse matrices A and B.

Kronecker sum is the sum of two Kronecker products kron(I_n, A) + kron(B, I_m), where I_n and I_m
are identity matrices.

Parameters
• A (cupyx.scipy.sparse.spmatrix) – a sparse matrix.

• B (cupyx.scipy.sparse.spmatrix) – a sparse matrix.

• format (str) – the format of the returned sparse matrix.

Returns
Generated sparse matrix with the specified format.

Return type
cupyx.scipy.sparse.spmatrix

See also:
scipy.sparse.kronsum()

cupyx.scipy.sparse.diags

cupyx.scipy.sparse.diags(diagonals, offsets=0, shape=None, format=None, dtype=None)
Construct a sparse matrix from diagonals.

Parameters
• diagonals (sequence of array_like) – Sequence of arrays containing the matrix di-

agonals, corresponding to offsets.

• offsets (sequence of int or an int) –

Diagonals to set:
– k = 0 the main diagonal (default)

– k > 0 the k-th upper diagonal

– k < 0 the k-th lower diagonal

• shape (tuple of int) – Shape of the result. If omitted, a square matrix large enough to
contain the diagonals is returned.

• format ({"dia", "csr", "csc", "lil", ...}) – Matrix format of the result. By de-
fault (format=None) an appropriate sparse matrix format is returned. This choice is subject
to change.

• dtype (dtype) – Data type of the matrix.

Returns
Generated matrix.

Return type
cupyx.scipy.sparse.spmatrix

668 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.kronsum.html#scipy.sparse.kronsum
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Notes

This function differs from spdiags in the way it handles off-diagonals.

The result from diags is the sparse equivalent of:

cupy.diag(diagonals[0], offsets[0])
+ ...
+ cupy.diag(diagonals[k], offsets[k])

Repeated diagonal offsets are disallowed.

cupyx.scipy.sparse.spdiags

cupyx.scipy.sparse.spdiags(data, diags, m, n, format=None)
Creates a sparse matrix from diagonals.

Parameters
• data (cupy.ndarray) – Matrix diagonals stored row-wise.

• diags (cupy.ndarray) – Diagonals to set.

• m (int) – Number of rows.

• n (int) – Number of cols.

• format (str or None) – Sparse format, e.g. format="csr".

Returns
Created sparse matrix.

Return type
cupyx.scipy.sparse.spmatrix

See also:
scipy.sparse.spdiags()

cupyx.scipy.sparse.tril

cupyx.scipy.sparse.tril(A, k=0, format=None)
Returns the lower triangular portion of a matrix in sparse format

Parameters
• A (cupy.ndarray or cupyx.scipy.sparse.spmatrix) – Matrix whose lower triangu-

lar portion is desired.

• k (integer) – The top-most diagonal of the lower triangle.

• format (string) – Sparse format of the result, e.g. ‘csr’, ‘csc’, etc.

Returns
Lower triangular portion of A in sparse format.

Return type
cupyx.scipy.sparse.spmatrix

5.4. Routines (SciPy) 669

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spdiags.html#scipy.sparse.spdiags

CuPy Documentation, Release 13.0.0

See also:
scipy.sparse.tril()

cupyx.scipy.sparse.triu

cupyx.scipy.sparse.triu(A, k=0, format=None)
Returns the upper triangular portion of a matrix in sparse format

Parameters
• A (cupy.ndarray or cupyx.scipy.sparse.spmatrix) – Matrix whose upper triangu-

lar portion is desired.

• k (integer) – The bottom-most diagonal of the upper triangle.

• format (string) – Sparse format of the result, e.g. ‘csr’, ‘csc’, etc.

Returns
Upper triangular portion of A in sparse format.

Return type
cupyx.scipy.sparse.spmatrix

See also:
scipy.sparse.triu()

cupyx.scipy.sparse.bmat

cupyx.scipy.sparse.bmat(blocks, format=None, dtype=None)
Builds a sparse matrix from sparse sub-blocks

Parameters
• blocks (array_like) – Grid of sparse matrices with compatible shapes. An entry of None

implies an all-zero matrix.

• format ({'bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil'}, optional) – The sparse
format of the result (e.g. “csr”). By default an appropriate sparse matrix format is returned.
This choice is subject to change.

• dtype (dtype, optional) – The data-type of the output matrix. If not given, the dtype is
determined from that of blocks.

Returns
bmat (sparse matrix)

See also:
scipy.sparse.bmat()

670 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.tril.html#scipy.sparse.tril
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.triu.html#scipy.sparse.triu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bmat.html#scipy.sparse.bmat

CuPy Documentation, Release 13.0.0

Examples

>>> from cupy import array
>>> from cupyx.scipy.sparse import csr_matrix, bmat
>>> A = csr_matrix(array([[1., 2.], [3., 4.]]))
>>> B = csr_matrix(array([[5.], [6.]]))
>>> C = csr_matrix(array([[7.]]))
>>> bmat([[A, B], [None, C]]).toarray()
array([[1., 2., 5.],

[3., 4., 6.],
[0., 0., 7.]])

>>> bmat([[A, None], [None, C]]).toarray()
array([[1., 2., 0.],

[3., 4., 0.],
[0., 0., 7.]])

cupyx.scipy.sparse.hstack

cupyx.scipy.sparse.hstack(blocks, format=None, dtype=None)
Stacks sparse matrices horizontally (column wise)

Parameters
• blocks (sequence of cupyx.scipy.sparse.spmatrix) – sparse matrices to stack

• format (str) – sparse format of the result (e.g. “csr”) by default an appropriate sparse
matrix format is returned. This choice is subject to change.

• dtype (dtype, optional) – The data-type of the output matrix. If not given, the dtype is
determined from that of blocks.

Returns
the stacked sparse matrix

Return type
cupyx.scipy.sparse.spmatrix

See also:
scipy.sparse.hstack()

Examples

>>> from cupy import array
>>> from cupyx.scipy.sparse import csr_matrix, hstack
>>> A = csr_matrix(array([[1., 2.], [3., 4.]]))
>>> B = csr_matrix(array([[5.], [6.]]))
>>> hstack([A, B]).toarray()
array([[1., 2., 5.],

[3., 4., 6.]])

5.4. Routines (SciPy) 671

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.hstack.html#scipy.sparse.hstack

CuPy Documentation, Release 13.0.0

cupyx.scipy.sparse.vstack

cupyx.scipy.sparse.vstack(blocks, format=None, dtype=None)
Stacks sparse matrices vertically (row wise)

Parameters
• blocks (sequence of cupyx.scipy.sparse.spmatrix) – sparse matrices to stack

• format (str, optional) – sparse format of the result (e.g. “csr”) by default an appropriate
sparse matrix format is returned. This choice is subject to change.

• dtype (dtype, optional) – The data-type of the output matrix. If not given, the dtype is
determined from that of blocks.

Returns
the stacked sparse matrix

Return type
cupyx.scipy.sparse.spmatrix

See also:
scipy.sparse.vstack()

Examples

>>> from cupy import array
>>> from cupyx.scipy.sparse import csr_matrix, vstack
>>> A = csr_matrix(array([[1., 2.], [3., 4.]]))
>>> B = csr_matrix(array([[5., 6.]]))
>>> vstack([A, B]).toarray()
array([[1., 2.],

[3., 4.],
[5., 6.]])

cupyx.scipy.sparse.rand

cupyx.scipy.sparse.rand(m, n, density=0.01, format='coo', dtype=None, random_state=None)
Generates a random sparse matrix.

See cupyx.scipy.sparse.random() for detail.

Parameters
• m (int) – Number of rows.

• n (int) – Number of cols.

• density (float) – Ratio of non-zero entries.

• format (str) – Matrix format.

• dtype (dtype) – Type of the returned matrix values.

• random_state (cupy.random.RandomState or int) – State of random number gener-
ator. If an integer is given, the method makes a new state for random number generator and
uses it. If it is not given, the default state is used. This state is used to generate random
indexes for nonzero entries.

672 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.vstack.html#scipy.sparse.vstack
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Returns
Generated matrix.

Return type
cupyx.scipy.sparse.spmatrix

See also:
scipy.sparse.rand()

See also:
cupyx.scipy.sparse.random()

cupyx.scipy.sparse.random

cupyx.scipy.sparse.random(m, n, density=0.01, format='coo', dtype=None, random_state=None,
data_rvs=None)

Generates a random sparse matrix.

This function generates a random sparse matrix. First it selects non-zero elements with given density density
from (m, n) elements. So the number of non-zero elements k is k = m * n * density. Value of each
element is selected with data_rvs function.

Parameters
• m (int) – Number of rows.

• n (int) – Number of cols.

• density (float) – Ratio of non-zero entries.

• format (str) – Matrix format.

• dtype (dtype) – Type of the returned matrix values.

• random_state (cupy.random.RandomState or int) – State of random number gener-
ator. If an integer is given, the method makes a new state for random number generator and
uses it. If it is not given, the default state is used. This state is used to generate random
indexes for nonzero entries.

• data_rvs (callable) – A function to generate data for a random matrix. If it is not given,
random_state.rand is used.

Returns
Generated matrix.

Return type
cupyx.scipy.sparse.spmatrix

See also:
scipy.sparse.random()

Sparse matrix tools:

find(A) Returns the indices and values of the nonzero elements
of a matrix

5.4. Routines (SciPy) 673

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.rand.html#scipy.sparse.rand
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.random.html#scipy.sparse.random

CuPy Documentation, Release 13.0.0

cupyx.scipy.sparse.find

cupyx.scipy.sparse.find(A)
Returns the indices and values of the nonzero elements of a matrix

Parameters
A (cupy.ndarray or cupyx.scipy.sparse.spmatrix) – Matrix whose nonzero elements
are desired.

Returns
It returns (I, J, V). I, J, and V contain respectively the row indices, column indices, and values
of the nonzero matrix entries.

Return type
tuple of cupy.ndarray

See also:
scipy.sparse.find()

Identifying sparse matrices:

issparse(x) Checks if a given matrix is a sparse matrix.
isspmatrix(x) Checks if a given matrix is a sparse matrix.
isspmatrix_csc(x) Checks if a given matrix is of CSC format.
isspmatrix_csr(x) Checks if a given matrix is of CSR format.
isspmatrix_coo(x) Checks if a given matrix is of COO format.
isspmatrix_dia(x) Checks if a given matrix is of DIA format.

cupyx.scipy.sparse.issparse

cupyx.scipy.sparse.issparse(x)
Checks if a given matrix is a sparse matrix.

Returns
Returns if x is cupyx.scipy.sparse.spmatrix that is a base class of all sparse matrix classes.

Return type
bool

cupyx.scipy.sparse.isspmatrix

cupyx.scipy.sparse.isspmatrix(x)
Checks if a given matrix is a sparse matrix.

Returns
Returns if x is cupyx.scipy.sparse.spmatrix that is a base class of all sparse matrix classes.

Return type
bool

674 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.find.html#scipy.sparse.find
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

cupyx.scipy.sparse.isspmatrix_csc

cupyx.scipy.sparse.isspmatrix_csc(x)
Checks if a given matrix is of CSC format.

Returns
Returns if x is cupyx.scipy.sparse.csc_matrix.

Return type
bool

cupyx.scipy.sparse.isspmatrix_csr

cupyx.scipy.sparse.isspmatrix_csr(x)
Checks if a given matrix is of CSR format.

Returns
Returns if x is cupyx.scipy.sparse.csr_matrix.

Return type
bool

cupyx.scipy.sparse.isspmatrix_coo

cupyx.scipy.sparse.isspmatrix_coo(x)
Checks if a given matrix is of COO format.

Returns
Returns if x is cupyx.scipy.sparse.coo_matrix.

Return type
bool

cupyx.scipy.sparse.isspmatrix_dia

cupyx.scipy.sparse.isspmatrix_dia(x)
Checks if a given matrix is of DIA format.

Returns
Returns if x is cupyx.scipy.sparse.dia_matrix.

Return type
bool

5.4. Routines (SciPy) 675

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Submodules

csgraph

linalg

Exceptions

• scipy.sparse.SparseEfficiencyWarning

• scipy.sparse.SparseWarning

5.4.9 Sparse linear algebra (cupyx.scipy.sparse.linalg)

Hint: SciPy API Reference: Sparse linear algebra (scipy.sparse.linalg)

Abstract linear operators

LinearOperator(shape, matvec[, rmatvec, ...]) Common interface for performing matrix vector prod-
ucts

aslinearoperator(A) Return A as a LinearOperator.

cupyx.scipy.sparse.linalg.LinearOperator

class cupyx.scipy.sparse.linalg.LinearOperator(shape, matvec, rmatvec=None, matmat=None,
dtype=None, rmatmat=None)

Common interface for performing matrix vector products

To construct a concrete LinearOperator, either pass appropriate callables to the constructor of this class, or sub-
class it.

Parameters
• shape (tuple) – Matrix dimensions (M, N).

• matvec (callable f(v)) – Returns returns A * v.

• rmatvec (callable f(v)) – Returns A^H * v, where A^H is the conjugate transpose of
A.

• matmat (callable f(V)) – Returns A * V, where V is a dense matrix with dimensions
(N, K).

• dtype (dtype) – Data type of the matrix.

• rmatmat (callable f(V)) – Returns A^H * V, where V is a dense matrix with dimensions
(M, K).

676 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.SparseEfficiencyWarning.html#scipy.sparse.SparseEfficiencyWarning
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.SparseWarning.html#scipy.sparse.SparseWarning
https://docs.scipy.org/doc/scipy/reference/sparse.linalg.html
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

See also:
scipy.sparse.linalg.LinearOperator

Methods

__call__(x)
Call self as a function.

adjoint()

Hermitian adjoint.

dot(x)
Matrix-matrix or matrix-vector multiplication.

matmat(X)
Matrix-matrix multiplication.

matvec(x)
Matrix-vector multiplication.

rmatmat(X)
Adjoint matrix-matrix multiplication.

rmatvec(x)
Adjoint matrix-vector multiplication.

transpose()

Transpose this linear operator.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

5.4. Routines (SciPy) 677

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator

CuPy Documentation, Release 13.0.0

Attributes

H

Hermitian adjoint.

T

Transpose this linear operator.

ndim = 2

cupyx.scipy.sparse.linalg.aslinearoperator

cupyx.scipy.sparse.linalg.aslinearoperator(A)
Return A as a LinearOperator.

Parameters
A (array-like) – The input array to be converted to a LinearOperator object. It may be any of
the following types:

• cupy.ndarray

• sparse matrix (e.g. csr_matrix, coo_matrix, etc.)

• cupyx.scipy.sparse.linalg.LinearOperator

• object with .shape and .matvec attributes

Returns
LinearOperator object

Return type
cupyx.scipy.sparse.linalg.LinearOperator

See also:
scipy.sparse.aslinearoperator`()

Matrix norms

norm(x[, ord, axis]) Norm of a cupy.scipy.spmatrix

cupyx.scipy.sparse.linalg.norm

cupyx.scipy.sparse.linalg.norm(x, ord=None, axis=None)
Norm of a cupy.scipy.spmatrix

This function is able to return one of seven different sparse matrix norms, depending on the value of the ord
parameter.

Parameters
• x (sparse matrix) – Input sparse matrix.

• ord (non-zero int, inf, -inf, 'fro', optional) – Order of the norm (see table
under Notes). inf means numpy’s inf object.

678 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

• axis – (int, 2-tuple of ints, None, optional): If axis is an integer, it specifies the axis of x
along which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold
2-D matrices, and the matrix norms of these matrices are computed. If axis is None then
either a vector norm (when x is 1-D) or a matrix norm (when x is 2-D) is returned.

Returns
0-D or 1-D array or norm(s).

Return type
ndarray

See also:
scipy.sparse.linalg.norm()

Solving linear problems

Direct methods for linear equation systems:

spsolve(A, b) Solves a sparse linear system A x = b
spsolve_triangular(A, b[, lower, ...]) Solves a sparse triangular system A x = b.
factorized(A) Return a function for solving a sparse linear system, with

A pre-factorized.

cupyx.scipy.sparse.linalg.spsolve

cupyx.scipy.sparse.linalg.spsolve(A, b)
Solves a sparse linear system A x = b

Parameters
• A (cupyx.scipy.sparse.spmatrix) – Sparse matrix with dimension (M, M).

• b (cupy.ndarray) – Dense vector or matrix with dimension (M) or (M, N).

Returns
Solution to the system A x = b.

Return type
cupy.ndarray

cupyx.scipy.sparse.linalg.spsolve_triangular

cupyx.scipy.sparse.linalg.spsolve_triangular(A, b, lower=True, overwrite_A=False,
overwrite_b=False, unit_diagonal=False)

Solves a sparse triangular system A x = b.

Parameters
• A (cupyx.scipy.sparse.spmatrix) – Sparse matrix with dimension (M, M).

• b (cupy.ndarray) – Dense vector or matrix with dimension (M) or (M, K).

• lower (bool) – Whether A is a lower or upper trinagular matrix. If True, it is lower triangular,
otherwise, upper triangular.

• overwrite_A (bool) – (not supported)

5.4. Routines (SciPy) 679

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.norm.html#scipy.sparse.linalg.norm
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• overwrite_b (bool) – Allows overwriting data in b.

• unit_diagonal (bool) – If True, diagonal elements of A are assumed to be 1 and will not
be referenced.

Returns
Solution to the system A x = b. The shape is the same as b.

Return type
cupy.ndarray

cupyx.scipy.sparse.linalg.factorized

cupyx.scipy.sparse.linalg.factorized(A)
Return a function for solving a sparse linear system, with A pre-factorized.

Parameters
A (cupyx.scipy.sparse.spmatrix) – Sparse matrix to factorize.

Returns
a function to solve the linear system of equations given in A.

Return type
callable

Note: This function computes LU decomposition of a sparse matrix on the CPU using scipy.sparse.linalg.splu.
Therefore, LU decomposition is not accelerated on the GPU. On the other hand, the computation of solving linear
equations using the method returned by this function is performed on the GPU.

See also:
scipy.sparse.linalg.factorized()

Iterative methods for linear equation systems:

cg(A, b[, x0, tol, maxiter, M, callback, atol]) Uses Conjugate Gradient iteration to solve Ax = b.
gmres(A, b[, x0, tol, restart, maxiter, M, ...]) Uses Generalized Minimal RESidual iteration to solve

Ax = b.
cgs(A, b[, x0, tol, maxiter, M, callback, atol]) Use Conjugate Gradient Squared iteration to solve Ax =

b.
minres(A, b[, x0, shift, tol, maxiter, M, ...]) Uses MINimum RESidual iteration to solve Ax = b.

cupyx.scipy.sparse.linalg.cg

cupyx.scipy.sparse.linalg.cg(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None,
atol=None)

Uses Conjugate Gradient iteration to solve Ax = b.

Parameters
• A (ndarray, spmatrix or LinearOperator) – The real or complex matrix of the linear

system with shape (n, n). A must be a hermitian, positive definitive matrix with type of
cupy.ndarray, cupyx.scipy.sparse.spmatrix or cupyx.scipy.sparse.linalg.
LinearOperator.

680 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.factorized.html#scipy.sparse.linalg.factorized

CuPy Documentation, Release 13.0.0

• b (cupy.ndarray) – Right hand side of the linear system with shape (n,) or (n, 1).

• x0 (cupy.ndarray) – Starting guess for the solution.

• tol (float) – Tolerance for convergence.

• maxiter (int) – Maximum number of iterations.

• M (ndarray, spmatrix or LinearOperator) – Preconditioner for A. The preconditioner
should approximate the inverse of A. M must be cupy.ndarray, cupyx.scipy.sparse.
spmatrix or cupyx.scipy.sparse.linalg.LinearOperator.

• callback (function) – User-specified function to call after each iteration. It is called as
callback(xk), where xk is the current solution vector.

• atol (float) – Tolerance for convergence.

Returns
It returns x (cupy.ndarray) and info (int) where x is the converged solution and info provides
convergence information.

Return type
tuple

See also:
scipy.sparse.linalg.cg()

cupyx.scipy.sparse.linalg.gmres

cupyx.scipy.sparse.linalg.gmres(A, b, x0=None, tol=1e-05, restart=None, maxiter=None, M=None,
callback=None, atol=None, callback_type=None)

Uses Generalized Minimal RESidual iteration to solve Ax = b.

Parameters
• A (ndarray, spmatrix or LinearOperator) – The real or complex matrix of the linear

system with shape (n, n). A must be cupy.ndarray, cupyx.scipy.sparse.spmatrix
or cupyx.scipy.sparse.linalg.LinearOperator.

• b (cupy.ndarray) – Right hand side of the linear system with shape (n,) or (n, 1).

• x0 (cupy.ndarray) – Starting guess for the solution.

• tol (float) – Tolerance for convergence.

• restart (int) – Number of iterations between restarts. Larger values increase iteration
cost, but may be necessary for convergence.

• maxiter (int) – Maximum number of iterations.

• M (ndarray, spmatrix or LinearOperator) – Preconditioner for A. The preconditioner
should approximate the inverse of A. M must be cupy.ndarray, cupyx.scipy.sparse.
spmatrix or cupyx.scipy.sparse.linalg.LinearOperator.

• callback (function) – User-specified function to call on every restart. It is called as
callback(arg), where arg is selected by callback_type.

• callback_type (str) – ‘x’ or ‘pr_norm’. If ‘x’, the current solution vector is used as an
argument of callback function. if ‘pr_norm’, relative (preconditioned) residual norm is used
as an arugment.

• atol (float) – Tolerance for convergence.

5.4. Routines (SciPy) 681

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cg.html#scipy.sparse.linalg.cg
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

Returns
It returns x (cupy.ndarray) and info (int) where x is the converged solution and info provides
convergence information.

Return type
tuple

Reference:
M. Wang, H. Klie, M. Parashar and H. Sudan, “Solving Sparse Linear Systems on NVIDIA Tesla GPUs”,
ICCS 2009 (2009).

See also:
scipy.sparse.linalg.gmres()

cupyx.scipy.sparse.linalg.cgs

cupyx.scipy.sparse.linalg.cgs(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None,
atol=None)

Use Conjugate Gradient Squared iteration to solve Ax = b.

Parameters
• A (ndarray, spmatrix or LinearOperator) – The real or complex matrix of the linear

system with shape (n, n).

• b (cupy.ndarray) – Right hand side of the linear system with shape (n,) or (n, 1).

• x0 (cupy.ndarray) – Starting guess for the solution.

• tol (float) – Tolerance for convergence.

• maxiter (int) – Maximum number of iterations.

• M (ndarray, spmatrix or LinearOperator) – Preconditioner for A. The preconditioner
should approximate the inverse of A. M must be cupy.ndarray, cupyx.scipy.sparse.
spmatrix or cupyx.scipy.sparse.linalg.LinearOperator.

• callback (function) – User-specified function to call after each iteration. It is called as
callback(xk), where xk is the current solution vector.

• atol (float) – Tolerance for convergence.

Returns
It returns x (cupy.ndarray) and info (int) where x is the converged solution and info provides
convergence information.

Return type
tuple

See also:
scipy.sparse.linalg.cgs()

682 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gmres.html#scipy.sparse.linalg.gmres
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cgs.html#scipy.sparse.linalg.cgs

CuPy Documentation, Release 13.0.0

cupyx.scipy.sparse.linalg.minres

cupyx.scipy.sparse.linalg.minres(A, b, x0=None, shift=0.0, tol=1e-05, maxiter=None, M=None,
callback=None, check=False)

Uses MINimum RESidual iteration to solve Ax = b.

Parameters
• A (ndarray, spmatrix or LinearOperator) – The real or complex matrix of the linear

system with shape (n, n).

• b (cupy.ndarray) – Right hand side of the linear system with shape (n,) or (n, 1).

• x0 (cupy.ndarray) – Starting guess for the solution.

• shift (int or float) – If shift != 0 then the method solves (A - shift*I)x = b

• tol (float) – Tolerance for convergence.

• maxiter (int) – Maximum number of iterations.

• M (ndarray, spmatrix or LinearOperator) – Preconditioner for A. The preconditioner
should approximate the inverse of A. M must be cupy.ndarray, cupyx.scipy.sparse.
spmatrix or cupyx.scipy.sparse.linalg.LinearOperator.

• callback (function) – User-specified function to call after each iteration. It is called as
callback(xk), where xk is the current solution vector.

Returns
It returns x (cupy.ndarray) and info (int) where x is the converged solution and info provides
convergence information.

Return type
tuple

See also:
scipy.sparse.linalg.minres()

Iterative methods for least-squares problems:

lsqr(A, b) Solves linear system with QR decomposition.
lsmr(A, b[, x0, damp, atol, btol, conlim, ...]) Iterative solver for least-squares problems.

cupyx.scipy.sparse.linalg.lsqr

cupyx.scipy.sparse.linalg.lsqr(A, b)
Solves linear system with QR decomposition.

Find the solution to a large, sparse, linear system of equations. The function solves Ax = b. Given two-
dimensional matrix A is decomposed into Q * R.

Parameters
• A (cupy.ndarray or cupyx.scipy.sparse.csr_matrix) – The input matrix with di-

mension (N, N)

• b (cupy.ndarray) – Right-hand side vector.

5.4. Routines (SciPy) 683

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.minres.html#scipy.sparse.linalg.minres

CuPy Documentation, Release 13.0.0

Returns
Its length must be ten. It has same type elements as SciPy. Only the first element, the solution
vector x, is available and other elements are expressed as None because the implementation of
cuSOLVER is different from the one of SciPy. You can easily calculate the fourth element by
norm(b - Ax) and the ninth element by norm(x).

Return type
tuple

See also:
scipy.sparse.linalg.lsqr()

cupyx.scipy.sparse.linalg.lsmr

cupyx.scipy.sparse.linalg.lsmr(A, b, x0=None, damp=0.0, atol=1e-06, btol=1e-06, conlim=100000000.0,
maxiter=None)

Iterative solver for least-squares problems.

lsmr solves the system of linear equations Ax = b. If the system is inconsistent, it solves the least-squares
problem min ||b - Ax||_2. A is a rectangular matrix of dimension m-by-n, where all cases are allowed: m =
n, m > n, or m < n. B is a vector of length m. The matrix A may be dense or sparse (usually sparse).

Parameters
• A (ndarray, spmatrix or LinearOperator) – The real or complex matrix of the linear

system. A must be cupy.ndarray, cupyx.scipy.sparse.spmatrix or cupyx.scipy.
sparse.linalg.LinearOperator.

• b (cupy.ndarray) – Right hand side of the linear system with shape (m,) or (m, 1).

• x0 (cupy.ndarray) – Starting guess for the solution. If None zeros are used.

• damp (float) – Damping factor for regularized least-squares. lsmr solves the regularized
least-squares problem

min ||(b) - (A)x||
||(0) (damp*I) ||_2

where damp is a scalar. If damp is None or 0, the system is solved without regularization.

• atol (float) – Stopping tolerances. lsmr continues iterations until a certain backward error
estimate is smaller than some quantity depending on atol and btol.

• btol (float) – Stopping tolerances. lsmr continues iterations until a certain backward error
estimate is smaller than some quantity depending on atol and btol.

• conlim (float) – lsmr terminates if an estimate of cond(A) i.e. condition number of matrix
exceeds conlim. If conlim is None, the default value is 1e+8.

• maxiter (int) – Maximum number of iterations.

Returns
• x (ndarray): Least-square solution returned.

• istop (int): istop gives the reason for stopping:

684 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsqr.html#scipy.sparse.linalg.lsqr
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

0 means x=0 is a solution.

1 means x is an approximate solution to A*x = B,
according to atol and btol.

2 means x approximately solves the least-squares problem
according to atol.

3 means COND(A) seems to be greater than CONLIM.

4 is the same as 1 with atol = btol = eps (machine
precision)

5 is the same as 2 with atol = eps.

6 is the same as 3 with CONLIM = 1/eps.

7 means ITN reached maxiter before the other stopping
conditions were satisfied.

• itn (int): Number of iterations used.

• normr (float): norm(b-Ax)

• normar (float): norm(A^T (b - Ax))

• norma (float): norm(A)

• conda (float): Condition number of A.

• normx (float): norm(x)

Return type
tuple

See also:
scipy.sparse.linalg.lsmr()

References

D. C.-L. Fong and M. A. Saunders, “LSMR: An iterative algorithm for sparse least-squares problems”, SIAM J.
Sci. Comput., vol. 33, pp. 2950-2971, 2011.

Matrix factorizations

Eigenvalue problems:

eigsh (a[, k, which, v0, ncv, maxiter, tol, ...]) Find k eigenvalues and eigenvectors of the real symmet-
ric square matrix or complex Hermitian matrix A.

lobpcg(A, X[, B, M, Y, tol, maxiter, ...]) Locally Optimal Block Preconditioned Conjugate Gra-
dient Method (LOBPCG)

5.4. Routines (SciPy) 685

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsmr.html#scipy.sparse.linalg.lsmr

CuPy Documentation, Release 13.0.0

cupyx.scipy.sparse.linalg.eigsh

cupyx.scipy.sparse.linalg.eigsh(a, k=6, *, which='LM', v0=None, ncv=None, maxiter=None, tol=0,
return_eigenvectors=True)

Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex Hermitian matrix A.

Solves Ax = wx, the standard eigenvalue problem for w eigenvalues with corresponding eigenvectors x.

Parameters
• a (ndarray, spmatrix or LinearOperator) – A symmetric square matrix with di-

mension (n, n). a must cupy.ndarray, cupyx.scipy.sparse.spmatrix or cupyx.
scipy.sparse.linalg.LinearOperator.

• k (int) – The number of eigenvalues and eigenvectors to compute. Must be 1 <= k < n.

• which (str) – ‘LM’ or ‘LA’. ‘LM’: finds k largest (in magnitude) eigenvalues. ‘LA’: finds
k largest (algebraic) eigenvalues. ‘SA’: finds k smallest (algebraic) eigenvalues.

• v0 (ndarray) – Starting vector for iteration. If None, a random unit vector is used.

• ncv (int) – The number of Lanczos vectors generated. Must be k + 1 < ncv < n. If
None, default value is used.

• maxiter (int) – Maximum number of Lanczos update iterations. If None, default value is
used.

• tol (float) – Tolerance for residuals ||Ax - wx||. If 0, machine precision is used.

• return_eigenvectors (bool) – If True, returns eigenvectors in addition to eigenvalues.

Returns
If return_eigenvectors is True, it returns w and x where w is eigenvalues and x is eigen-
vectors. Otherwise, it returns only w.

Return type
tuple

See also:
scipy.sparse.linalg.eigsh()

Note: This function uses the thick-restart Lanczos methods (https://sdm.lbl.gov/~kewu/ps/trlan.html).

cupyx.scipy.sparse.linalg.lobpcg

cupyx.scipy.sparse.linalg.lobpcg(A, X, B=None, M=None, Y=None, tol=None, maxiter=None,
largest=True, verbosityLevel=0, retLambdaHistory=False,
retResidualNormsHistory=False)

Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)

LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems.

Parameters
• A (array-like) – The symmetric linear operator of the problem, usually a sparse ma-

trix. Can be of the following types - cupy.ndarray - cupyx.scipy.sparse.csr_matrix -
cupy.scipy.sparse.linalg.LinearOperator

686 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://sdm.lbl.gov/~kewu/ps/trlan.html

CuPy Documentation, Release 13.0.0

• X (cupy.ndarray) – Initial approximation to the k eigenvectors (non-sparse). If A has
shape=(n,n) then X should have shape shape=(n,k).

• B (array-like) – The right hand side operator in a generalized eigenproblem. By default,
B = Identity. Can be of following types: - cupy.ndarray - cupyx.scipy.sparse.csr_matrix
- cupy.scipy.sparse.linalg.LinearOperator

• M (array-like) – Preconditioner to A; by default M = Identity. M should ap-
proximate the inverse of A. Can be of the following types: - cupy.ndarray - cu-
pyx.scipy.sparse.csr_matrix - cupy.scipy.sparse.linalg.LinearOperator

• Y (cupy.ndarray) – n-by-sizeY matrix of constraints (non-sparse), sizeY < n The iterations
will be performed in the B-orthogonal complement of the column-space of Y. Y must be full
rank.

• tol (float) – Solver tolerance (stopping criterion). The default is tol=n*sqrt(eps).

• maxiter (int) – Maximum number of iterations. The default is maxiter = 20.

• largest (bool) – When True, solve for the largest eigenvalues, otherwise the smallest.

• verbosityLevel (int) – Controls solver output. The default is verbosityLevel=0.

• retLambdaHistory (bool) – Whether to return eigenvalue history. Default is False.

• retResidualNormsHistory (bool) – Whether to return history of residual norms. Default
is False.

Returns
• w (cupy.ndarray): Array of k eigenvalues

• v (cupy.ndarray) An array of k eigenvectors. v has the same shape as X.

• lambdas (list of cupy.ndarray): The eigenvalue history, if retLambdaHistory is True.

• rnorms (list of cupy.ndarray): The history of residual norms, if retResidualNormsHistory is
True.

Return type
tuple

See also:
scipy.sparse.linalg.lobpcg()

Note: If both retLambdaHistory and retResidualNormsHistory are True the return tuple has the following
format (lambda, V, lambda history, residual norms history).

Singular values problems:

svds(a[, k, ncv, tol, which, maxiter, ...]) Finds the largest k singular values/vectors for a sparse
matrix.

5.4. Routines (SciPy) 687

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lobpcg.html#scipy.sparse.linalg.lobpcg

CuPy Documentation, Release 13.0.0

cupyx.scipy.sparse.linalg.svds

cupyx.scipy.sparse.linalg.svds(a, k=6, *, ncv=None, tol=0, which='LM', maxiter=None,
return_singular_vectors=True)

Finds the largest k singular values/vectors for a sparse matrix.

Parameters
• a (ndarray, spmatrix or LinearOperator) – A real or complex array with dimension
(m, n). a must cupy.ndarray, cupyx.scipy.sparse.spmatrix or cupyx.scipy.
sparse.linalg.LinearOperator.

• k (int) – The number of singular values/vectors to compute. Must be 1 <= k < min(m,
n).

• ncv (int) – The number of Lanczos vectors generated. Must be k + 1 < ncv < min(m,
n). If None, default value is used.

• tol (float) – Tolerance for singular values. If 0, machine precision is used.

• which (str) – Only ‘LM’ is supported. ‘LM’: finds k largest singular values.

• maxiter (int) – Maximum number of Lanczos update iterations. If None, default value is
used.

• return_singular_vectors (bool) – If True, returns singular vectors in addition to sin-
gular values.

Returns
If return_singular_vectors is True, it returns u, s and vt where u is left singular vectors,
s is singular values and vt is right singular vectors. Otherwise, it returns only s.

Return type
tuple

See also:
scipy.sparse.linalg.svds()

Note: This is a naive implementation using cupyx.scipy.sparse.linalg.eigsh as an eigensolver on a.H @ a or a
@ a.H.

Complete or incomplete LU factorizations:

splu(A[, permc_spec, diag_pivot_thresh, ...]) Computes the LU decomposition of a sparse square ma-
trix.

spilu(A[, drop_tol, fill_factor, drop_rule, ...]) Computes the incomplete LU decomposition of a sparse
square matrix.

SuperLU(obj)

688 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html#scipy.sparse.linalg.svds

CuPy Documentation, Release 13.0.0

cupyx.scipy.sparse.linalg.splu

cupyx.scipy.sparse.linalg.splu(A, permc_spec=None, diag_pivot_thresh=None, relax=None,
panel_size=None, options={})

Computes the LU decomposition of a sparse square matrix.

Parameters
• A (cupyx.scipy.sparse.spmatrix) – Sparse matrix to factorize.

• permc_spec (str) – (For further augments, see scipy.sparse.linalg.splu())

• diag_pivot_thresh (float) –

• relax (int) –

• panel_size (int) –

• options (dict) –

Returns
Object which has a solve method.

Return type
cupyx.scipy.sparse.linalg.SuperLU

Note: This function LU-decomposes a sparse matrix on the CPU using scipy.sparse.linalg.splu. Therefore, LU
decomposition is not accelerated on the GPU. On the other hand, the computation of solving linear equations
using the solve method, which this function returns, is performed on the GPU.

See also:
scipy.sparse.linalg.splu()

cupyx.scipy.sparse.linalg.spilu

cupyx.scipy.sparse.linalg.spilu(A, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None,
diag_pivot_thresh=None, relax=None, panel_size=None, options={})

Computes the incomplete LU decomposition of a sparse square matrix.

Parameters
• A (cupyx.scipy.sparse.spmatrix) – Sparse matrix to factorize.

• drop_tol (float) – (For further augments, see scipy.sparse.linalg.spilu())

• fill_factor (float) –

• drop_rule (str) –

• permc_spec (str) –

• diag_pivot_thresh (float) –

• relax (int) –

• panel_size (int) –

• options (dict) –

5.4. Routines (SciPy) 689

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.splu.html#scipy.sparse.linalg.splu
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.splu.html#scipy.sparse.linalg.splu
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spilu.html#scipy.sparse.linalg.spilu
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

CuPy Documentation, Release 13.0.0

Returns
Object which has a solve method.

Return type
cupyx.scipy.sparse.linalg.SuperLU

Note: This function computes incomplete LU decomposition of a sparse matrix on the CPU using
scipy.sparse.linalg.spilu (unless you set fill_factor to 1). Therefore, incomplete LU decomposition is not
accelerated on the GPU. On the other hand, the computation of solving linear equations using the solve method,
which this function returns, is performed on the GPU.

If you set fill_factor to 1, this function computes incomplete LU decomposition on the GPU, but without
fill-in or pivoting.

See also:
scipy.sparse.linalg.spilu()

cupyx.scipy.sparse.linalg.SuperLU

class cupyx.scipy.sparse.linalg.SuperLU(obj)

Methods

solve(rhs, trans='N')
Solves linear system of equations with one or several right-hand sides.

Parameters
• rhs (cupy.ndarray) – Right-hand side(s) of equation with dimension (M) or (M, K).

• trans (str) – ‘N’, ‘T’ or ‘H’. ‘N’: Solves A * x = rhs. ‘T’: Solves A.T * x = rhs.
‘H’: Solves A.conj().T * x = rhs.

Returns
Solution vector(s)

Return type
cupy.ndarray

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

690 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spilu.html#scipy.sparse.linalg.spilu
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

5.4.10 Compressed sparse graph routines (cupyx.scipy.sparse.csgraph)

Note: The csgraph module uses pylibcugraph as a backend. You need to install pylibcugraph package
<https://anaconda.org/rapidsai/pylibcugraph> from rapidsai Conda channel to use features listed on this page.

Note: Currently, the csgraph module is not supported on AMD ROCm platforms.

Hint: SciPy API Reference: Compressed sparse graph routines (scipy.sparse.csgraph)

Contents

connected_components(csgraph[, directed, ...]) Analyzes the connected components of a sparse graph

cupyx.scipy.sparse.csgraph.connected_components

cupyx.scipy.sparse.csgraph.connected_components(csgraph, directed=True, connection='weak',
return_labels=True)

Analyzes the connected components of a sparse graph

Parameters
• csgraph (cupy.ndarray of cupyx.scipy.sparse.csr_matrix) – The adjacency

matrix representing connectivity among nodes.

• directed (bool) – If True, it operates on a directed graph. If False, it operates on an
undirected graph.

• connection (str) – 'weak' or 'strong'. For directed graphs, the type of connection to
use. Nodes i and j are “strongly” connected only when a path exists both from i to j and from
j to i. If directed is False, this argument is ignored.

• return_labels (bool) – If True, it returns the labels for each of the connected compo-
nents.

Returns
If return_labels == True, returns a tuple (n, labels), where n is the number of connected
components and labels is labels of each connected components. Otherwise, returns n.

Return type
tuple of int and cupy.ndarray, or int

See also:
scipy.sparse.csgraph.connected_components()

5.4. Routines (SciPy) 691

https://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html#scipy.sparse.csgraph.connected_components

CuPy Documentation, Release 13.0.0

5.4.11 Spatial algorithms and data structures (cupyx.scipy.spatial)

Hint: SciPy API Reference: Spatial (scipy.spatial)

Note: The spatial module uses pylibraft as a backend. You need to install pylibraft package
<https://anaconda.org/rapidsai/pylibraft> from rapidsai Conda channel to use features listed on this page.

Note: Currently, the spatial module is not supported on AMD ROCm platforms.

Functions

distance_matrix(x, y[, p]) Compute the distance matrix.

cupyx.scipy.spatial.distance_matrix

cupyx.scipy.spatial.distance_matrix(x, y, p=2.0)
Compute the distance matrix.

Returns the matrix of all pair-wise distances.

Parameters
• x (array_like) – Matrix of M vectors in K dimensions.

• y (array_like) – Matrix of N vectors in K dimensions.

• p (float) – Which Minkowski p-norm to use (1 <= p <= infinity). Default=2.0

Returns
Matrix containing the distance from every

vector in x to every vector in y, (size M, N).

Return type
result (cupy.ndarray)

5.4.12 Distance computations (cupyx.scipy.spatial.distance)

Note: The distance module uses pylibraft as a backend. You need to install pylibraft package
<https://anaconda.org/rapidsai/pylibraft> from rapidsai Conda channel to use features listed on this page.

Note: Currently, the distance module is not supported on AMD ROCm platforms.

Hint: SciPy API Reference: Spatial distance routines (scipy.spatial.distance)

692 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/spatial.html
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html

CuPy Documentation, Release 13.0.0

Distance matrix computations

Distance matrix computation from a collection of raw observation vectors stored in a rectangular array.

pdist(X[, metric, out]) Compute distance between observations in n-
dimensional space.

cdist(XA, XB[, metric, out]) Compute distance between each pair of the two collec-
tions of inputs.

distance_matrix(x, y[, p]) Compute the distance matrix.

cupyx.scipy.spatial.distance.pdist

cupyx.scipy.spatial.distance.pdist(X, metric='euclidean', *, out=None, **kwargs)
Compute distance between observations in n-dimensional space.

Parameters
• X (array_like) – An 𝑚 by 𝑛 array of 𝑚 original observations in an 𝑛-dimensional space.

Inputs are converted to float type.

• metric (str, optional) – The distance metric to use. The distance function can be ‘can-
berra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘euclidean’, ‘hamming’, ‘hellinger’,
‘jensenshannon’, ‘kl_divergence’, ‘matching’, ‘minkowski’, ‘russellrao’, ‘sqeuclidean’.

• out (cupy.ndarray, optional) – The output array. If not None, the distance matrix Y
is stored in this array.

• **kwargs (dict, optional) – Extra arguments to metric: refer to each metric documen-
tation for a list of all possible arguments. Some possible arguments: p (float): The p-norm
to apply for Minkowski, weighted and unweighted. Default: 2.0

Returns
A 𝑚 by 𝑚 distance matrix is returned. For each 𝑖 and 𝑗, the metric dist(u=X[i], v=X[j]) is
computed and stored in the 𝑖𝑗 th entry.

Return type
Y (cupy.ndarray)

cupyx.scipy.spatial.distance.cdist

cupyx.scipy.spatial.distance.cdist(XA, XB, metric='euclidean', out=None, **kwargs)
Compute distance between each pair of the two collections of inputs.

Parameters
• XA (array_like) – An 𝑚𝐴 by 𝑛 array of 𝑚𝐴 original observations in an 𝑛-dimensional

space. Inputs are converted to float type.

• XB (array_like) – An 𝑚𝐵 by 𝑛 array of 𝑚𝐵 original observations in an 𝑛-dimensional
space. Inputs are converted to float type.

• metric (str, optional) – The distance metric to use. The distance function can be ‘can-
berra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘euclidean’, ‘hamming’, ‘hellinger’,
‘jensenshannon’, ‘kl_divergence’, ‘matching’, ‘minkowski’, ‘russellrao’, ‘sqeuclidean’.

• out (cupy.ndarray, optional) – The output array. If not None, the distance matrix Y
is stored in this array.

5.4. Routines (SciPy) 693

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• **kwargs (dict, optional) – Extra arguments to metric: refer to each metric documen-
tation for a list of all possible arguments. Some possible arguments: p (float): The p-norm
to apply for Minkowski, weighted and unweighted. Default: 2.0

Returns
A 𝑚𝐴 by 𝑚𝐵 distance matrix is

returned. For each 𝑖 and 𝑗, the metric dist(u=XA[i], v=XB[j]) is computed and stored
in the 𝑖𝑗 th entry.

Return type
Y (cupy.ndarray)

cupyx.scipy.spatial.distance.distance_matrix

cupyx.scipy.spatial.distance.distance_matrix(x, y, p=2.0)
Compute the distance matrix.

Returns the matrix of all pair-wise distances.

Parameters
• x (array_like) – Matrix of M vectors in K dimensions.

• y (array_like) – Matrix of N vectors in K dimensions.

• p (float) – Which Minkowski p-norm to use (1 <= p <= infinity). Default=2.0

Returns
Matrix containing the distance from every

vector in x to every vector in y, (size M, N).

Return type
result (cupy.ndarray)

694 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

Distance functions

Distance functions between two numeric vectors u and v. Computing distances over a large collection of vectors is
inefficient for these functions. Use cdist for this purpose.

minkowski(u, v, p) Compute the Minkowski distance between two 1-D ar-
rays.

canberra(u, v) Compute the Canberra distance between two 1-D arrays.
chebyshev(u, v) Compute the Chebyshev distance between two 1-D ar-

rays.
cityblock(u, v) Compute the City Block (Manhattan) distance between

two 1-D arrays.
correlation(u, v) Compute the correlation distance between two 1-D ar-

rays.
cosine(u, v) Compute the Cosine distance between two 1-D arrays.
hamming(u, v) Compute the Hamming distance between two 1-D ar-

rays.
euclidean(u, v) Compute the Euclidean distance between two 1-D ar-

rays.
jensenshannon(u, v) Compute the Jensen-Shannon distance between two 1-D

arrays.
russellrao(u, v) Compute the Russell-Rao distance between two 1-D ar-

rays.
sqeuclidean(u, v) Compute the squared Euclidean distance between two 1-

D arrays.
hellinger(u, v) Compute the Hellinger distance between two 1-D arrays.
kl_divergence(u, v) Compute the Kullback-Leibler divergence between two

1-D arrays.

cupyx.scipy.spatial.distance.minkowski

cupyx.scipy.spatial.distance.minkowski(u, v, p)
Compute the Minkowski distance between two 1-D arrays.

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

• p (float) – The order of the norm of the difference ‖𝑢− 𝑣‖𝑝. Note that for 0 < 𝑝 < 1,
the triangle inequality only holds with an additional multiplicative factor, i.e. it is only a
quasi-metric.

Returns
The Minkowski distance between vectors u and v.

Return type
minkowski (double)

5.4. Routines (SciPy) 695

https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

cupyx.scipy.spatial.distance.canberra

cupyx.scipy.spatial.distance.canberra(u, v)
Compute the Canberra distance between two 1-D arrays.

The Canberra distance is defined as

𝑑(𝑢, 𝑣) =
∑︁
𝑖

|𝑢𝑖 − 𝑣𝑖|
|𝑢𝑖|+ |𝑣𝑖|

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

Returns
The Canberra distance between vectors u and v.

Return type
canberra (double)

cupyx.scipy.spatial.distance.chebyshev

cupyx.scipy.spatial.distance.chebyshev(u, v)
Compute the Chebyshev distance between two 1-D arrays.

The Chebyshev distance is defined as

𝑑(𝑢, 𝑣) = max
𝑖

|𝑢𝑖 − 𝑣𝑖|

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

Returns
The Chebyshev distance between vectors u and v.

Return type
chebyshev (double)

cupyx.scipy.spatial.distance.cityblock

cupyx.scipy.spatial.distance.cityblock(u, v)
Compute the City Block (Manhattan) distance between two 1-D arrays.

The City Block distance is defined as

𝑑(𝑢, 𝑣) =
∑︁
𝑖

|𝑢𝑖 − 𝑣𝑖|

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

696 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Returns
The City Block distance between vectors u and v.

Return type
cityblock (double)

cupyx.scipy.spatial.distance.correlation

cupyx.scipy.spatial.distance.correlation(u, v)
Compute the correlation distance between two 1-D arrays.

The correlation distance is defined as

𝑑(𝑢, 𝑣) = 1− (𝑢− 𝑢̄) · (𝑣 − 𝑣)

‖(𝑢− 𝑢̄)‖2‖(𝑣 − 𝑣)‖2

where 𝑢̄ is the mean of the elements of 𝑢 and 𝑥 · 𝑦 is the dot product.

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

Returns
The correlation distance between vectors u and v.

Return type
correlation (double)

cupyx.scipy.spatial.distance.cosine

cupyx.scipy.spatial.distance.cosine(u, v)
Compute the Cosine distance between two 1-D arrays.

The Cosine distance is defined as

𝑑(𝑢, 𝑣) = 1− 𝑢 · 𝑣
‖𝑢‖2‖𝑣‖2

where 𝑥 · 𝑦 is the dot product.

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

Returns
The Cosine distance between vectors u and v.

Return type
cosine (double)

5.4. Routines (SciPy) 697

CuPy Documentation, Release 13.0.0

cupyx.scipy.spatial.distance.hamming

cupyx.scipy.spatial.distance.hamming(u, v)
Compute the Hamming distance between two 1-D arrays.

The Hamming distance is defined as the proportion of elements in both u and v that are not in the exact same
position:

𝑑(𝑢, 𝑣) =
1

𝑛

𝑛∑︁
𝑘=0

𝑢𝑖 ̸= 𝑣𝑖

where 𝑥 ̸= 𝑦 is one if 𝑥 is different from 𝑦 and zero otherwise.

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

Returns
The Hamming distance between vectors u and v.

Return type
hamming (double)

cupyx.scipy.spatial.distance.euclidean

cupyx.scipy.spatial.distance.euclidean(u, v)
Compute the Euclidean distance between two 1-D arrays.

The Euclidean distance is defined as

𝑑(𝑢, 𝑣) =

(︃∑︁
𝑖

(𝑢𝑖 − 𝑣𝑖)
2

)︃12

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

Returns
The Euclidean distance between vectors u and v.

Return type
euclidean (double)

cupyx.scipy.spatial.distance.jensenshannon

cupyx.scipy.spatial.distance.jensenshannon(u, v)
Compute the Jensen-Shannon distance between two 1-D arrays.

The Jensen-Shannon distance is defined as

𝑑(𝑢, 𝑣) =

√︂
𝐾𝐿(𝑢‖𝑚) +𝐾𝐿(𝑣‖𝑚)

2

where 𝐾𝐿 is the Kullback-Leibler divergence and 𝑚 is the pointwise mean of u and v.

698 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

Returns
The Jensen-Shannon distance between vectors u and v.

Return type
jensenshannon (double)

cupyx.scipy.spatial.distance.russellrao

cupyx.scipy.spatial.distance.russellrao(u, v)
Compute the Russell-Rao distance between two 1-D arrays.

The Russell-Rao distance is defined as the proportion of elements in both u and v that are in the exact same
position:

𝑑(𝑢, 𝑣) =
1

𝑛

𝑛∑︁
𝑘=0

𝑢𝑖 = 𝑣𝑖

where 𝑥 = 𝑦 is one if 𝑥 is different from 𝑦 and zero otherwise.

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

Returns
The Hamming distance between vectors u and v.

Return type
hamming (double)

cupyx.scipy.spatial.distance.sqeuclidean

cupyx.scipy.spatial.distance.sqeuclidean(u, v)
Compute the squared Euclidean distance between two 1-D arrays.

The squared Euclidean distance is defined as

𝑑(𝑢, 𝑣) =
∑︁
𝑖

(𝑢𝑖 − 𝑣𝑖)
2

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

Returns
The squared Euclidean distance between vectors u and v.

Return type
sqeuclidean (double)

5.4. Routines (SciPy) 699

CuPy Documentation, Release 13.0.0

cupyx.scipy.spatial.distance.hellinger

cupyx.scipy.spatial.distance.hellinger(u, v)
Compute the Hellinger distance between two 1-D arrays.

The Hellinger distance is defined as

𝑑(𝑢, 𝑣) =
1√
2

√︃∑︁
𝑖

(
√
𝑢𝑖 −

√
𝑣𝑖)2

Parameters
• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

Returns
The Hellinger distance between vectors u and v.

Return type
hellinger (double)

cupyx.scipy.spatial.distance.kl_divergence

cupyx.scipy.spatial.distance.kl_divergence(u, v)
Compute the Kullback-Leibler divergence between two 1-D arrays.

The Kullback-Leibler divergence is defined as

𝐾𝐿(𝑈‖𝑉) =
∑︁
𝑖

𝑈𝑖 log

(︂
𝑈𝑖

𝑉𝑖

)︂
Parameters

• u (array_like) – Input array of size (N,)

• v (array_like) – Input array of size (N,)

Returns
The Kullback-Leibler divergence between vectors u and v.

Return type
kl_divergence (double)

5.4.13 Special functions (cupyx.scipy.special)

Hint: SciPy API Reference: Special functions (scipy.special)

700 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/special.html

CuPy Documentation, Release 13.0.0

Bessel functions

j0 Bessel function of the first kind of order 0.
j1 Bessel function of the first kind of order 1.
k0 Modified Bessel function of the second kind of order 0.
k0e Exponentially scaled modified Bessel function K of or-

der 0
k1 Modified Bessel function of the second kind of order 1.
k1e Exponentially scaled modified Bessel function K of or-

der 1
y0 Bessel function of the second kind of order 0.
y1 Bessel function of the second kind of order 1.
yn Bessel function of the second kind of order n.
i0 Modified Bessel function of order 0.
i0e Exponentially scaled modified Bessel function of order

0.
i1 Modified Bessel function of order 1.
i1e Exponentially scaled modified Bessel function of order

1.
spherical_yn(n, z[, derivative]) Spherical Bessel function of the second kind or its

derivative.

cupyx.scipy.special.j0

cupyx.scipy.special.j0()

Bessel function of the first kind of order 0.

See also:
scipy.special.j0()

cupyx.scipy.special.j1

cupyx.scipy.special.j1()

Bessel function of the first kind of order 1.

See also:
scipy.special.j1()

cupyx.scipy.special.k0

cupyx.scipy.special.k0()

Modified Bessel function of the second kind of order 0.

Parameters
x (cupy.ndarray) – argument (float)

Returns
Value of the modified Bessel function K of order 0 at x.

5.4. Routines (SciPy) 701

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
scipy.special.k0()

cupyx.scipy.special.k0e

cupyx.scipy.special.k0e()

Exponentially scaled modified Bessel function K of order 0

Parameters
x (cupy.ndarray) – argument (float)

Returns
Value at x.

Return type
cupy.ndarray

See also:
scipy.special.k0e()

cupyx.scipy.special.k1

cupyx.scipy.special.k1()

Modified Bessel function of the second kind of order 1.

Parameters
x (cupy.ndarray) – argument (float)

Returns
Value of the modified Bessel function K of order 1 at x.

Return type
cupy.ndarray

See also:
scipy.special.k1()

cupyx.scipy.special.k1e

cupyx.scipy.special.k1e()

Exponentially scaled modified Bessel function K of order 1

Parameters
x (cupy.ndarray) – argument (float)

Returns
Value at x.

Return type
cupy.ndarray

702 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

See also:
scipy.special.k1e()

cupyx.scipy.special.y0

cupyx.scipy.special.y0()

Bessel function of the second kind of order 0.

See also:
scipy.special.y0()

cupyx.scipy.special.y1

cupyx.scipy.special.y1()

Bessel function of the second kind of order 1.

See also:
scipy.special.y1()

cupyx.scipy.special.yn

cupyx.scipy.special.yn()

Bessel function of the second kind of order n.

Parameters
• n (cupy.ndarray) – order (integer)

• x (cupy.ndarray) – argument (float)

Returns
The result.

Return type
cupy.ndarray

Notes

Unlike SciPy, no warning will be raised on unsafe casting of order to 32-bit integer.

See also:
scipy.special.yn()

5.4. Routines (SciPy) 703

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.i0

cupyx.scipy.special.i0()

Modified Bessel function of order 0.

See also:
scipy.special.i0()

cupyx.scipy.special.i0e

cupyx.scipy.special.i0e()

Exponentially scaled modified Bessel function of order 0.

See also:
scipy.special.i0e()

cupyx.scipy.special.i1

cupyx.scipy.special.i1()

Modified Bessel function of order 1.

See also:
scipy.special.i1()

cupyx.scipy.special.i1e

cupyx.scipy.special.i1e()

Exponentially scaled modified Bessel function of order 1.

See also:
scipy.special.i1e()

cupyx.scipy.special.spherical_yn

cupyx.scipy.special.spherical_yn(n, z, derivative=False)
Spherical Bessel function of the second kind or its derivative.

Parameters
• n (cupy.ndarray) – Order of the Bessel function.

• z (cupy.ndarray) – Argument of the Bessel function. Real-valued input.

• derivative (bool, optional) – If True, the value of the derivative (rather than the func-
tion itself) is returned.

Returns
yn

Return type
cupy.ndarray

704 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

See also:
scipy.special.spherical_yn()

Raw statistical functions

See also:
cupyx.scipy.stats

bdtr Binomial distribution cumulative distribution function.
bdtrc Binomial distribution survival function.
bdtri Inverse function to bdtr with respect to p.
btdtr Cumulative distribution function of the beta distribution.
btdtri The p-th quantile of the beta distribution.
fdtr F cumulative distribution function.
fdtrc F survival function.
fdtri The p-th quantile of the F-distribution.
gdtr Gamma distribution cumulative distribution function.
gdtrc Gamma distribution survival function.
nbdtr Negative binomial distribution cumulative distribution

function.
nbdtrc Negative binomial distribution survival function.
nbdtri Inverse function to nbdtr with respect to p.
pdtr Poisson cumulative distribution function.
pdtrc Binomial distribution survival function.
pdtri Inverse function to pdtr with respect to m.
chdtr Chi-square cumulative distribution function.
chdtrc Chi square survival function.
chdtri Inverse to chdtrc with respect to x.
ndtr Cumulative distribution function of normal distribution.
log_ndtr Logarithm of Gaussian cumulative distribution function.
ndtri Inverse of the cumulative distribution function of the

standard
logit Logit function.
expit Logistic sigmoid function (expit).
log_expit Logarithm of the logistic sigmoid function.
boxcox Compute the Box-Cox transformation.
boxcox1p Compute the Box-Cox transformation op 1 + x.
inv_boxcox Compute the Box-Cox transformation.
inv_boxcox1p Compute the Box-Cox transformation op 1 + x.

cupyx.scipy.special.bdtr

cupyx.scipy.special.bdtr()

Binomial distribution cumulative distribution function.

Parameters
• k (cupy.ndarray) – Number of successes (float), rounded down to the nearest integer.

• n (cupy.ndarray) – Number of events (int).

• p (cupy.ndarray) – Probability of success in a single event (float).

5.4. Routines (SciPy) 705

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_yn.html#scipy.special.spherical_yn

CuPy Documentation, Release 13.0.0

Returns
y – Probability of floor(k) or fewer successes in n independent events with success probabilities
of p.

Return type
cupy.ndarray

See also:
scipy.special.bdtr()

cupyx.scipy.special.bdtrc

cupyx.scipy.special.bdtrc()

Binomial distribution survival function.

Returns the complemented binomial distribution function (the integral of the density from x to infinity).

Parameters
• k (cupy.ndarray) – Number of successes (float), rounded down to the nearest integer.

• n (cupy.ndarray) – Number of events (int).

• p (cupy.ndarray) – Probability of success in a single event (float).

Returns
y – Probability of floor(k) + 1 or more successes in n independent events with success probabil-
ities of p.

Return type
cupy.ndarray

See also:
scipy.special.bdtrc()

cupyx.scipy.special.bdtri

cupyx.scipy.special.bdtri()

Inverse function to bdtr with respect to p.

Parameters
• k (cupy.ndarray) – Number of successes (float), rounded down to the nearest integer.

• n (cupy.ndarray) – Number of events (int).

• y (cupy.ndarray) – Cumulative probability (probability of k or fewer successes in n events).

Returns
p – The event probability such that bdtr(floor(k), n, p) = y.

Return type
cupy.ndarray

See also:
scipy.special.bdtri()

706 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.btdtr

cupyx.scipy.special.btdtr()

Cumulative distribution function of the beta distribution.

Parameters
• a (cupy.ndarray) – Shape parameter (a > 0).

• b (cupy.ndarray) – Shape parameter (b > 0).

• x (cupy.ndarray) – Upper limit of integration, in [0, 1].

Returns
I – Cumulative distribution function of the beta distribution with parameters a and b at x.

Return type
cupy.ndarray

See also:
scipy.special.btdtr()

cupyx.scipy.special.btdtri

cupyx.scipy.special.btdtri()

The p-th quantile of the beta distribution.

This function is the inverse of the beta cumulative distribution function, btdtr, returning the value of x for which
btdtr(a, b, x) = p.

Parameters
• a (cupy.ndarray) – Shape parameter (a > 0).

• b (cupy.ndarray) – Shape parameter (b > 0).

• p (cupy.ndarray) – Cumulative probability, in [0, 1].

Returns
x – The quantile corresponding to p.

Return type
cupy.ndarray

See also:
scipy.special.btdtri()

cupyx.scipy.special.fdtr

cupyx.scipy.special.fdtr()

F cumulative distribution function.

Parameters
• dfn (cupy.ndarray) – First parameter (positive float).

• dfd (cupy.ndarray) – Second parameter (positive float).

• x (cupy.ndarray) – Argument (nonnegative float).

5.4. Routines (SciPy) 707

CuPy Documentation, Release 13.0.0

Returns
• y (cupy.ndarray) – The CDF of the F-distribution with parameters dfn and dfd at x.

• See also:
scipy.special.fdtr()

cupyx.scipy.special.fdtrc

cupyx.scipy.special.fdtrc()

F survival function.

Returns the complemented F-distribution function (the integral of the density from x to infinity).

Parameters
• dfn (cupy.ndarray) – First parameter (positive float).

• dfd (cupy.ndarray) – Second parameter (positive float).

• x (cupy.ndarray) – Argument (nonnegative float).

Returns
• y (cupy.ndarray) – The complemented F-distribution function with parameters dfn and dfd

at x.

• See also:
scipy.special.fdtrc()

cupyx.scipy.special.fdtri

cupyx.scipy.special.fdtri()

The p-th quantile of the F-distribution.

This function is the inverse of the F-distribution CDF, fdtr, returning the x such that fdtr(dfn, dfd, x) = p.

Parameters
• dfn (cupy.ndarray) – First parameter (positive float).

• dfd (cupy.ndarray) – Second parameter (positive float).

• p (cupy.ndarray) – Cumulative probability, in [0, 1].

Returns
• y (cupy.ndarray) – The quantile corresponding to p.

• See also:
scipy.special.fdtri()

708 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.gdtr

cupyx.scipy.special.gdtr()

Gamma distribution cumulative distribution function.

Parameters
• a (cupy.ndarray) – The rate parameter of the gamma distribution, sometimes denoted beta

(float). It is also the reciprocal of the scale parameter theta.

• b (cupy.ndarray) – The shape parameter of the gamma distribution, sometimes denoted
alpha (float).

• x (cupy.ndarray) – The quantile (upper limit of integration; float).

Returns
F – The CDF of the gamma distribution with parameters a and b evaluated at x.

Return type
cupy.ndarray

See also:
scipy.special.gdtr()

cupyx.scipy.special.gdtrc

cupyx.scipy.special.gdtrc()

Gamma distribution survival function.

Parameters
• a (cupy.ndarray) – The rate parameter of the gamma distribution, sometimes denoted beta

(float). It is also the reciprocal of the scale parameter theta.

• b (cupy.ndarray) – The shape parameter of the gamma distribution, sometimes denoted
alpha (float).

• x (cupy.ndarray) – The quantile (lower limit of integration; float).

Returns
I – The survival function of the gamma distribution with parameters a and b at x.

Return type
cupy.ndarray

See also:
scipy.special.gdtrc()

5.4. Routines (SciPy) 709

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.nbdtr

cupyx.scipy.special.nbdtr()

Negative binomial distribution cumulative distribution function.

Parameters
• k (cupy.ndarray) – The maximum number of allowed failures (nonnegative int).

• n (cupy.ndarray) – The target number of successes (positive int).

• p (cupy.ndarray) – Probability of success in a single event (float).

Returns
F – The probability of k or fewer failures before n successes in a sequence of events with indi-
vidual success probability p.

Return type
cupy.ndarray

See also:
scipy.special.nbdtr()

cupyx.scipy.special.nbdtrc

cupyx.scipy.special.nbdtrc()

Negative binomial distribution survival function.

Parameters
• k (cupy.ndarray) – The maximum number of allowed failures (nonnegative int).

• n (cupy.ndarray) – The target number of successes (positive int).

• p (cupy.ndarray) – Probability of success in a single event (float).

Returns
F – The probability of k + 1 or more failures before n successes in a sequence of events with
individual success probability p.

Return type
cupy.ndarray

See also:
scipy.special.nbdtrc()

cupyx.scipy.special.nbdtri

cupyx.scipy.special.nbdtri()

Inverse function to nbdtr with respect to p.

Parameters
• k (cupy.ndarray) – The maximum number of allowed failures (nonnegative int).

• n (cupy.ndarray) – The target number of successes (positive int).

• y (cupy.ndarray) – The probability of k or fewer failures before n successes (float).

710 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Returns
p – Probability of success in a single event (float) such that nbdtr(k, n, p) = y.

Return type
cupy.ndarray

See also:
scipy.special.nbdtri()

cupyx.scipy.special.pdtr

cupyx.scipy.special.pdtr()

Poisson cumulative distribution function.

Parameters
• k (cupy.ndarray) – Nonnegative real argument.

• m (cupy.ndarray) – Nonnegative real shape parameter.

Returns
y – Values of the Poisson cumulative distribution function.

Return type
cupy.ndarray

See also:
scipy.special.pdtr()

cupyx.scipy.special.pdtrc

cupyx.scipy.special.pdtrc()

Binomial distribution survival function.

Returns the complemented binomial distribution function (the integral of the density from x to infinity).

Parameters
• k (cupy.ndarray) – Nonnegative real argument.

• m (cupy.ndarray) – Nonnegative real shape parameter.

Returns
y – The sum of the terms from k+1 to infinity of the Poisson distribution.

Return type
cupy.ndarray

See also:
scipy.special.pdtrc()

5.4. Routines (SciPy) 711

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.pdtri

cupyx.scipy.special.pdtri()

Inverse function to pdtr with respect to m.

Parameters
• k (cupy.ndarray) – Nonnegative real argument.

• y (cupy.ndarray) – Cumulative probability.

Returns
m – The Poisson variable m such that the sum from 0 to k of the Poisson density is equal to the
given probability y.

Return type
cupy.ndarray

See also:
scipy.special.pdtri()

cupyx.scipy.special.chdtr

cupyx.scipy.special.chdtr()

Chi-square cumulative distribution function.

Parameters
• v (cupy.ndarray) – Degrees of freedom.

• x (cupy.ndarray) – Upper bound of the integral (nonnegative float).

Returns
y – The CDF of the chi-squared distribution with parameter df at x.

Return type
cupy.ndarray

See also:
scipy.special.chdtr()

cupyx.scipy.special.chdtrc

cupyx.scipy.special.chdtrc()

Chi square survival function.

Returns the complemented chi-squared distribution function (the integral of the density from x to infinity).

Parameters
• v (cupy.ndarray) – Degrees of freedom.

• x (cupy.ndarray) – Upper bound of the integral (nonnegative float).

Returns
y – The complemented chi-squared distribution function with parameter df at x.

Return type
cupy.ndarray

712 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

See also:
scipy.special.chdtrc()

cupyx.scipy.special.chdtri

cupyx.scipy.special.chdtri()

Inverse to chdtrc with respect to x.

Parameters
• v (cupy.ndarray) – Degrees of freedom.

• p (cupy.ndarray, optional) – Probability.

• p – Optional output array for the function results.

Returns
x – Value so that the probability a Chi square random variable with v degrees of freedom is
greater than x equals p.

Return type
cupy.ndarray

See also:
scipy.special.chdtri()

cupyx.scipy.special.ndtr

cupyx.scipy.special.ndtr()

Cumulative distribution function of normal distribution.

See also:
scipy.special.ndtr

cupyx.scipy.special.log_ndtr

cupyx.scipy.special.log_ndtr()

Logarithm of Gaussian cumulative distribution function.

Returns the log of the area under the standard Gaussian propability density function.

Parameters
x (array-like) – The input array

Returns
y – The value of the log of the normal cumulative distribution function evaluated at x

Return type
cupy.ndarray

See also:
scipy.special.log_ndtr()

5.4. Routines (SciPy) 713

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ndtr.html#scipy.special.ndtr

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.ndtri

cupyx.scipy.special.ndtri()

Inverse of the cumulative distribution function of the standard
normal distribution.

See also:
scipy.special.ndtri

cupyx.scipy.special.logit

cupyx.scipy.special.logit()

Logit function.

Parameters
x (cupy.ndarray) – input data

Returns
values of logit(x)

Return type
cupy.ndarray

See also:
scipy.special.logit

cupyx.scipy.special.expit

cupyx.scipy.special.expit()

Logistic sigmoid function (expit).

Parameters
x (cupy.ndarray) – input data (must be real)

Returns
values of expit(x)

Return type
cupy.ndarray

See also:
scipy.special.expit

Note: expit is the inverse of logit.

714 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ndtri.html#scipy.special.ndtri
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logit.html#scipy.special.logit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expit.html#scipy.special.expit

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.log_expit

cupyx.scipy.special.log_expit()

Logarithm of the logistic sigmoid function.

Parameters
x (cupy.ndarray) – input data (must be real)

Returns
values of log(expit(x))

Return type
cupy.ndarray

See also:
scipy.special.log_expit

Note: The function is mathematically equivalent to log(expit(x)), but is formulated to avoid loss of precision
for inputs with large (positive or negative) magnitude.

cupyx.scipy.special.boxcox

cupyx.scipy.special.boxcox()

Compute the Box-Cox transformation.

Parameters
x (cupy.ndarray) – input data (must be real)

Returns
values of boxcox(x)

Return type
cupy.ndarray

See also:
scipy.special.boxcox

cupyx.scipy.special.boxcox1p

cupyx.scipy.special.boxcox1p()

Compute the Box-Cox transformation op 1 + x.

Parameters
x (cupy.ndarray) – input data (must be real)

Returns
values of boxcox1p(x)

Return type
cupy.ndarray

See also:
scipy.special.boxcox1p

5.4. Routines (SciPy) 715

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_expit.html#scipy.special.log_expit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.boxcox.html#scipy.special.boxcox
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.boxcox1p.html#scipy.special.boxcox1p

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.inv_boxcox

cupyx.scipy.special.inv_boxcox()

Compute the Box-Cox transformation.

Parameters
x (cupy.ndarray) – input data (must be real)

Returns
values of inv_boxcox(x)

Return type
cupy.ndarray

See also:
scipy.special.inv_boxcox

cupyx.scipy.special.inv_boxcox1p

cupyx.scipy.special.inv_boxcox1p()

Compute the Box-Cox transformation op 1 + x.

Parameters
x (cupy.ndarray) – input data (must be real)

Returns
values of inv_boxcox1p(x)

Return type
cupy.ndarray

See also:
scipy.special.inv_boxcox1p

Information Theory functions

entr Elementwise function for computing entropy.
rel_entr Elementwise function for computing relative entropy.
kl_div Elementwise function for computing Kullback-Leibler

divergence.
huber Elementwise function for computing the Huber loss.
pseudo_huber Elementwise function for computing the Pseudo-Huber

loss.

716 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.inv_boxcox.html#scipy.special.inv_boxcox
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.inv_boxcox1p.html#scipy.special.inv_boxcox1p

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.entr

cupyx.scipy.special.entr()

Elementwise function for computing entropy.

See also:
scipy.special.entr()

cupyx.scipy.special.rel_entr

cupyx.scipy.special.rel_entr()

Elementwise function for computing relative entropy.

See also:
scipy.special.rel_entr()

cupyx.scipy.special.kl_div

cupyx.scipy.special.kl_div()

Elementwise function for computing Kullback-Leibler divergence.

See also:
scipy.special.kl_div()

cupyx.scipy.special.huber

cupyx.scipy.special.huber()

Elementwise function for computing the Huber loss.

See also:
scipy.special.huber()

cupyx.scipy.special.pseudo_huber

cupyx.scipy.special.pseudo_huber()

Elementwise function for computing the Pseudo-Huber loss.

See also:
scipy.special.pseudo_huber()

5.4. Routines (SciPy) 717

CuPy Documentation, Release 13.0.0

Gamma and related functions

gamma Gamma function.
gammaln Logarithm of the absolute value of the Gamma function.
loggamma Principal branch of the logarithm of the gamma function.
gammainc Elementwise function for scipy.special.gammainc
gammaincinv Elementwise function for scipy.special.gammaincinv
gammaincc Elementwise function for scipy.special.gammaincc
gammainccinv Elementwise function for scipy.special.gammainccinv
beta Beta function.
betaln Natural logarithm of absolute value of beta function.
betainc Incomplete beta function.
betaincinv Inverse of the incomplete beta function.
psi The digamma function.
rgamma Reciprocal gamma function.
polygamma(n, x) Polygamma function n.
multigammaln(a, d) Returns the log of multivariate gamma, also sometimes

called the generalized gamma.
digamma The digamma function.
poch Elementwise function for scipy.special.poch (Pochham-

mer symbol)

cupyx.scipy.special.gamma

cupyx.scipy.special.gamma()

Gamma function.

Parameters
z (cupy.ndarray) – The input of gamma function.

Returns
Computed value of gamma function.

Return type
cupy.ndarray

See also:
scipy.special.gamma()

cupyx.scipy.special.gammaln

cupyx.scipy.special.gammaln()

Logarithm of the absolute value of the Gamma function.

Parameters
• x (cupy.ndarray) – Values on the real line at which to compute

• gammaln. –

Returns
Values of gammaln at x.

718 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Return type
cupy.ndarray

See also:
scipy.special.gammaln

cupyx.scipy.special.loggamma

cupyx.scipy.special.loggamma()

Principal branch of the logarithm of the gamma function.

Parameters
• z (cupy.ndarray) – Values in the complex plain at which to compute loggamma

• out (cupy.ndarray, optional) – Output array for computed values of loggamma

Returns
Values of loggamma at z.

Return type
cupy.ndarray

See also:
scipy.special.loggamma()

cupyx.scipy.special.gammainc

cupyx.scipy.special.gammainc()

Elementwise function for scipy.special.gammainc

Regularized lower incomplete gamma function.

See also:
scipy.special.gammainc()

cupyx.scipy.special.gammaincinv

cupyx.scipy.special.gammaincinv()

Elementwise function for scipy.special.gammaincinv

Inverse to gammainc.

See also:
scipy.special.gammaincinv()

5.4. Routines (SciPy) 719

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaln.html#scipy.special.gammaln

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.gammaincc

cupyx.scipy.special.gammaincc()

Elementwise function for scipy.special.gammaincc

Regularized upper incomplete gamma function.

See also:
scipy.special.gammaincc()

cupyx.scipy.special.gammainccinv

cupyx.scipy.special.gammainccinv()

Elementwise function for scipy.special.gammainccinv

Inverse to gammaincc.

See also:
scipy.special.gammainccinv()

cupyx.scipy.special.beta

cupyx.scipy.special.beta()

Beta function.

Parameters
• a (cupy.ndarray) – Real-valued arguments

• b (cupy.ndarray) – Real-valued arguments

• out (cupy.ndarray, optional) – Optional output array for the function result

Returns
Value of the beta function

Return type
scalar or ndarray

See also:
scipy.special.beta()

cupyx.scipy.special.betaln

cupyx.scipy.special.betaln()

Natural logarithm of absolute value of beta function.

Computes ln(abs(beta(a, b))).

Parameters
• a (cupy.ndarray) – Real-valued arguments

• b (cupy.ndarray) – Real-valued arguments

• out (cupy.ndarray, optional) – Optional output array for the function result

720 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Returns
Value of the natural log of the magnitude of beta.

Return type
scalar or ndarray

See also:
scipy.special.betaln()

cupyx.scipy.special.betainc

cupyx.scipy.special.betainc()

Incomplete beta function.

Parameters
• a (cupy.ndarray) – Positive, real-valued parameters

• b (cupy.ndarray) – Positive, real-valued parameters

• x (cupy.ndarray) – Real-valued such that 0 <= x <= 1, the upper limit of integration.

• out (ndarray, optional) – Optional output array for the function result

Returns
Value of the incomplete beta function

Return type
scalar or ndarray

See also:
scipy.special.betainc()

cupyx.scipy.special.betaincinv

cupyx.scipy.special.betaincinv()

Inverse of the incomplete beta function.

Parameters
• a (cupy.ndarray) – Positive, real-valued parameters

• b (cupy.ndarray) – Positive, real-valued parameters

• y (cupy.ndarray) – Real-valued input.

• out (ndarray, optional) – Optional output array for the function result

Returns
Value of the inverse of the incomplete beta function

Return type
scalar or ndarray

See also:
scipy.special.betaincinv()

5.4. Routines (SciPy) 721

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.psi

cupyx.scipy.special.psi()

The digamma function.

Parameters
x (cupy.ndarray) – The input of digamma function.

Returns
Computed value of digamma function.

Return type
cupy.ndarray

See also:
scipy.special.digamma

cupyx.scipy.special.rgamma

cupyx.scipy.special.rgamma()

Reciprocal gamma function.

Parameters
z (cupy.ndarray) – The input to the rgamma function.

Returns
Computed value of the rgamma function.

Return type
cupy.ndarray

See also:
scipy.special.rgamma()

cupyx.scipy.special.polygamma

cupyx.scipy.special.polygamma(n, x)
Polygamma function n.

Parameters
• n (cupy.ndarray) – The order of the derivative of psi.

• x (cupy.ndarray) – Where to evaluate the polygamma function.

Returns
The result.

Return type
cupy.ndarray

See also:
scipy.special.polygamma

722 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.digamma.html#scipy.special.digamma

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.multigammaln

cupyx.scipy.special.multigammaln(a, d)
Returns the log of multivariate gamma, also sometimes called the generalized gamma.

Parameters
• a (cupy.ndarray) – The multivariate gamma is computed for each item of a.

• d (int) – The dimension of the space of integration.

Returns
res – The values of the log multivariate gamma at the given points a.

Return type
ndarray

See also:
scipy.special.multigammaln()

cupyx.scipy.special.digamma

cupyx.scipy.special.digamma()

The digamma function.

Parameters
x (cupy.ndarray) – The input of digamma function.

Returns
Computed value of digamma function.

Return type
cupy.ndarray

See also:
scipy.special.digamma

cupyx.scipy.special.poch

cupyx.scipy.special.poch()

Elementwise function for scipy.special.poch (Pochhammer symbol)

See also:
scipy.special.poch()

5.4. Routines (SciPy) 723

https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.multigammaln.html#scipy.special.multigammaln
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.digamma.html#scipy.special.digamma

CuPy Documentation, Release 13.0.0

Elliptic integrals

ellipk ellipkm1 ellipj

Error function and Fresnel integrals

erf Error function.
erfc Complementary error function.
erfcx Scaled complementary error function.
erfinv Inverse function of error function.
erfcinv Inverse function of complementary error function.

cupyx.scipy.special.erf

cupyx.scipy.special.erf()

Error function.

See also:
scipy.special.erf()

cupyx.scipy.special.erfc

cupyx.scipy.special.erfc()

Complementary error function.

See also:
scipy.special.erfc()

cupyx.scipy.special.erfcx

cupyx.scipy.special.erfcx()

Scaled complementary error function.

See also:
scipy.special.erfcx()

cupyx.scipy.special.erfinv

cupyx.scipy.special.erfinv()

Inverse function of error function.

See also:
scipy.special.erfinv()

Note: The behavior close to (and outside) the domain follows that of SciPy v1.4.0+.

724 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.erfcinv

cupyx.scipy.special.erfcinv()

Inverse function of complementary error function.

See also:
scipy.special.erfcinv()

Note: The behavior close to (and outside) the domain follows that of SciPy v1.4.0+.

Legendre functions

lpmv Associated Legendre function of integer order and real
degree.

sph_harm Spherical Harmonic.

cupyx.scipy.special.lpmv

cupyx.scipy.special.lpmv()

Associated Legendre function of integer order and real degree.

See also:
scipy.special.lpmv()

cupyx.scipy.special.sph_harm

cupyx.scipy.special.sph_harm()

Spherical Harmonic.

See also:
scipy.special.sph_harm()

Other special functions

exp1 Exponential integral E1.
expi Exponential integral Ei.
expn Generalized exponential integral En.
exprel Computes (exp(x) - 1) / x.
softmax(x[, axis]) Softmax function.
log_softmax(x[, axis]) Compute logarithm of softmax function
zeta Hurwitz zeta function.
zetac Riemann zeta function minus 1.

5.4. Routines (SciPy) 725

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.exp1

cupyx.scipy.special.exp1()

Exponential integral E1.

Parameters
x (cupy.ndarray) – Real argument

Returns
y – Values of the exponential integral E1

Return type
scalar or cupy.ndarray

See also:
scipy.special.exp1()

cupyx.scipy.special.expi

cupyx.scipy.special.expi()

Exponential integral Ei.

Parameters
x (cupy.ndarray) – Real argument

Returns
y – Values of exponential integral

Return type
scalar or cupy.ndarray

See also:
scipy.special.expi()

cupyx.scipy.special.expn

cupyx.scipy.special.expn()

Generalized exponential integral En.

Parameters
• n (cupy.ndarray) – Non-negative integers

• x (cupy.ndarray) – Real argument

Returns
y – Values of the generalized exponential integral

Return type
scalar or cupy.ndarray

See also:
scipy.special.expn()

726 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.exprel

cupyx.scipy.special.exprel()

Computes (exp(x) - 1) / x.

See also:
scipy.special.exprel()

cupyx.scipy.special.softmax

cupyx.scipy.special.softmax(x, axis=None)
Softmax function.

The softmax function transforms each element of a collection by computing the exponential of each element
divided by the sum of the exponentials of all the elements.

Parameters
• x (array-like) – The input array

• axis (int or tuple of ints, optional) – Axis to compute values along. Default is
None

Returns
s – Returns an array with same shape as input. The result will sum to 1 along the provided axis

Return type
cupy.ndarray

cupyx.scipy.special.log_softmax

cupyx.scipy.special.log_softmax(x, axis=None)
Compute logarithm of softmax function

Parameters
• x (array-like) – Input array

• axis (int or tuple of ints, optional) – Axis to compute values along. Default is
None and softmax will be computed over the entire array x

Returns
s – An array with the same shape as x. Exponential of the result will sum to 1 along the specified
axis. If x is a scalar, a scalar is returned

Return type
cupy.ndarry

5.4. Routines (SciPy) 727

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.zeta

cupyx.scipy.special.zeta()

Hurwitz zeta function.

Parameters
• x (cupy.ndarray) – Input data, must be real.

• q (cupy.ndarray) – Input data, must be real.

Returns
Values of zeta(x, q).

Return type
cupy.ndarray

See also:
scipy.special.zeta

cupyx.scipy.special.zetac

cupyx.scipy.special.zetac()

Riemann zeta function minus 1.

Parameters
x (cupy.ndarray) – Input data, must be real.

Returns
Values of zeta(x)-1.

Return type
cupy.ndarray

See also:
scipy.special.zetac

728 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.zetac.html#scipy.special.zetac

CuPy Documentation, Release 13.0.0

Convenience functions

cbrt Cube root.
exp10 Computes 10**x.
exp2 Computes 2**x.
radian Degrees, minutes, seconds to radians:
cosdg Cosine of x with x in degrees.
sindg Sine of x with x in degrees.
tandg Tangent of x with x in degrees.
cotdg Cotangent of x with x in degrees.
log1p Elementwise function for scipy.special.log1p
expm1 Computes exp(x) - 1.
cosm1 Computes cos(x) - 1.
round(a[, decimals, out])

xlogy Compute x*log(y) so that the result is 0 if x = 0.
xlog1py Compute x*log1p(y) so that the result is 0 if x = 0.
logsumexp(a[, axis, b, keepdims, return_sign]) Compute the log of the sum of exponentials of input el-

ements.
sinc(x, /[, out, casting, dtype]) Elementwise sinc function.

cupyx.scipy.special.cbrt

cupyx.scipy.special.cbrt()

Cube root.

See also:
scipy.special.cbrt()

cupyx.scipy.special.exp10

cupyx.scipy.special.exp10()

Computes 10**x.

See also:
scipy.special.exp10()

cupyx.scipy.special.exp2

cupyx.scipy.special.exp2()

Computes 2**x.

See also:
scipy.special.exp2()

5.4. Routines (SciPy) 729

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.radian

cupyx.scipy.special.radian()

Degrees, minutes, seconds to radians:

See also:
scipy.special.radian()

cupyx.scipy.special.cosdg

cupyx.scipy.special.cosdg()

Cosine of x with x in degrees.

See also:
scipy.special.cosdg()

cupyx.scipy.special.sindg

cupyx.scipy.special.sindg()

Sine of x with x in degrees.

See also:
scipy.special.sindg()

cupyx.scipy.special.tandg

cupyx.scipy.special.tandg()

Tangent of x with x in degrees.

See also:
scipy.special.tandg()

cupyx.scipy.special.cotdg

cupyx.scipy.special.cotdg()

Cotangent of x with x in degrees.

See also:
scipy.special.cotdg()

730 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.log1p

cupyx.scipy.special.log1p()

Elementwise function for scipy.special.log1p

Calculates log(1 + x) for use when x is near zero.

Notes

This implementation currently does not support complex-valued x.

See also:
scipy.special.log1p()

cupyx.scipy.special.expm1

cupyx.scipy.special.expm1()

Computes exp(x) - 1.

See also:
scipy.special.expm1()

cupyx.scipy.special.cosm1

cupyx.scipy.special.cosm1()

Computes cos(x) - 1.

See also:
scipy.special.cosm1()

cupyx.scipy.special.round

cupyx.scipy.special.round(a, decimals=0, out=None)

cupyx.scipy.special.xlogy

cupyx.scipy.special.xlogy()

Compute x*log(y) so that the result is 0 if x = 0.

Parameters
x (cupy.ndarray) – input data

Returns
values of x * log(y)

Return type
cupy.ndarray

See also:
scipy.special.xlogy

5.4. Routines (SciPy) 731

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.xlogy.html#scipy.special.xlogy

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.xlog1py

cupyx.scipy.special.xlog1py()

Compute x*log1p(y) so that the result is 0 if x = 0.

Parameters
x (cupy.ndarray) – input data

Returns
values of x * log1p(y)

Return type
cupy.ndarray

See also:
scipy.special.xlog1py

cupyx.scipy.special.logsumexp

cupyx.scipy.special.logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False)
Compute the log of the sum of exponentials of input elements.

Parameters
• a (cupy.ndarray) – Input array

• axis (None or int or tuple of ints, optional) – Axis or axes over which the
sum is taken. By default axis is None, and all elements are summed

• keepdims (bool, optional) – If this is set to True, the axes which are reduced are left in
the result as dimensions with size one. With this option, the result will broadcast correctly
against the original array

• b (cupy.ndarray, optional) – Scaling factor for exp(a) must be of the same shape as a
or broadcastable to a. These values may be negative in order to implement subtraction

• return_sign (bool, optional) – If this is set to True, the result will be a pair containing
sign information; if False, results that are negative will be returned as NaN. Default is False

Returns
• res (cupy.ndarray) – The result, cp.log(cp.sum(cp.exp(a))) calculated in a numerically

more stable way. If b is given then cp.log(cp.sum(b*cp.exp(a))) is returned

• sgn (cupy.ndarray) – If return_sign is True, this will be an array of floating-point numbers
matching res and +1, 0, or -1 depending on the sign of the result. If False, only onw result is
returned

See also:
scipy.special.logsumexp

732 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.xlog1py.html#scipy.special.xlog1py
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html#scipy.special.logsumexp

CuPy Documentation, Release 13.0.0

cupyx.scipy.special.sinc

cupyx.scipy.special.sinc(x, /, out=None, *, casting='same_kind', dtype=None)
Elementwise sinc function.

See also:
numpy.sinc()

5.4.14 Statistical functions (cupyx.scipy.stats)

Hint: SciPy API Reference: Statistical functions (scipy.stats)

Summary statistics

trim_mean(a, proportiontocut[, axis]) Return mean of array after trimming distribution from
both tails.

entropy(pk[, qk, base, axis]) Calculate the entropy of a distribution for given proba-
bility values.

cupyx.scipy.stats.trim_mean

cupyx.scipy.stats.trim_mean(a, proportiontocut, axis=0)
Return mean of array after trimming distribution from both tails.

If proportiontocut = 0.1, slices off ‘leftmost’ and ‘rightmost’ 10% of scores. The input is sorted before slicing.
Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off proportiontocut).

Parameters
• a (cupy.ndarray) – Input array.

• proportiontocut (float) – Fraction to cut off of both tails of the distribution.

• axis (int or None, optional) – Axis along which the trimmed means are computed.
Default is 0. If None, compute over the whole array a.

Returns
trim_mean – Mean of trimmed array.

Return type
ndarray

See also:
trimboth

tmean
Compute the trimmed mean ignoring values outside given limits.

5.4. Routines (SciPy) 733

https://numpy.org/doc/stable/reference/generated/numpy.sinc.html#numpy.sinc
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Examples

>>> import cupy as cp
>>> from cupyx.scipy import stats
>>> x = cp.arange(20)
>>> stats.trim_mean(x, 0.1)
array(9.5)
>>> x2 = x.reshape(5, 4)
>>> x2
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])

>>> stats.trim_mean(x2, 0.25)
array([8., 9., 10., 11.])
>>> stats.trim_mean(x2, 0.25, axis=1)
array([1.5, 5.5, 9.5, 13.5, 17.5])

cupyx.scipy.stats.entropy

cupyx.scipy.stats.entropy(pk, qk=None, base=None, axis=0)
Calculate the entropy of a distribution for given probability values.

If only probabilities pk are given, the entropy is calculated as S = -sum(pk * log(pk), axis=axis).

If qk is not None, then compute the Kullback-Leibler divergence S = sum(pk * log(pk / qk),
axis=axis).

This routine will normalize pk and qk if they don’t sum to 1.

Parameters
• pk (ndarray) – Defines the (discrete) distribution. pk[i] is the (possibly unnormalized)

probability of event i.

• qk (ndarray, optional) – Sequence against which the relative entropy is computed.
Should be in the same format as pk.

• base (float, optional) – The logarithmic base to use, defaults to e (natural logarithm).

• axis (int, optional) – The axis along which the entropy is calculated. Default is 0.

Returns
The calculated entropy.

Return type
S (cupy.ndarray)

734 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Other statistical functionality

boxcox_llf (lmb, data) The boxcox log-likelihood function.
zmap(scores, compare[, axis, ddof, nan_policy]) Calculate the relative z-scores.
zscore(a[, axis, ddof, nan_policy]) Compute the z-score.

cupyx.scipy.stats.boxcox_llf

cupyx.scipy.stats.boxcox_llf(lmb, data)
The boxcox log-likelihood function.

Parameters
• lmb (scalar) – Parameter for Box-Cox transformation

• data (array-like) – Data to calculate Box-Cox log-likelihood for. If data is multi-
dimensional, the log-likelihood is calculated along the first axis

Returns
llf – Box-Cox log-likelihood of data given lmb. A float for 1-D data, an array otherwise

Return type
float or cupy.ndarray

See also:
scipy.stats.boxcox_llf

cupyx.scipy.stats.zmap

cupyx.scipy.stats.zmap(scores, compare, axis=0, ddof=0, nan_policy='propagate')
Calculate the relative z-scores.

Return an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and
variance are calculated from the comparison array.

Parameters
• scores (array-like) – The input for which z-scores are calculated

• compare (array-like) – The input from which the mean and standard deviation of the
normalization are taken; assumed to have the same dimension as scores

• axis (int or None, optional) – Axis over which mean and variance of compare are
calculated. Default is 0. If None, compute over the whole array scores

• ddof (int, optional) – Degrees of freedom correction in the calculation of the standard
deviation. Default is 0

• nan_policy ({'propagate', 'raise', 'omit'}, optional) – Defines how to handle the
occurrence of nans in compare. ‘propagate’ returns nan, ‘raise’ raises an exception, ‘omit’
performs the calculations ignoring nan values. Default is ‘propagate’. Note that when the
value is ‘omit’, nans in scores also propagate to the output, but they do not affect the z-scores
computed for the non-nan values

Returns
zscore – Z-scores, in the same shape as scores

5.4. Routines (SciPy) 735

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox_llf.html#scipy.stats.boxcox_llf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
array-like

cupyx.scipy.stats.zscore

cupyx.scipy.stats.zscore(a, axis=0, ddof=0, nan_policy='propagate')
Compute the z-score.

Compute the z-score of each value in the sample, relative to the sample mean and standard deviation.

Parameters
• a (array-like) – An array like object containing the sample data

• axis (int or None, optional) – Axis along which to operate. Default is 0. If None,
compute over the whole arrsy a

• ddof (int, optional) – Degrees of freedom correction in the calculation of the standard
deviation. Default is 0

• nan_policy ({'propagate', 'raise', 'omit'}, optional) – Defines how to handle
when input contains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the
calculations ignoring nan values. Default is ‘propagate’. Note that when the value is ‘omit’,
nans in the input also propagate to the output, but they do not affect the z-scores computed
for the non-nan values

Returns
zscore – The z-scores, standardized by mean and standard deviation of input array a

Return type
array-like

5.5 CuPy-specific functions

CuPy-specific functions are placed under cupyx namespace.

cupyx.rsqrt Returns the reciprocal square root.
cupyx.scatter_add(a, slices, value) Adds given values to specified elements of an array.
cupyx.scatter_max(a, slices, value) Stores a maximum value of elements specified by indices

to an array.
cupyx.scatter_min(a, slices, value) Stores a minimum value of elements specified by indices

to an array.
cupyx.empty_pinned(shape[, dtype, order]) Returns a new, uninitialized NumPy array with the given

shape and dtype.
cupyx.empty_like_pinned(a[, dtype, order, ...]) Returns a new, uninitialized NumPy array with the same

shape and dtype as those of the given array.
cupyx.zeros_pinned(shape[, dtype, order]) Returns a new, zero-initialized NumPy array with the

given shape and dtype.
cupyx.zeros_like_pinned(a[, dtype, order, ...]) Returns a new, zero-initialized NumPy array with the

same shape and dtype as those of the given array.

736 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

5.5.1 cupyx.rsqrt

cupyx.rsqrt()

Returns the reciprocal square root.

5.5.2 cupyx.scatter_add

cupyx.scatter_add(a, slices, value)
Adds given values to specified elements of an array.

It adds value to the specified elements of a. If all of the indices target different locations, the operation of
scatter_add() is equivalent to a[slices] = a[slices] + value. If there are multiple elements targeting
the same location, scatter_add() uses all of these values for addition. On the other hand, a[slices] =
a[slices] + value only adds the contribution from one of the indices targeting the same location.

Note that just like an array indexing, negative indices are interpreted as counting from the end of an array.

Also note that scatter_add() behaves identically to numpy.add.at().

Example

>>> import cupy
>>> import cupyx
>>> a = cupy.zeros((6,), dtype=cupy.float32)
>>> i = cupy.array([1, 0, 1])
>>> v = cupy.array([1., 1., 1.])
>>> cupyx.scatter_add(a, i, v);
>>> a
array([1., 2., 0., 0., 0., 0.], dtype=float32)

Parameters
• a (ndarray) – An array that gets added.

• slices – It is integer, slices, ellipsis, numpy.newaxis, integer array-like, boolean array-like
or tuple of them. It works for slices used for cupy.ndarray.__getitem__() and cupy.
ndarray.__setitem__().

• v (array-like) – Values to increment a at referenced locations.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included
in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.uint64 and
numpy.ulonglong.

Note: scatter_add() does not raise an error when indices exceed size of axes. Instead, it wraps indices.

See also:
numpy.ufunc.at().

5.5. CuPy-specific functions 737

https://numpy.org/doc/stable/reference/generated/numpy.ufunc.at.html#numpy.ufunc.at

CuPy Documentation, Release 13.0.0

5.5.3 cupyx.scatter_max

cupyx.scatter_max(a, slices, value)
Stores a maximum value of elements specified by indices to an array.

It stores the maximum value of elements in value array indexed by slices to a. If all of the indices target differ-
ent locations, the operation of scatter_max() is equivalent to a[slices] = cupy.maximum(a[slices],
value). If there are multiple elements targeting the same location, scatter_max() stores the maximum of all
of these values to the given index of a, the initial element of a is also taken in account.

Note that just like an array indexing, negative indices are interpreted as counting from the end of an array.

Also note that scatter_max() behaves identically to numpy.maximum.at().

Example

>>> import numpy
>>> import cupy
>>> a = cupy.zeros((6,), dtype=numpy.float32)
>>> i = cupy.array([1, 0, 1, 2])
>>> v = cupy.array([1., 2., 3., -1.])
>>> cupyx.scatter_max(a, i, v);
>>> a
array([2., 3., 0., 0., 0., 0.], dtype=float32)

Parameters
• a (ndarray) – An array to store the results.

• slices – It is integer, slices, ellipsis, numpy.newaxis, integer array-like, boolean array-like
or tuple of them. It works for slices used for cupy.ndarray.__getitem__() and cupy.
ndarray.__setitem__().

• v (array-like) – An array used for reference.

5.5.4 cupyx.scatter_min

cupyx.scatter_min(a, slices, value)
Stores a minimum value of elements specified by indices to an array.

It stores the minimum value of elements in value array indexed by slices to a. If all of the indices target differ-
ent locations, the operation of scatter_min() is equivalent to a[slices] = cupy.minimum(a[slices],
value). If there are multiple elements targeting the same location, scatter_min() stores the minimum of all
of these values to the given index of a, the initial element of a is also taken in account.

Note that just like an array indexing, negative indices are interpreted as counting from the end of an array.

Also note that scatter_min() behaves identically to numpy.minimum.at().

738 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Example

>>> import numpy
>>> import cupy
>>> a = cupy.zeros((6,), dtype=numpy.float32)
>>> i = cupy.array([1, 0, 1, 2])
>>> v = cupy.array([1., 2., 3., -1.])
>>> cupyx.scatter_min(a, i, v);
>>> a
array([0., 0., -1., 0., 0., 0.], dtype=float32)

Parameters
• a (ndarray) – An array to store the results.

• slices – It is integer, slices, ellipsis, numpy.newaxis, integer array-like, boolean array-like
or tuple of them. It works for slices used for cupy.ndarray.__getitem__() and cupy.
ndarray.__setitem__().

• v (array-like) – An array used for reference.

5.5.5 cupyx.empty_pinned

cupyx.empty_pinned(shape, dtype=<class 'float'>, order='C')
Returns a new, uninitialized NumPy array with the given shape and dtype.

This is a convenience function which is just numpy.empty(), except that the underlying memory is
pinned/pagelocked.

Parameters
• shape (int or tuple of ints) – Dimensionalities of the array.

• dtype – Data type specifier.

• order ({'C', 'F'}) – Row-major (C-style) or column-major (Fortran-style) order.

Returns
A new array with elements not initialized.

Return type
numpy.ndarray

See also:
numpy.empty()

5.5.6 cupyx.empty_like_pinned

cupyx.empty_like_pinned(a, dtype=None, order='K', subok=None, shape=None)
Returns a new, uninitialized NumPy array with the same shape and dtype as those of the given array.

This is a convenience function which is just numpy.empty_like(), except that the underlying memory is
pinned/pagelocked.

This function currently does not support subok option.

Parameters

5.5. CuPy-specific functions 739

https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty
https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like

CuPy Documentation, Release 13.0.0

• a (numpy.ndarray or cupy.ndarray) – Base array.

• dtype – Data type specifier. The data type of a is used by default.

• order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the result. 'C' means
C-order, 'F'means F-order, 'A'means 'F' if a is Fortran contiguous, 'C' otherwise. 'K'
means match the layout of a as closely as possible.

• subok – Not supported yet, must be None.

• shape (int or tuple of ints) – Overrides the shape of the result. If order='K' and
the number of dimensions is unchanged, will try to keep order, otherwise, order='C' is
implied.

Returns
A new array with same shape and dtype of a with elements not initialized.

Return type
numpy.ndarray

See also:
numpy.empty_like()

5.5.7 cupyx.zeros_pinned

cupyx.zeros_pinned(shape, dtype=<class 'float'>, order='C')
Returns a new, zero-initialized NumPy array with the given shape and dtype.

This is a convenience function which is just numpy.zeros(), except that the underlying memory is
pinned/pagelocked.

Parameters
• shape (int or tuple of ints) – Dimensionalities of the array.

• dtype – Data type specifier.

• order ({'C', 'F'}) – Row-major (C-style) or column-major (Fortran-style) order.

Returns
An array filled with zeros.

Return type
numpy.ndarray

See also:
numpy.zeros()

5.5.8 cupyx.zeros_like_pinned

cupyx.zeros_like_pinned(a, dtype=None, order='K', subok=None, shape=None)
Returns a new, zero-initialized NumPy array with the same shape and dtype as those of the given array.

This is a convenience function which is just numpy.zeros_like(), except that the underlying memory is
pinned/pagelocked.

This function currently does not support subok option.

Parameters

740 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros
https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html#numpy.zeros_like

CuPy Documentation, Release 13.0.0

• a (numpy.ndarray or cupy.ndarray) – Base array.

• dtype – Data type specifier. The dtype of a is used by default.

• order ({'C', 'F', 'A', or 'K'}) – Overrides the memory layout of the result. 'C' means
C-order, 'F'means F-order, 'A'means 'F' if a is Fortran contiguous, 'C' otherwise. 'K'
means match the layout of a as closely as possible.

• subok – Not supported yet, must be None.

• shape (int or tuple of ints) – Overrides the shape of the result. If order='K' and
the number of dimensions is unchanged, will try to keep order, otherwise, order='C' is
implied.

Returns
An array filled with zeros.

Return type
numpy.ndarray

See also:
numpy.zeros_like()

5.5.9 non-SciPy compat Signal API

The functions under cupyx.signal are non-SciPy compat signal API ported from cuSignal through the courtesy of
Nvidia cuSignal team.

cupyx.signal.convolve1d3o(in1, in2[, mode, ...]) Convolve a 1-dimensional array with a 3rd order filter.
cupyx.signal.pulse_compression(x, template) Pulse Compression is used to increase the range reso-

lution and SNR by performing matched filtering of the
transmitted pulse (template) with the received signal (x)

cupyx.signal.convolve1d3o

cupyx.signal.convolve1d3o(in1, in2, mode='valid', method='direct')
Convolve a 1-dimensional array with a 3rd order filter. This results in a third order convolution.

Convolve in1 and in2, with the output size determined by the mode argument.

Parameters
• in1 (array_like) – First input. Should have one dimension.

• in2 (array_like) – Second input. Should have three dimensions.

• mode (str {'full', 'valid', 'same'}, optional) – A string indicating the size of the
output:

full
The output is the full discrete linear convolution of the inputs. (Default)

valid
The output consists only of those elements that do not rely on the zero-padding. In ‘valid’
mode, either in1 or in2 must be at least as large as the other in every dimension.

same
The output is the same size as in1, centered with respect to the ‘full’ output.

5.5. CuPy-specific functions 741

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html#numpy.zeros_like

CuPy Documentation, Release 13.0.0

• method (str {'auto', 'direct', 'fft'}, optional) – A string indicating which
method to use to calculate the convolution.

direct
The convolution is determined directly from sums, the definition of convolution.

fft
The Fourier Transform is used to perform the convolution by calling fftconvolve.

auto
Automatically chooses direct or Fourier method based on an estimate of which is faster
(default).

Returns
out – A 1-dimensional array containing a subset of the discrete linear convolution of in1 with
in2.

Return type
ndarray

See also:
convolve, convolve1d2o, convolve1d3o

cupyx.signal.pulse_compression

cupyx.signal.pulse_compression(x, template, normalize=False, window=None, nfft=None)
Pulse Compression is used to increase the range resolution and SNR by performing matched filtering of the
transmitted pulse (template) with the received signal (x)

Parameters
• x (ndarray) – Received signal, assume 2D array with [num_pulses, sample_per_pulse]

• template (ndarray) – Transmitted signal, assume 1D array

• normalize (bool) – Normalize transmitted signal

• window (array_like, callable, string, float, or tuple, optional) – Spec-
ifies the window applied to the signal in the Fourier domain.

• nfft (int, size of FFT for pulse compression. Default is number of) –
samples per pulse

Returns
compressedIQ – Pulse compressed output

Return type
ndarray

742 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

5.5.10 Profiling utilities

cupyx.profiler.benchmark(func[, args, ...]) Timing utility for measuring time spent by both CPU and
GPU.

cupyx.profiler.time_range([message, ...]) Mark function calls with ranges using NVTX/rocTX.
cupyx.profiler.profile() Enable CUDA profiling during with statement.

cupyx.profiler.benchmark

cupyx.profiler.benchmark(func, args=(), kwargs={}, n_repeat=10000, *, name=None, n_warmup=10,
max_duration=inf, devices=None)

Timing utility for measuring time spent by both CPU and GPU.

This function is a very convenient helper for setting up a timing test. The GPU time is properly recorded by
synchronizing internal streams. As a result, to time a multi-GPU function all participating devices must be
passed as the devices argument so that this helper knows which devices to record. A simple example is given
as follows:

import cupy as cp
from cupyx.profiler import benchmark

def f(a, b):
return 3 * cp.sin(-a) * b

a = 0.5 - cp.random.random((100,))
b = cp.random.random((100,))
print(benchmark(f, (a, b), n_repeat=1000))

Parameters
• func (callable) – a callable object to be timed.

• args (tuple) – positional argumens to be passed to the callable.

• kwargs (dict) – keyword arguments to be passed to the callable.

• n_repeat (int) – number of times the callable is called. Increasing this value would im-
prove the collected statistics at the cost of longer test time.

• name (str) – the function name to be reported. If not given, the callable’s __name__ attribute
is used.

• n_warmup (int) – number of times the callable is called. The warm-up runs are not timed.

• max_duration (float) – the maximum time (in seconds) that the entire test can use. If the
taken time is longer than this limit, the test is stopped and the statistics collected up to the
breakpoint is reported.

• devices (tuple) – a tuple of device IDs (int) that will be timed during the timing test. If
not given, the current device is used.

Returns
an object collecting all test results.

Return type
_PerfCaseResult

5.5. CuPy-specific functions 743

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

cupyx.profiler.time_range

class cupyx.profiler.time_range(message=None, color_id=None, argb_color=None, sync=False)
Mark function calls with ranges using NVTX/rocTX. This object can be used either as a decorator or a context
manager.

When used as a decorator, the decorated function calls are marked as ranges:

>>> from cupyx.profiler import time_range
>>> @time_range()
... def function_to_profile():
... pass

When used as a context manager, it describes the enclosed block as a nested range:

>>> from cupyx.profiler import time_range
>>> with time_range('some range in green', color_id=0):
... # do something you want to measure
... pass

The marked ranges are visible in the profiler (such as nvvp, nsys-ui, etc) timeline.

Parameters
• message (str) – Name of a range. When used as a decorator, the default is func.__name__.

• color_id – range color ID

• argb_color – range color in ARGB (e.g. 0xFF00FF00 for green)

• sync (bool) – If True, waits for completion of all outstanding processing on GPU before
calling cupy.cuda.nvtx.RangePush() or cupy.cuda.nvtx.RangePop()

See also:
cupy.cuda.nvtx.RangePush(), cupy.cuda.nvtx.RangePop()

Methods

__call__(func)
Call self as a function.

__enter__()

__exit__(exc_type, exc_value, traceback)

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

744 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

cupyx.profiler.profile

cupyx.profiler.profile()

Enable CUDA profiling during with statement.

This function enables profiling on entering a with statement, and disables profiling on leaving the statement.

>>> with cupyx.profiler.profile():
... # do something you want to measure
... pass

Note: When starting nvprof from the command line, manually setting --profile-from-start off may be
required for the desired behavior. Likewise, when using nsys profile setting -c cudaProfilerApi may be
required.

See also:
cupy.cuda.runtime.profilerStart(), cupy.cuda.runtime.profilerStop()

5.5.11 DLPack utilities

Below are helper functions for creating a cupy.ndarray from either a DLPack tensor or any object supporting the
DLPack data exchange protocol. For further detail see DLPack.

cupy.from_dlpack(array) Zero-copy conversion between array objects compliant
with the DLPack data exchange protocol.

cupy.from_dlpack

cupy.from_dlpack(array)
Zero-copy conversion between array objects compliant with the DLPack data exchange protocol.

Parameters
array (object) – an array object that implements two methods: __dlpack__() and
__dlpack_device__().

Returns
a CuPy array that can be safely accessed on CuPy’s current stream.

Return type
cupy.ndarray

Note: This function is different from CuPy’s legacy fromDlpack() function. This function takes any object
implementing the DLPack data exchange protocol, as well as a raw PyCapsule object that contains the DLPack

5.5. CuPy-specific functions 745

https://docs.python.org/3/library/functions.html#object

CuPy Documentation, Release 13.0.0

tensor as input (for backward compatibility), whereas fromDlpack() only accepts PyCapsule objects. If the
input object is not compliant with the protocol, users are responsible to ensure data safety.

See also:
numpy.from_dlpack(), Python Specification for DLPack, Data interchange mechanisms

5.5.12 Automatic Kernel Parameters Optimizations (cupyx.optimizing)

cupyx.optimizing.optimize(*[, key, path, ...]) Context manager that optimizes kernel launch parame-
ters.

cupyx.optimizing.optimize

cupyx.optimizing.optimize(*, key=None, path=None, readonly=False, **config_dict)
Context manager that optimizes kernel launch parameters.

In this context, CuPy’s routines find the best kernel launch parameter values (e.g., the number of threads and
blocks). The found values are cached and reused with keys as the shapes, strides and dtypes of the given inputs
arrays.

Parameters
• key (string or None) – The cache key of optimizations.

• path (string or None) – The path to save optimization cache records. When path is
specified and exists, records will be loaded from the path. When readonly option is set to
False, optimization cache records will be saved to the path after the optimization.

• readonly (bool) – See the description of path option.

• max_trials (int) – The number of trials that defaults to 100.

• timeout (float) – Stops study after the given number of seconds. Default is 1.

• max_total_time_per_trial (float) – Repeats measuring the execution time of the rou-
tine for the given number of seconds. Default is 0.1.

Examples

>>> import cupy
>>> from cupyx import optimizing
>>>
>>> x = cupy.arange(100)
>>> with optimizing.optimize():
... cupy.sum(x)
...
array(4950)

Note: Optuna (https://optuna.org) installation is required. Currently it works for reduction operations only.

746 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.from_dlpack.html#numpy.from_dlpack
https://dmlc.github.io/dlpack/latest/python_spec.html
https://data-apis.org/array-api/latest/design_topics/data_interchange.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://optuna.org

CuPy Documentation, Release 13.0.0

5.6 Low-level CUDA support

5.6.1 Device management

cupy.cuda.Device([device]) Object that represents a CUDA device.

cupy.cuda.Device

class cupy.cuda.Device(device=None)
Object that represents a CUDA device.

This class provides some basic manipulations on CUDA devices.

It supports the context protocol. For example, the following code is an example of temporarily switching the
current device:

with Device(0):
do_something_on_device_0()

After the with statement gets done, the current device is reset to the original one.

Parameters
device (int or cupy.cuda.Device) – Index of the device to manipulate. Be careful that the
device ID (a.k.a. GPU ID) is zero origin. If it is a Device object, then its ID is used. The current
device is selected by default.

Variables
id (int) – ID of this device.

Methods

__enter__(self)

__exit__(self, *args)

from_pci_bus_id(type cls, pci_bus_id)
Returns a new device instance based on a PCI Bus ID

Parameters
pci_bus_id (str) – The string for a device in the following format [do-
main]:[bus]:[device].[function] where domain, bus, device, and function are all hexadecimal
values.

Returns
An instance of the Device class that has the PCI Bus ID as given by the argument pci_bus_id.

Return type
device (Device)

synchronize(self)
Synchronizes the current thread to the device.

5.6. Low-level CUDA support 747

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

use(self)
Makes this device current.

If you want to switch a device temporarily, use the with statement.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

attributes

A dictionary of device attributes.

Returns
Dictionary of attribute values with the names as keys. The string cudaDevAttr has been
trimmed from the names. For example, the attribute corresponding to the enumerated value
cudaDevAttrMaxThreadsPerBlock will have key MaxThreadsPerBlock.

Return type
attributes (dict)

compute_capability

Compute capability of this device.

The capability is represented by a string containing the major index and the minor index. For example,
compute capability 3.5 is represented by the string ‘35’.

cublas_handle

The cuBLAS handle for this device.

The same handle is used for the same device even if the Device instance itself is different.

cusolver_handle

The cuSOLVER handle for this device.

The same handle is used for the same device even if the Device instance itself is different.

cusolver_sp_handle

The cuSOLVER Sphandle for this device.

The same handle is used for the same device even if the Device instance itself is different.

748 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#dict

CuPy Documentation, Release 13.0.0

cusparse_handle

The cuSPARSE handle for this device.

The same handle is used for the same device even if the Device instance itself is different.

id

‘int’

Type
id

mem_info

The device memory info.

Returns
The amount of free memory, in bytes. total: The total amount of memory, in bytes.

Return type
free

pci_bus_id

A string of the PCI Bus ID

Returns
Returned identifier string for the device in the following format [do-
main]:[bus]:[device].[function] where domain, bus, device, and function are all hexadecimal
values.

Return type
pci_bus_id (str)

5.6. Low-level CUDA support 749

https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

5.6.2 Memory management

cupy.get_default_memory_pool() Returns CuPy default memory pool for GPU memory.
cupy.get_default_pinned_memory_pool() Returns CuPy default memory pool for pinned memory.
cupy.cuda.Memory(size_t size) Memory allocation on a CUDA device.
cupy.cuda.MemoryAsync(size_t size, stream) Asynchronous memory allocation on a CUDA device.
cupy.cuda.ManagedMemory(size_t size) Managed memory (Unified memory) allocation on a

CUDA device.
cupy.cuda.UnownedMemory(intptr_t ptr, ...) CUDA memory that is not owned by CuPy.
cupy.cuda.PinnedMemory(size[, flags]) Pinned memory allocation on host.
cupy.cuda.MemoryPointer(BaseMemory mem, ...) Pointer to a point on a device memory.
cupy.cuda.PinnedMemoryPointer(mem, ...) Pointer of a pinned memory.
cupy.cuda.malloc_managed(size_t size) Allocate managed memory (unified memory).
cupy.cuda.malloc_async(size_t size) (Experimental) Allocate memory from Stream Ordered

Memory Allocator.
cupy.cuda.alloc(size) Calls the current allocator.
cupy.cuda.alloc_pinned_memory(size_t size) Calls the current allocator.
cupy.cuda.get_allocator() Returns the current allocator for GPU memory.
cupy.cuda.set_allocator([allocator]) Sets the current allocator for GPU memory.
cupy.cuda.using_allocator([allocator]) Sets a thread-local allocator for GPU memory inside
cupy.cuda.set_pinned_memory_allocator([...]) Sets the current allocator for the pinned memory.
cupy.cuda.MemoryPool([allocator]) Memory pool for all GPU devices on the host.
cupy.cuda.MemoryAsyncPool([pool_handles]) (Experimental) CUDA memory pool for all GPU devices

on the host.
cupy.cuda.PinnedMemoryPool([allocator]) Memory pool for pinned memory on the host.
cupy.cuda.PythonFunctionAllocator(...) Allocator with python functions to perform memory al-

location.
cupy.cuda.CFunctionAllocator(intptr_t param, ...) Allocator with C function pointers to allocation routines.

cupy.get_default_memory_pool

cupy.get_default_memory_pool()

Returns CuPy default memory pool for GPU memory.

Returns
The memory pool object.

Return type
cupy.cuda.MemoryPool

Note: If you want to disable memory pool, please use the following code.

>>> cupy.cuda.set_allocator(None)

750 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupy.get_default_pinned_memory_pool

cupy.get_default_pinned_memory_pool()

Returns CuPy default memory pool for pinned memory.

Returns
The memory pool object.

Return type
cupy.cuda.PinnedMemoryPool

Note: If you want to disable memory pool, please use the following code.

>>> cupy.cuda.set_pinned_memory_allocator(None)

cupy.cuda.Memory

class cupy.cuda.Memory(size_t size)
Memory allocation on a CUDA device.

This class provides an RAII interface of the CUDA memory allocation.

Parameters
size (int) – Size of the memory allocation in bytes.

Methods

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

5.6. Low-level CUDA support 751

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Attributes

device

device_id

‘int’

Type
device_id

ptr

‘intptr_t’

Type
ptr

size

‘size_t’

Type
size

cupy.cuda.MemoryAsync

class cupy.cuda.MemoryAsync(size_t size, stream)

Asynchronous memory allocation on a CUDA device.

This class provides an RAII interface of the CUDA memory allocation.

Parameters
• size (int) – Size of the memory allocation in bytes.

• stream (Stream) – The stream on which the memory is allocated and freed.

Methods

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

752 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Attributes

device

device_id

‘int’

Type
device_id

ptr

‘intptr_t’

Type
ptr

size

‘size_t’

Type
size

stream_ref

cupy.cuda.ManagedMemory

class cupy.cuda.ManagedMemory(size_t size)
Managed memory (Unified memory) allocation on a CUDA device.

This class provides an RAII interface of the CUDA managed memory allocation.

Parameters
size (int) – Size of the memory allocation in bytes.

Methods

advise(self, int advise, Device dev)
(experimental) Advise about the usage of this memory.

Parameters
• advics (int) – Advise to be applied for this memory.

• dev (cupy.cuda.Device) – Device to apply the advice for.

prefetch(self, stream)

(experimental) Prefetch memory.

Parameters
stream (cupy.cuda.Stream) – CUDA stream.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

5.6. Low-level CUDA support 753

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

device

device_id

‘int’

Type
device_id

ptr

‘intptr_t’

Type
ptr

size

‘size_t’

Type
size

cupy.cuda.UnownedMemory

class cupy.cuda.UnownedMemory(intptr_t ptr, size_t size, owner, int device_id=-1)
CUDA memory that is not owned by CuPy.

Parameters
• ptr (int) – Pointer to the buffer.

• size (int) – Size of the buffer.

• owner (object) – Reference to the owner object to keep the memory alive.

• device_id (int) – CUDA device ID of the buffer. If omitted, the device associated to the
pointer is retrieved.

754 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Methods

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

device

device_id

‘int’

Type
device_id

ptr

‘intptr_t’

Type
ptr

size

‘size_t’

Type
size

cupy.cuda.PinnedMemory

class cupy.cuda.PinnedMemory(size, flags=0)
Pinned memory allocation on host.

This class provides a RAII interface of the pinned memory allocation.

Parameters
size (int) – Size of the memory allocation in bytes.

5.6. Low-level CUDA support 755

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Methods

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

cupy.cuda.MemoryPointer

class cupy.cuda.MemoryPointer(BaseMemory mem, ptrdiff_t offset)
Pointer to a point on a device memory.

An instance of this class holds a reference to the original memory buffer and a pointer to a place within this
buffer.

Parameters
• mem (BaseMemory) – The device memory buffer.

• offset (int) – An offset from the head of the buffer to the place this pointer refers.

Variables
• ~MemoryPointer.device (Device) – Device whose memory the pointer refers to.

• ~MemoryPointer.mem (BaseMemory) – The device memory buffer.

• ~MemoryPointer.ptr (int) – Pointer to the place within the buffer.

Methods

copy_from(self, mem, size_t size)
Copies a memory sequence from a (possibly different) device or host.

This function is a useful interface that selects appropriate one from copy_from_device() and
copy_from_host().

Parameters
• mem (int or ctypes.c_void_p or cupy.cuda.MemoryPointer) – Source memory

pointer.

• size (int) – Size of the sequence in bytes.

756 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Warning: This function always uses the legacy default stream and does not honor the current stream.
Use copy_from_async instead if you are using streams in your code, or have PTDS enabled.

copy_from_async(self, mem, size_t size, stream=None)
Copies a memory sequence from an arbitrary place asynchronously.

This function is a useful interface that selects appropriate one from copy_from_device_async() and
copy_from_host_async().

Parameters
• mem (int or ctypes.c_void_p or cupy.cuda.MemoryPointer) – Source memory

pointer.

• size (int) – Size of the sequence in bytes.

• stream (cupy.cuda.Stream) – CUDA stream. The default uses CUDA stream of the
current context.

copy_from_device(self, MemoryPointer src, size_t size)
Copies a memory sequence from a (possibly different) device.

Parameters
• src (cupy.cuda.MemoryPointer) – Source memory pointer.

• size (int) – Size of the sequence in bytes.

Warning: This function always uses the legacy default stream and does not honor the current stream.
Use copy_from_device_async instead if you are using streams in your code, or have PTDS enabled.

copy_from_device_async(self, MemoryPointer src, size_t size, stream=None)
Copies a memory from a (possibly different) device asynchronously.

Parameters
• src (cupy.cuda.MemoryPointer) – Source memory pointer.

• size (int) – Size of the sequence in bytes.

• stream (cupy.cuda.Stream) – CUDA stream. The default uses CUDA stream of the
current context.

copy_from_host(self, mem, size_t size)
Copies a memory sequence from the host memory.

Parameters
• mem (int or ctypes.c_void_p) – Source memory pointer.

• size (int) – Size of the sequence in bytes.

Warning: This function always uses the legacy default stream and does not honor the current stream.
Use copy_from_host_async instead if you are using streams in your code, or have PTDS enabled.

5.6. Low-level CUDA support 757

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

copy_from_host_async(self, mem, size_t size, stream=None)
Copies a memory sequence from the host memory asynchronously.

Parameters
• mem (int or ctypes.c_void_p) – Source memory pointer. It must point to pinned

memory.

• size (int) – Size of the sequence in bytes.

• stream (cupy.cuda.Stream) – CUDA stream. The default uses CUDA stream of the
current context.

copy_to_host(self, mem, size_t size)
Copies a memory sequence to the host memory.

Parameters
• mem (int or ctypes.c_void_p) – Target memory pointer.

• size (int) – Size of the sequence in bytes.

Warning: This function always uses the legacy default stream and does not honor the current stream.
Use copy_to_host_async instead if you are using streams in your code, or have PTDS enabled.

copy_to_host_async(self, mem, size_t size, stream=None)
Copies a memory sequence to the host memory asynchronously.

Parameters
• mem (int or ctypes.c_void_p) – Target memory pointer. It must point to pinned mem-

ory.

• size (int) – Size of the sequence in bytes.

• stream (cupy.cuda.Stream) – CUDA stream. The default uses CUDA stream of the
current context.

memset(self, int value, size_t size)
Fills a memory sequence by constant byte value.

Parameters
• value (int) – Value to fill.

• size (int) – Size of the sequence in bytes.

Warning: This function always uses the legacy default stream and does not honor the current stream.
Use memset_async instead if you are using streams in your code, or have PTDS enabled.

memset_async(self, int value, size_t size, stream=None)
Fills a memory sequence by constant byte value asynchronously.

Parameters
• value (int) – Value to fill.

• size (int) – Size of the sequence in bytes.

758 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• stream (cupy.cuda.Stream) – CUDA stream. The default uses CUDA stream of the
current context.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

device

device_id

mem

ptr

cupy.cuda.PinnedMemoryPointer

class cupy.cuda.PinnedMemoryPointer(mem, ptrdiff_t offset)
Pointer of a pinned memory.

An instance of this class holds a reference to the original memory buffer and a pointer to a place within this
buffer.

Parameters
• mem (PinnedMemory) – The device memory buffer.

• offset (int) – An offset from the head of the buffer to the place this pointer refers.

Variables
• ~PinnedMemoryPointer.mem (PinnedMemory) – The device memory buffer.

• ~PinnedMemoryPointer.ptr (int) – Pointer to the place within the buffer.

5.6. Low-level CUDA support 759

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Methods

size(self)→ size_t

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

mem

ptr

cupy.cuda.malloc_managed

cupy.cuda.malloc_managed(size_t size)→ MemoryPointer
Allocate managed memory (unified memory).

This method can be used as a CuPy memory allocator. The simplest way to use a managed memory as the default
allocator is the following code:

set_allocator(malloc_managed)

The advantage using managed memory in CuPy is that device memory oversubscription is possible for GPUs
that have a non-zero value for the device attribute cudaDevAttrConcurrentManagedAccess. CUDA >= 8.0 with
GPUs later than or equal to Pascal is preferrable.

Read more at: https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#
axzz4qygc1Ry1 # NOQA

Parameters
size (int) – Size of the memory allocation in bytes.

Returns
Pointer to the allocated buffer.

Return type
MemoryPointer

760 Chapter 5. API Reference

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#axzz4qygc1Ry1
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#axzz4qygc1Ry1
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

cupy.cuda.malloc_async

cupy.cuda.malloc_async(size_t size)→ MemoryPointer
(Experimental) Allocate memory from Stream Ordered Memory Allocator.

This method can be used as a CuPy memory allocator. The simplest way to use CUDA’s Stream Ordered Memory
Allocator as the default allocator is the following code:

set_allocator(malloc_async)

Using this feature requires CUDA >= 11.2 with a supported GPU and platform. If it is not supported, an error
will be raised.

The current CuPy stream is used to allocate/free the memory.

Parameters
size (int) – Size of the memory allocation in bytes.

Returns
Pointer to the allocated buffer.

Return type
MemoryPointer

Warning: This feature is currently experimental and subject to change.

See also:
Stream Ordered Memory Allocator

cupy.cuda.alloc

cupy.cuda.alloc(size)→ MemoryPointer
Calls the current allocator.

Use set_allocator() to change the current allocator.

Parameters
size (int) – Size of the memory allocation.

Returns
Pointer to the allocated buffer.

Return type
MemoryPointer

cupy.cuda.alloc_pinned_memory

cupy.cuda.alloc_pinned_memory(size_t size)→ PinnedMemoryPointer
Calls the current allocator.

Use set_pinned_memory_allocator() to change the current allocator.

Parameters
size (int) – Size of the memory allocation.

5.6. Low-level CUDA support 761

https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#stream-ordered-memory-allocator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Returns
Pointer to the allocated buffer.

Return type
PinnedMemoryPointer

cupy.cuda.get_allocator

cupy.cuda.get_allocator()

Returns the current allocator for GPU memory.

Returns
CuPy memory allocator.

Return type
function

cupy.cuda.set_allocator

cupy.cuda.set_allocator(allocator=None)
Sets the current allocator for GPU memory.

Parameters
allocator (function) – CuPy memory allocator. It must have the same interface as the cupy.
cuda.alloc() function, which takes the buffer size as an argument and returns the device buffer
of that size. When None is specified, raw memory allocator will be used (i.e., memory pool is
disabled).

cupy.cuda.using_allocator

cupy.cuda.using_allocator(allocator=None)

Sets a thread-local allocator for GPU memory inside
context manager

Parameters
allocator (function) – CuPy memory allocator. It must have the same interface as the cupy.
cuda.alloc() function, which takes the buffer size as an argument and returns the device buffer
of that size. When None is specified, raw memory allocator will be used (i.e., memory pool is
disabled).

cupy.cuda.set_pinned_memory_allocator

cupy.cuda.set_pinned_memory_allocator(allocator=None)
Sets the current allocator for the pinned memory.

Parameters
allocator (function) – CuPy pinned memory allocator. It must have the same interface as
the cupy.cuda.alloc_pinned_memory() function, which takes the buffer size as an argument
and returns the device buffer of that size. When None is specified, raw memory allocator is used
(i.e., memory pool is disabled).

762 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupy.cuda.MemoryPool

class cupy.cuda.MemoryPool(allocator=None)
Memory pool for all GPU devices on the host.

A memory pool preserves any allocations even if they are freed by the user. Freed memory buffers are held by the
memory pool as free blocks, and they are reused for further memory allocations of the same sizes. The allocated
blocks are managed for each device, so one instance of this class can be used for multiple devices.

Note: When the allocation is skipped by reusing the pre-allocated block, it does not call cudaMalloc and
therefore CPU-GPU synchronization does not occur. It makes interleaves of memory allocations and kernel
invocations very fast.

Note: The memory pool holds allocated blocks without freeing as much as possible. It makes the program
hold most of the device memory, which may make other CUDA programs running in parallel out-of-memory
situation.

Parameters
allocator (function) – The base CuPy memory allocator. It is used for allocating new blocks
when the blocks of the required size are all in use.

Methods

free_all_blocks(self, stream=None)
Releases free blocks.

Parameters
stream (cupy.cuda.Stream) – Release free blocks in the arena of the given stream. The
default releases blocks in all arenas.

Note: A memory pool may split a free block for space efficiency. A split block is not released until all its
parts are merged back into one even if free_all_blocks() is called.

free_all_free(self)
(Deprecated) Use free_all_blocks() instead.

free_bytes(self)→ size_t
Gets the total number of bytes acquired but not used by the pool.

Returns
The total number of bytes acquired but not used by the pool.

Return type
int

get_limit(self)→ size_t
Gets the upper limit of memory allocation of the current device.

Returns
The number of bytes

5.6. Low-level CUDA support 763

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Return type
int

malloc(self, size_t size)→ MemoryPointer
Allocates the memory, from the pool if possible.

This method can be used as a CuPy memory allocator. The simplest way to use a memory pool as the
default allocator is the following code:

set_allocator(MemoryPool().malloc)

Also, the way to use a memory pool of Managed memory (Unified memory) as the default allocator is the
following code:

set_allocator(MemoryPool(malloc_managed).malloc)

Parameters
size (int) – Size of the memory buffer to allocate in bytes.

Returns
Pointer to the allocated buffer.

Return type
MemoryPointer

n_free_blocks(self)→ size_t
Counts the total number of free blocks.

Returns
The total number of free blocks.

Return type
int

set_limit(self, size=None, fraction=None)
Sets the upper limit of memory allocation of the current device.

When fraction is specified, its value will become a fraction of the amount of GPU memory that is
available for allocation. For example, if you have a GPU with 2 GiB memory, you can either use
set_limit(fraction=0.5) or set_limit(size=1024**3) to limit the memory size to 1 GiB.

size and fraction cannot be specified at the same time. If both of them are not specified or 0 is specified,
the limit will be disabled.

Note: You can also set the limit by using CUPY_GPU_MEMORY_LIMIT environment variable, see Environ-
ment variables for the details. The limit set by this method supersedes the value specified in the environment
variable.

Also note that this method only changes the limit for the current device, whereas the environment variable
sets the default limit for all devices.

Parameters
• size (int) – Limit size in bytes.

• fraction (float) – Fraction in the range of [0, 1].

764 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

total_bytes(self)→ size_t
Gets the total number of bytes acquired by the pool.

Returns
The total number of bytes acquired by the pool.

Return type
int

used_bytes(self)→ size_t
Gets the total number of bytes used by the pool.

Returns
The total number of bytes used by the pool.

Return type
int

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

cupy.cuda.MemoryAsyncPool

class cupy.cuda.MemoryAsyncPool(pool_handles='current')
(Experimental) CUDA memory pool for all GPU devices on the host.

A memory pool preserves any allocations even if they are freed by the user. One instance of this class can be used
for multiple devices. This class uses CUDA’s Stream Ordered Memory Allocator (supported on CUDA 11.2+).
The simplest way to use this pool as CuPy’s default allocator is the following code:

set_allocator(MemoryAsyncPool().malloc)

Using this feature requires CUDA >= 11.2 with a supported GPU and platform. If it is not supported, an error
will be raised.

The current CuPy stream is used to allocate/free the memory.

Parameters
pool_handles (str or int) – A flag to indicate which mempool to use. ‘default’ is for the
device’s default mempool, ‘current’ is for the current mempool (which could be the default one),
and an int that represents cudaMemPool_t created from elsewhere for an external mempool. A
list consisting of these flags can also be accepted, in which case the list length must equal to the
total number of visible devices so that the mempools for each device can be set independently.

5.6. Low-level CUDA support 765

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Warning: This feature is currently experimental and subject to change.

Note: MemoryAsyncPool currently cannot work with memory hooks.

See also:
Stream Ordered Memory Allocator

Methods

free_all_blocks(self, stream=None)
Releases free memory.

Parameters
stream (cupy.cuda.Stream) – Release memory freed on the given stream. If stream is
None, the current stream is used.

See also:
Physical Page Caching Behavior

free_bytes(self)→ size_t
Gets the total number of bytes acquired but not used by the pool.

Returns
The total number of bytes acquired but not used by the pool.

Return type
int

get_limit(self)→ size_t
Gets the upper limit of memory allocation of the current device.

Returns
The number of bytes

Return type
int

Note: Unlike with MemoryPool, MemoryAsyncPool’s set_limit() method can only impose a soft
limit. If other (non-CuPy) applications are also allocating memory from the same mempool, this limit may
not be respected.

malloc(self, size_t size)→ MemoryPointer
Allocate memory from the current device’s pool on the current stream.

This method can be used as a CuPy memory allocator. The simplest way to use a memory pool as the
default allocator is the following code:

set_allocator(MemoryAsyncPool().malloc)

Parameters
size (int) – Size of the memory buffer to allocate in bytes.

766 Chapter 5. API Reference

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#stream-ordered-memory-allocator
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#stream-ordered-physical-page-caching-behavior
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Returns
Pointer to the allocated buffer.

Return type
MemoryPointer

n_free_blocks(self)→ size_t

set_limit(self, size=None, fraction=None)
Sets the upper limit of memory allocation of the current device.

When fraction is specified, its value will become a fraction of the amount of GPU memory that is
available for allocation. For example, if you have a GPU with 2 GiB memory, you can either use
set_limit(fraction=0.5) or set_limit(size=1024**3) to limit the memory size to 1 GiB.

size and fraction cannot be specified at the same time. If both of them are not specified or 0 is specified,
the limit will be disabled.

Note: Unlike with MemoryPool, MemoryAsyncPool’s set_limit() method can only impose a soft
limit. If other (non-CuPy) applications are also allocating memory from the same mempool, this limit may
not be respected. Internally, this limit is set via the cudaMemPoolAttrReleaseThreshold attribute.

Note: You can also set the limit by using CUPY_GPU_MEMORY_LIMIT environment variable, see Environ-
ment variables for the details. The limit set by this method supersedes the value specified in the environment
variable.

Also note that this method only changes the limit for the current device, whereas the environment variable
sets the default limit for all devices.

Parameters
• size (int) – Limit size in bytes.

• fraction (float) – Fraction in the range of [0, 1].

total_bytes(self)→ size_t
Gets the total number of bytes acquired by the pool.

Returns
The total number of bytes acquired by the pool.

Return type
int

used_bytes(self)→ size_t
Gets the total number of bytes used by the pool.

Returns
The total number of bytes used by the pool.

Return type
int

__eq__(value, /)
Return self==value.

5.6. Low-level CUDA support 767

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

memoryAsyncHasStat

cupy.cuda.PinnedMemoryPool

class cupy.cuda.PinnedMemoryPool(allocator=_malloc)
Memory pool for pinned memory on the host.

Note that it preserves all allocated memory buffers even if the user explicitly release the one. Those released
memory buffers are held by the memory pool as free blocks, and reused for further memory allocations of the
same size.

Parameters
allocator (function) – The base CuPy pinned memory allocator. It is used for allocating new
blocks when the blocks of the required size are all in use.

Methods

free(self, intptr_t ptr, size_t size)

free_all_blocks(self)
Release free all blocks.

malloc(self, size_t size)→ PinnedMemoryPointer

n_free_blocks(self)
Count the total number of free blocks.

Returns
The total number of free blocks.

Return type
int

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

768 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

cupy.cuda.PythonFunctionAllocator

class cupy.cuda.PythonFunctionAllocator(malloc_func, free_func)
Allocator with python functions to perform memory allocation.

This allocator keeps functions corresponding to malloc and free, delegating the actual allocation to external
sources while only handling the timing of the resource allocation and deallocation.

malloc should follow the signature malloc(int, int) -> int returning the pointer to the allocated memory
given the param object, the number of bytes to allocate and the device id on which the allocation should take
place.

Similarly, free should follow the signature free(int, int) with no return, taking the pointer to the allocated
memory and the device id on which the memory was allocated.

If the external memory management supports asynchronous operations, the current CuPy stream can be re-
trieved inside malloc_func and free_func by calling cupy.cuda.get_current_stream(). To use external
streams, wrap them with cupy.cuda.ExternalStream().

Parameters
• malloc_func (function) – malloc function to be called.

• free_func (function) – free function to be called.

Methods

malloc(self, size_t size)→ MemoryPointer

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

5.6. Low-level CUDA support 769

CuPy Documentation, Release 13.0.0

cupy.cuda.CFunctionAllocator

class cupy.cuda.CFunctionAllocator(intptr_t param, intptr_t malloc_func, intptr_t free_func, owner)
Allocator with C function pointers to allocation routines.

This allocator keeps raw pointers to a param object along with functions pointers to malloc and free, delegating
the actual allocation to external sources while only handling the timing of the resource allocation and dealloca-
tion.

malloc should follow the signature void*(*malloc)(void*, size_t, int) returning the pointer to the al-
located memory given the pointer to param, the number of bytes to allocate and the device id on which the
allocation should take place.

Similarly, free should follow the signature void(*free)(void*, void*, int) with no return, taking the
pointer to param, the pointer to the allocated memory and the device id on which the memory was allocated.

Parameters
• param (int) – Address of param.

• malloc_func (int) – Address of malloc.

• free_func (int) – Address of free.

• owner (object) – Reference to the owner object to keep the param and the functions alive.

Methods

malloc(self, size_t size)→ MemoryPointer

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

5.6.3 Memory hook

cupy.cuda.MemoryHook() Base class of hooks for Memory allocations.
cupy.cuda.memory_hooks.DebugPrintHook([...]) Memory hook that prints debug information.
cupy.cuda.memory_hooks.LineProfileHook([...]) Code line CuPy memory profiler.

770 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

CuPy Documentation, Release 13.0.0

cupy.cuda.MemoryHook

class cupy.cuda.MemoryHook

Base class of hooks for Memory allocations.

MemoryHook is an callback object. Registered memory hooks are invoked before and after memory is allocated
from GPU device, and memory is retrieved from memory pool, and memory is released to memory pool.

Memory hooks that derive MemoryHook are required to implement six methods: alloc_preprocess(),
alloc_postprocess(), malloc_preprocess(), malloc_postprocess(), free_preprocess(), and
free_postprocess(), By default, these methods do nothing.

Specifically, alloc_preprocess() (resp. alloc_postprocess()) of all memory hooks registered are called
before (resp. after) memory is allocated from GPU device.

Likewise, malloc_preprocess() (resp. malloc_postprocess()) of all memory hooks registered are called
before (resp. after) memory is retrieved from memory pool.

Below is a pseudo code to descirbe how malloc and hooks work. Please note that alloc_preprocess() and
alloc_postprocess() are not invoked if a cached free chunk is found:

def malloc(size):
Call malloc_preprocess of all memory hooks
Try to find a cached free chunk from memory pool
if chunk is not found:

Call alloc_preprocess for all memory hooks
Invoke actual memory allocation to get a new chunk
Call alloc_postprocess for all memory hooks

Call malloc_postprocess for all memory hooks

Moreover, free_preprocess() (resp. free_postprocess()) of all memory hooks registered are called be-
fore (resp. after) memory is released to memory pool.

Below is a pseudo code to descirbe how free and hooks work:

def free(ptr):
Call free_preprocess of all memory hooks
Push a memory chunk of a given pointer back to memory pool
Call free_postprocess for all memory hooks

To register a memory hook, use with statement. Memory hooks are registered to all method calls within with
statement and are unregistered at the end of with statement.

Note: CuPy stores the dictionary of registered function hooks as a thread local object. So, memory hooks
registered can be different depending on threads.

5.6. Low-level CUDA support 771

CuPy Documentation, Release 13.0.0

Methods

__enter__(self)

__exit__(self, *_)

alloc_postprocess(self, **kwargs)
Callback function invoked after allocating memory from GPU device.

Keyword Arguments
• device_id (int) – CUDA device ID

• mem_size (int) – Rounded memory bytesize allocated

• mem_ptr (int) – Obtained memory pointer. 0 if an error occurred in allocation.

alloc_preprocess(self, **kwargs)
Callback function invoked before allocating memory from GPU device.

Keyword Arguments
• device_id (int) – CUDA device ID

• mem_size (int) – Rounded memory bytesize to be allocated

free_postprocess(self, **kwargs)
Callback function invoked after releasing memory to memory pool.

Keyword Arguments
• device_id (int) – CUDA device ID

• mem_size (int) – Memory bytesize

• mem_ptr (int) – Memory pointer to free

• pmem_id (int) – Pooled memory object ID.

free_preprocess(self, **kwargs)
Callback function invoked before releasing memory to memory pool.

Keyword Arguments
• device_id (int) – CUDA device ID

• mem_size (int) – Memory bytesize

• mem_ptr (int) – Memory pointer to free

• pmem_id (int) – Pooled memory object ID.

malloc_postprocess(self, **kwargs)
Callback function invoked after retrieving memory from memory pool.

Keyword Arguments
• device_id (int) – CUDA device ID

• size (int) – Requested memory bytesize to allocate

• mem_size (int) – Rounded memory bytesize allocated

• mem_ptr (int) – Obtained memory pointer. 0 if an error occurred in malloc.

• pmem_id (int) – Pooled memory object ID. 0 if an error occurred in malloc.

772 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

malloc_preprocess(self, **kwargs)
Callback function invoked before retrieving memory from memory pool.

Keyword Arguments
• device_id (int) – CUDA device ID

• size (int) – Requested memory bytesize to allocate

• mem_size (int) – Rounded memory bytesize to be allocated

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

name = 'MemoryHook'

cupy.cuda.memory_hooks.DebugPrintHook

class cupy.cuda.memory_hooks.DebugPrintHook(file=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='utf-8'>, flush=True)

Memory hook that prints debug information.

This memory hook outputs the debug information of input arguments of malloc and free methods involved in
the hooked functions at postprocessing time (that is, just after each method is called).

Example

The basic usage is to use it with with statement.

Code example:

>>> import cupy
>>> from cupy.cuda import memory_hooks
>>>
>>> cupy.cuda.set_allocator(cupy.cuda.MemoryPool().malloc)
>>> with memory_hooks.DebugPrintHook():
... x = cupy.array([1, 2, 3])
... del x

5.6. Low-level CUDA support 773

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Output example:

{"hook":"alloc","device_id":0,"mem_size":512,"mem_ptr":150496608256}
{"hook":"malloc","device_id":0,"size":24,"mem_size":512,"mem_ptr":150496608256,
→˓"pmem_id":"0x7f39200c5278"}
{"hook":"free","device_id":0,"mem_size":512,"mem_ptr":150496608256,"pmem_id":
→˓"0x7f39200c5278"}

where the output format is JSONL (JSON Lines) and hook is the name of hook point, and device_id is the
CUDA Device ID, and size is the requested memory size to allocate, and mem_size is the rounded memory
size to be allocated, and mem_ptr is the memory pointer, and pmem_id is the pooled memory object ID.

Variables
• file – Output file_like object that redirect to.

• flush – If True, this hook forcibly flushes the text stream at the end of print. The default is
True.

Methods

__enter__(self)

__exit__(self, *_)

alloc_postprocess(self, **kwargs)
Callback function invoked after allocating memory from GPU device.

Keyword Arguments
• device_id (int) – CUDA device ID

• mem_size (int) – Rounded memory bytesize allocated

• mem_ptr (int) – Obtained memory pointer. 0 if an error occurred in allocation.

alloc_preprocess(self, **kwargs)
Callback function invoked before allocating memory from GPU device.

Keyword Arguments
• device_id (int) – CUDA device ID

• mem_size (int) – Rounded memory bytesize to be allocated

free_postprocess(self, **kwargs)
Callback function invoked after releasing memory to memory pool.

Keyword Arguments
• device_id (int) – CUDA device ID

• mem_size (int) – Memory bytesize

• mem_ptr (int) – Memory pointer to free

• pmem_id (int) – Pooled memory object ID.

free_preprocess(self, **kwargs)
Callback function invoked before releasing memory to memory pool.

Keyword Arguments

774 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• device_id (int) – CUDA device ID

• mem_size (int) – Memory bytesize

• mem_ptr (int) – Memory pointer to free

• pmem_id (int) – Pooled memory object ID.

malloc_postprocess(self, **kwargs)
Callback function invoked after retrieving memory from memory pool.

Keyword Arguments
• device_id (int) – CUDA device ID

• size (int) – Requested memory bytesize to allocate

• mem_size (int) – Rounded memory bytesize allocated

• mem_ptr (int) – Obtained memory pointer. 0 if an error occurred in malloc.

• pmem_id (int) – Pooled memory object ID. 0 if an error occurred in malloc.

malloc_preprocess(self, **kwargs)
Callback function invoked before retrieving memory from memory pool.

Keyword Arguments
• device_id (int) – CUDA device ID

• size (int) – Requested memory bytesize to allocate

• mem_size (int) – Rounded memory bytesize to be allocated

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

name = 'DebugPrintHook'

5.6. Low-level CUDA support 775

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

cupy.cuda.memory_hooks.LineProfileHook

class cupy.cuda.memory_hooks.LineProfileHook(max_depth=0)
Code line CuPy memory profiler.

This profiler shows line-by-line GPU memory consumption using traceback module. But, note that it can trace
only CPython level, no Cython level. ref. https://github.com/cython/cython/issues/1755

Example

Code example:

from cupy.cuda import memory_hooks
hook = memory_hooks.LineProfileHook()
with hook:

some CuPy codes
hook.print_report()

Output example:

_root (4.00KB, 4.00KB)
lib/python3.6/unittest/__main__.py:18:<module> (4.00KB, 4.00KB)
lib/python3.6/unittest/main.py:255:runTests (4.00KB, 4.00KB)

tests/cupy_tests/test.py:37:test (1.00KB, 1.00KB)
tests/cupy_tests/test.py:38:test (1.00KB, 1.00KB)
tests/cupy_tests/test.py:39:test (2.00KB, 2.00KB)

Each line shows:

{filename}:{lineno}:{func_name} ({used_bytes}, {acquired_bytes})

where used_bytes is the memory bytes used from CuPy memory pool, and acquired_bytes is the actual memory
bytes the CuPy memory pool acquired from GPU device. _root is a root node of the stack trace to show total
memory usage.

Parameters
max_depth (int) – maximum depth to follow stack traces. Default is 0 (no limit).

Methods

__enter__(self)

__exit__(self, *_)

alloc_postprocess(self, **kwargs)
Callback function invoked after allocating memory from GPU device.

Keyword Arguments
• device_id (int) – CUDA device ID

• mem_size (int) – Rounded memory bytesize allocated

• mem_ptr (int) – Obtained memory pointer. 0 if an error occurred in allocation.

776 Chapter 5. API Reference

https://github.com/cython/cython/issues/1755
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

alloc_preprocess(self, **kwargs)
Callback function invoked before allocating memory from GPU device.

Keyword Arguments
• device_id (int) – CUDA device ID

• mem_size (int) – Rounded memory bytesize to be allocated

free_postprocess(self, **kwargs)
Callback function invoked after releasing memory to memory pool.

Keyword Arguments
• device_id (int) – CUDA device ID

• mem_size (int) – Memory bytesize

• mem_ptr (int) – Memory pointer to free

• pmem_id (int) – Pooled memory object ID.

free_preprocess(self, **kwargs)
Callback function invoked before releasing memory to memory pool.

Keyword Arguments
• device_id (int) – CUDA device ID

• mem_size (int) – Memory bytesize

• mem_ptr (int) – Memory pointer to free

• pmem_id (int) – Pooled memory object ID.

malloc_postprocess(self, **kwargs)
Callback function invoked after retrieving memory from memory pool.

Keyword Arguments
• device_id (int) – CUDA device ID

• size (int) – Requested memory bytesize to allocate

• mem_size (int) – Rounded memory bytesize allocated

• mem_ptr (int) – Obtained memory pointer. 0 if an error occurred in malloc.

• pmem_id (int) – Pooled memory object ID. 0 if an error occurred in malloc.

malloc_preprocess(self, **kwargs)
Callback function invoked before retrieving memory from memory pool.

Keyword Arguments
• device_id (int) – CUDA device ID

• size (int) – Requested memory bytesize to allocate

• mem_size (int) – Rounded memory bytesize to be allocated

print_report(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)
Prints a report of line memory profiling.

__eq__(value, /)
Return self==value.

5.6. Low-level CUDA support 777

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

name = 'LineProfileHook'

5.6.4 Streams and events

cupy.cuda.Stream([null, non_blocking, ptds]) CUDA stream.
cupy.cuda.ExternalStream(ptr[, device_id]) CUDA stream not managed by CuPy.
cupy.cuda.get_current_stream(int device_id=-1) Gets the current CUDA stream for the specified CUDA

device.
cupy.cuda.Event([block, disable_timing, ...]) CUDA event, a synchronization point of CUDA streams.
cupy.cuda.get_elapsed_time(start_event, ...) Gets the elapsed time between two events.

cupy.cuda.Stream

class cupy.cuda.Stream(null=False, non_blocking=False, ptds=False)
CUDA stream.

This class handles the CUDA stream handle in RAII way, i.e., when an Stream instance is destroyed by the GC,
its handle is also destroyed.

Note that if both null and ptds are False, a plain new stream is created.

Parameters
• null (bool) – If True, the stream is a null stream (i.e. the default stream that synchronizes

with all streams). Note that you can also use the Stream.null singleton object instead of
creating a new null stream object.

• ptds (bool) – If True and null is False, the per-thread default stream is used. Note that
you can also use the Stream.ptds singleton object instead of creating a new per-thread
default stream object.

• non_blocking (bool) – If True and both null and ptds are False, the stream does not
synchronize with the NULL stream.

Variables
• ~Stream.ptr (intptr_t) – Raw stream handle.

778 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

• ~Stream.device_id (int) – The ID of the device that the stream was created on. The
value -1 is used for the singleton stream objects.

Methods

__enter__(self)

__exit__(self, *args)

add_callback(self, callback, arg)
Adds a callback that is called when all queued work is done.

Parameters
• callback (function) – Callback function. It must take three arguments (Stream object,

int error status, and user data object), and returns nothing.

• arg (object) – Argument to the callback.

Note: Whenever possible, use the launch_host_func() method instead of this one, as it may be depre-
cated and removed from CUDA at some point.

begin_capture(self, mode=None)
Begin stream capture to construct a CUDA graph.

A call to this function must be paired with a call to end_capture() to complete the capture.

create a non-blocking stream for the purpose of capturing
s1 = cp.cuda.Stream(non_blocking=True)
with s1:

s1.begin_capture()
... perform operations to construct a graph ...
g = s1.end_capture()

the returned graph can be launched on any stream (including s1)
g.launch(stream=s1)
s1.synchronize()

s2 = cp.cuda.Stream()
with s2:

g.launch()
s2.synchronize()

Parameters
mode (int) – The stream capture mode. Default is streamCaptureModeRelaxed.

Note: During the stream capture, synchronous device-host transfers are not allowed. This has a particular
implication for CuPy APIs, as some functions that internally require synchronous transfer would not work
as expected and an exception would be raised. For further constraints of CUDA stream capture, please refer
to the CUDA Programming Guide.

5.6. Low-level CUDA support 779

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

Note: Currently this capability is not supported on HIP.

See also:
cudaStreamBeginCapture()

end_capture(self)
End stream capture and retrieve the constructed CUDA graph.

Returns
A CUDA graph object that encapsulates the captured work.

Return type
cupy.cuda.Graph

Note: Currently this capability is not supported on HIP.

See also:
cudaStreamEndCapture()

is_capturing(self)
Check if the stream is capturing.

Returns
If the capturing status is successfully queried, the returned value indicates the capturing status.
An exception could be raised if such a query is illegal, please refer to the CUDA Programming
Guide for detail.

Return type
bool

launch_host_func(self, callback, arg)
Launch a callback on host when all queued work is done.

Parameters
• callback (function) – Callback function. It must take only one argument (user data

object), and returns nothing.

• arg (object) – Argument to the callback.

Note: Whenever possible, this method is recommended over add_callback(), which may be deprecated
and removed from CUDA at some point.

See also:
cudaLaunchHostFunc()

record(self, event=None)
Records an event on the stream.

Parameters
event (None or cupy.cuda.Event) – CUDA event. If None, then a new plain event is
created and used.

Returns
The recorded event.

780 Chapter 5. API Reference

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1g793d7d4e474388ddfda531603dc34aa3
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1gf5a0efebc818054ceecd1e3e5e76d93e
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION.html#group__CUDART__EXECUTION_1g05841eaa5f90f27124241baafb3e856f

CuPy Documentation, Release 13.0.0

Return type
cupy.cuda.Event

See also:
cupy.cuda.Event.record()

synchronize(self)
Waits for the stream completing all queued work.

use(self)
Makes this stream current.

If you want to switch a stream temporarily, use the with statement.

wait_event(self, event)
Makes the stream wait for an event.

The future work on this stream will be done after the event.

Parameters
event (cupy.cuda.Event) – CUDA event.

__eq__(self, other)

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

done

True if all work on this stream has been done.

null = <Stream 0 (device -1)>

ptds = <Stream 2 (device -1)>

5.6. Low-level CUDA support 781

CuPy Documentation, Release 13.0.0

cupy.cuda.ExternalStream

class cupy.cuda.ExternalStream(ptr, device_id=-1)
CUDA stream not managed by CuPy.

This class allows to use external streams in CuPy by providing the stream pointer obtained from the CUDA
runtime call. The user is in charge of managing the life-cycle of the stream.

Parameters
• ptr (intptr_t) – Address of the cudaStream_t object.

• device_id (int) – The ID of the device that the stream was created on. Default is -1,
indicating it is unknown.

Variables
• ~Stream.ptr (intptr_t) – Raw stream handle.

• ~Stream.device_id (int) – The ID of the device that the stream was created on. The
value -1 is used to indicate it is unknown.

Warning: If device_id is not specified, the user is required to ensure legal operations of the stream.
Specifically, the stream must be used on the device that it was created on.

Methods

__enter__(self)

__exit__(self, *args)

add_callback(self, callback, arg)
Adds a callback that is called when all queued work is done.

Parameters
• callback (function) – Callback function. It must take three arguments (Stream object,

int error status, and user data object), and returns nothing.

• arg (object) – Argument to the callback.

Note: Whenever possible, use the launch_host_func() method instead of this one, as it may be depre-
cated and removed from CUDA at some point.

begin_capture(self, mode=None)
Begin stream capture to construct a CUDA graph.

A call to this function must be paired with a call to end_capture() to complete the capture.

create a non-blocking stream for the purpose of capturing
s1 = cp.cuda.Stream(non_blocking=True)
with s1:

s1.begin_capture()
... perform operations to construct a graph ...
g = s1.end_capture()

(continues on next page)

782 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

CuPy Documentation, Release 13.0.0

(continued from previous page)

the returned graph can be launched on any stream (including s1)
g.launch(stream=s1)
s1.synchronize()

s2 = cp.cuda.Stream()
with s2:

g.launch()
s2.synchronize()

Parameters
mode (int) – The stream capture mode. Default is streamCaptureModeRelaxed.

Note: During the stream capture, synchronous device-host transfers are not allowed. This has a particular
implication for CuPy APIs, as some functions that internally require synchronous transfer would not work
as expected and an exception would be raised. For further constraints of CUDA stream capture, please refer
to the CUDA Programming Guide.

Note: Currently this capability is not supported on HIP.

See also:
cudaStreamBeginCapture()

end_capture(self)
End stream capture and retrieve the constructed CUDA graph.

Returns
A CUDA graph object that encapsulates the captured work.

Return type
cupy.cuda.Graph

Note: Currently this capability is not supported on HIP.

See also:
cudaStreamEndCapture()

is_capturing(self)
Check if the stream is capturing.

Returns
If the capturing status is successfully queried, the returned value indicates the capturing status.
An exception could be raised if such a query is illegal, please refer to the CUDA Programming
Guide for detail.

Return type
bool

launch_host_func(self, callback, arg)
Launch a callback on host when all queued work is done.

5.6. Low-level CUDA support 783

https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1g793d7d4e474388ddfda531603dc34aa3
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1gf5a0efebc818054ceecd1e3e5e76d93e
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Parameters
• callback (function) – Callback function. It must take only one argument (user data

object), and returns nothing.

• arg (object) – Argument to the callback.

Note: Whenever possible, this method is recommended over add_callback(), which may be deprecated
and removed from CUDA at some point.

See also:
cudaLaunchHostFunc()

record(self, event=None)
Records an event on the stream.

Parameters
event (None or cupy.cuda.Event) – CUDA event. If None, then a new plain event is
created and used.

Returns
The recorded event.

Return type
cupy.cuda.Event

See also:
cupy.cuda.Event.record()

synchronize(self)
Waits for the stream completing all queued work.

use(self)
Makes this stream current.

If you want to switch a stream temporarily, use the with statement.

wait_event(self, event)
Makes the stream wait for an event.

The future work on this stream will be done after the event.

Parameters
event (cupy.cuda.Event) – CUDA event.

__eq__(self, other)

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

784 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION.html#group__CUDART__EXECUTION_1g05841eaa5f90f27124241baafb3e856f

CuPy Documentation, Release 13.0.0

__ge__(value, /)
Return self>=value.

Attributes

done

True if all work on this stream has been done.

cupy.cuda.get_current_stream

cupy.cuda.get_current_stream(int device_id=-1)
Gets the current CUDA stream for the specified CUDA device.

Parameters
device_id (int, optional) – Index of the device to check for the current stream. The cur-
rently active device is selected by default.

Returns
The current CUDA stream.

Return type
cupy.cuda.Stream

cupy.cuda.Event

class cupy.cuda.Event(block=False, disable_timing=False, interprocess=False)
CUDA event, a synchronization point of CUDA streams.

This class handles the CUDA event handle in RAII way, i.e., when an Event instance is destroyed by the GC, its
handle is also destroyed.

Parameters
• block (bool) – If True, the event blocks on the synchronize() method.

• disable_timing (bool) – If True, the event does not prepare the timing data.

• interprocess (bool) – If True, the event can be passed to other processes.

Variables
~Event.ptr (intptr_t) – Raw event handle.

Methods

record(self, stream=None)
Records the event to a stream.

Parameters
stream (cupy.cuda.Stream) – CUDA stream to record event. The null stream is used by
default.

See also:
cupy.cuda.Stream.record()

5.6. Low-level CUDA support 785

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

synchronize(self)
Synchronizes all device work to the event.

If the event is created as a blocking event, it also blocks the CPU thread until the event is done.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

done

True if the event is done.

cupy.cuda.get_elapsed_time

cupy.cuda.get_elapsed_time(start_event, end_event)
Gets the elapsed time between two events.

Parameters
• start_event (Event) – Earlier event.

• end_event (Event) – Later event.

Returns
Elapsed time in milliseconds.

Return type
float

5.6.5 Graphs

cupy.cuda.Graph (*args, **kwargs) The CUDA graph object.

786 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

cupy.cuda.Graph

class cupy.cuda.Graph(*args, **kwargs)
The CUDA graph object.

Currently this class cannot be initiated by the user and must be created via stream capture. See
begin_capture() for detail.

Methods

launch(self, stream=None)
Launch the CUDA graph on the given stream.

Parameters
stream (Stream) – A CuPy stream object. If not specified (using the default value None),
the graph is launched on the current stream.

See also:
cudaGraphLaunch()

upload(self, stream=None)
Upload the CUDA graph to the given stream.

Parameters
stream (Stream) – A CuPy stream object. If not specified (using the default value None),
the graph is uploaded the current stream.

See also:
cudaGraphUpload()

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

5.6. Low-level CUDA support 787

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1g1accfe1da0c605a577c22d9751a09597
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH_1ge546432e411b4495b93bdcbf2fc0b2bd

CuPy Documentation, Release 13.0.0

Attributes

graph

graphExec

5.6.6 Texture and surface memory

cupy.cuda.texture.
ChannelFormatDescriptor(...)

A class that holds the channel format description.

cupy.cuda.texture.CUDAarray(...) Allocate a CUDA array (cudaArray_t) that can be used
as texture memory.

cupy.cuda.texture.ResourceDescriptor(...) A class that holds the resource description.
cupy.cuda.texture.TextureDescriptor([...]) A class that holds the texture description.
cupy.cuda.texture.TextureObject(...) A class that holds a texture object.
cupy.cuda.texture.SurfaceObject(...) A class that holds a surface object.

cupy.cuda.texture.ChannelFormatDescriptor

class cupy.cuda.texture.ChannelFormatDescriptor(int x, int y, int z, int w, int f)
A class that holds the channel format description. Equivalent to cudaChannelFormatDesc.

Parameters
• x (int) – the number of bits for the x channel.

• y (int) – the number of bits for the y channel.

• z (int) – the number of bits for the z channel.

• w (int) – the number of bits for the w channel.

• f (int) – the channel format. Use one of the values in cudaChannelFormat*, such as
cupy.cuda.runtime.cudaChannelFormatKindFloat.

See also:
cudaCreateChannelDesc()

Methods

get_channel_format(self)
Returns a dict containing the input.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

788 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TEXTURE__OBJECT.html#group__CUDART__TEXTURE__OBJECT_1g39df9e3b6edc41cd6f189d2109672ca5

CuPy Documentation, Release 13.0.0

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

ptr

cupy.cuda.texture.CUDAarray

class cupy.cuda.texture.CUDAarray(ChannelFormatDescriptor desc, size_t width, size_t height=0, size_t
depth=0, unsigned int flags=0)

Allocate a CUDA array (cudaArray_t) that can be used as texture memory. Depending on the input, either 1D,
2D, or 3D CUDA array is returned.

Parameters
• desc (ChannelFormatDescriptor) – an instance of ChannelFormatDescriptor.

• width (int) – the width (in elements) of the array.

• height (int, optional) – the height (in elements) of the array.

• depth (int, optional) – the depth (in elements) of the array.

• flags (int, optional) – the flag for extensions. Use one of the values in cudaArray*,
such as cupy.cuda.runtime.cudaArrayDefault.

Warning: The memory allocation of CUDAarray is done outside of CuPy’s memory management (enabled
by default) due to CUDA’s limitation. Users of CUDAarray should be cautious about any out-of-memory
possibilities.

See also:
cudaMalloc3DArray()

Methods

copy_from(self, in_arr, stream=None)
Copy data from device or host array to CUDA array.

Parameters
• in_arr (cupy.ndarray or numpy.ndarray) –

• stream (cupy.cuda.Stream) – if not None, an asynchronous copy is performed.

Note: For CUDA arrays with different dimensions, the requirements for the shape of the input array are
given as follows:

• 1D: (nch * width,)

• 2D: (height, nch * width)

5.6. Low-level CUDA support 789

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g948143cf2423a072ac6a31fb635efd88
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

CuPy Documentation, Release 13.0.0

• 3D: (depth, height, nch * width)

where nch is the number of channels specified in desc.

copy_to(self, out_arr, stream=None)
Copy data from CUDA array to device or host array.

Parameters
• out_arr (cupy.ndarray or numpy.ndarray) – must be C-contiguous

• stream (cupy.cuda.Stream) – if not None, an asynchronous copy is performed.

Note: For CUDA arrays with different dimensions, the requirements for the shape of the output array are
given as follows:

• 1D: (nch * width,)

• 2D: (height, nch * width)

• 3D: (depth, height, nch * width)

where nch is the number of channels specified in desc.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

depth

desc

flags

height

ndim

ptr

width

790 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

CuPy Documentation, Release 13.0.0

cupy.cuda.texture.ResourceDescriptor

class cupy.cuda.texture.ResourceDescriptor(int restype, CUDAarray cuArr=None, ndarray arr=None,
ChannelFormatDescriptor chDesc=None, size_t
sizeInBytes=0, size_t width=0, size_t height=0, size_t
pitchInBytes=0)

A class that holds the resource description. Equivalent to cudaResourceDesc.

Parameters
• restype (int) – the resource type. Use one of the values in cudaResourceType*, such as
cupy.cuda.runtime.cudaResourceTypeArray.

• cuArr (CUDAarray, optional) – An instance of CUDAarray, required if restype is set
to cupy.cuda.runtime.cudaResourceTypeArray.

• arr (cupy.ndarray, optional) – An instance of ndarray, required if restype
is set to cupy.cuda.runtime.cudaResourceTypeLinear or cupy.cuda.runtime.
cudaResourceTypePitch2D.

• chDesc (ChannelFormatDescriptor, optional) – an instance of
ChannelFormatDescriptor, required if restype is set to cupy.cuda.runtime.
cudaResourceTypeLinear or cupy.cuda.runtime.cudaResourceTypePitch2D.

• sizeInBytes (int, optional) – total bytes in the linear memory, required if restype is
set to cupy.cuda.runtime.cudaResourceTypeLinear.

• width (int, optional) – the width (in elements) of the 2D array, required if restype is
set to cupy.cuda.runtime.cudaResourceTypePitch2D.

• height (int, optional) – the height (in elements) of the 2D array, required if restype
is set to cupy.cuda.runtime.cudaResourceTypePitch2D.

• pitchInBytes (int, optional) – the number of bytes per pitch-aligned row, required if
restype is set to cupy.cuda.runtime.cudaResourceTypePitch2D.

Note: A texture backed by mipmap arrays is currently not supported in CuPy.

See also:
cudaCreateTextureObject()

Methods

get_resource_desc(self)
Returns a dict containing the input.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

5.6. Low-level CUDA support 791

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TEXTURE__OBJECT.html#group__CUDART__TEXTURE__OBJECT_1g16ac75814780c3a16e4c63869feb9ad3

CuPy Documentation, Release 13.0.0

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

arr

chDesc

cuArr

ptr

cupy.cuda.texture.TextureDescriptor

class cupy.cuda.texture.TextureDescriptor(addressModes=None, int filterMode=0, int readMode=0,
sRGB=None, borderColors=None, normalizedCoords=None,
maxAnisotropy=None)

A class that holds the texture description. Equivalent to cudaTextureDesc.

Parameters
• addressModes (tuple or list) – an iterable with length up to 3, each ele-

ment is one of the values in cudaAddressMode*, such as cupy.cuda.runtime.
cudaAddressModeWrap.

• filterMode (int) – the filter mode. Use one of the values in cudaFilterMode*, such as
cupy.cuda.runtime.cudaFilterModePoint.

• readMode (int) – the read mode. Use one of the values in cudaReadMode*, such as cupy.
cuda.runtime.cudaReadModeElementType.

• normalizedCoords (int) – whether coordinates are normalized or not.

• sRGB (int, optional) –

• borderColors (tuple or list, optional) – an iterable with length up to 4.

• maxAnisotropy (int, optional) –

Note: A texture backed by mipmap arrays is currently not supported in CuPy.

See also:
cudaCreateTextureObject()

792 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TEXTURE__OBJECT.html#group__CUDART__TEXTURE__OBJECT_1g16ac75814780c3a16e4c63869feb9ad3

CuPy Documentation, Release 13.0.0

Methods

get_texture_desc(self)
Returns a dict containing the input.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

ptr

cupy.cuda.texture.TextureObject

class cupy.cuda.texture.TextureObject(ResourceDescriptor ResDesc, TextureDescriptor TexDesc)
A class that holds a texture object. Equivalent to cudaTextureObject_t. The returned TextureObject in-
stance can be passed as a argument when launching RawKernel or ElementwiseKernel.

Parameters
• ResDesc (ResourceDescriptor) – an intance of the resource descriptor.

• TexDesc (TextureDescriptor) – an instance of the texture descriptor.

See also:
cudaCreateTextureObject()

Methods

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

5.6. Low-level CUDA support 793

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TEXTURE__OBJECT.html#group__CUDART__TEXTURE__OBJECT_1g16ac75814780c3a16e4c63869feb9ad3

CuPy Documentation, Release 13.0.0

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

ResDesc

TexDesc

ptr

cupy.cuda.texture.SurfaceObject

class cupy.cuda.texture.SurfaceObject(ResourceDescriptor ResDesc)
A class that holds a surface object. Equivalent to cudaSurfaceObject_t. The returned SurfaceObject
instance can be passed as a argument when launching RawKernel.

Parameters
ResDesc (ResourceDescriptor) – an intance of the resource descriptor.

See also:
cudaCreateSurfaceObject()

Methods

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

794 Chapter 5. API Reference

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__SURFACE__OBJECT.html#group__CUDART__SURFACE__OBJECT_1g958899474ab2c5f40d233b524d6c5a01

CuPy Documentation, Release 13.0.0

Attributes

ResDesc

ptr

5.6.7 NVTX

cupy.cuda.nvtx.Mark(message, int id_color=-1) Marks an instantaneous event (marker) in the applica-
tion.

cupy.cuda.nvtx.MarkC(message, uint32_t color=0) Marks an instantaneous event (marker) in the applica-
tion.

cupy.cuda.nvtx.RangePush (message, ...) Starts a nested range.
cupy.cuda.nvtx.RangePushC(message, ...) Starts a nested range.
cupy.cuda.nvtx.RangePop() Ends a nested range started by a RangePush*() call.

cupy.cuda.nvtx.Mark

cupy.cuda.nvtx.Mark(message, int id_color=-1)
Marks an instantaneous event (marker) in the application.

Markers are used to describe events at a specific time during execution of the application.

Parameters
• message (str) – Name of a marker.

• id_color (int) – ID of color for a marker.

cupy.cuda.nvtx.MarkC

cupy.cuda.nvtx.MarkC(message, uint32_t color=0)
Marks an instantaneous event (marker) in the application.

Markers are used to describe events at a specific time during execution of the application.

Parameters
• message (str) – Name of a marker.

• color (uint32) – Color code for a marker.

cupy.cuda.nvtx.RangePush

cupy.cuda.nvtx.RangePush(message, int id_color=-1)
Starts a nested range.

Ranges are used to describe events over a time span during execution of the application. This is particularly useful
when profiling with Nsight Systems to help connect user-specified ranges with CuPy’s internal CUDA-kernels.
The duration of a range is defined by the corresponding pair of RangePush() to RangePop() calls, which can
be nested.

5.6. Low-level CUDA support 795

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

from cupy.cuda.nvtx import RangePush, RangePop

RangePush("Nested Powers of A")
for i in range(N):

RangePush("Iter {}: Double A".format(i))
A = 2*A
RangePop()

RangePop()

Parameters
• message (str) – Name of a range.

• id_color (int) – ID of color for a range.

cupy.cuda.nvtx.RangePushC

cupy.cuda.nvtx.RangePushC(message, uint32_t color=0)
Starts a nested range.

Ranges are used to describe events over a time span during execution of the application. This is particularly useful
when profiling with Nsight Systems to help connect user-specified ranges with CuPy’s internal CUDA-kernels.
The duration of a range is defined by the corresponding pair of RangePushC() to RangePop() calls, which can
be nested.

from cupy.cuda.nvtx import RangePushC, RangePop

RangePush("Nested Powers of A")
for i in range(N):

RangePushC("Iter {}: Double A".format(i))
A = 2*A
RangePop()

RangePop()

Parameters
• message (str) – Name of a range.

• color (uint32) – ARGB color for a range.

cupy.cuda.nvtx.RangePop

cupy.cuda.nvtx.RangePop()

Ends a nested range started by a RangePush*() call.

796 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

5.6.8 NCCL

cupy.cuda.nccl.NcclCommunicator(int ndev, ...) Initialize an NCCL communicator for one device con-
trolled by one process.

cupy.cuda.nccl.get_build_version()

cupy.cuda.nccl.get_version() Returns the runtime version of NCCL.
cupy.cuda.nccl.get_unique_id()

cupy.cuda.nccl.groupStart() Start a group of NCCL calls.
cupy.cuda.nccl.groupEnd() End a group of NCCL calls.

cupy.cuda.nccl.NcclCommunicator

class cupy.cuda.nccl.NcclCommunicator(int ndev, tuple commId, int rank)
Initialize an NCCL communicator for one device controlled by one process.

Parameters
• ndev (int) – Total number of GPUs to be used.

• commId (tuple) – The unique ID returned by get_unique_id().

• rank (int) – The rank of the GPU managed by the current process.

Returns
An NcclCommunicator instance.

Return type
NcclCommunicator

Note: This method is for creating an NCCL communicator in a multi-process environment, typically managed
by MPI or multiprocessing. For controlling multiple devices by one process, use initAll() instead.

See also:
ncclCommInitRank

Methods

abort(self)

allGather(self, intptr_t sendbuf, intptr_t recvbuf, size_t count, int datatype, intptr_t stream)

allReduce(self, intptr_t sendbuf, intptr_t recvbuf, size_t count, int datatype, int op, intptr_t stream)

bcast(self, intptr_t buff, int count, int datatype, int root, intptr_t stream)

broadcast(self, intptr_t sendbuff, intptr_t recvbuff, int count, int datatype, int root, intptr_t stream)

check_async_error(self)

destroy(self)

5.6. Low-level CUDA support 797

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/api/comms.html#ncclcomminitrank

CuPy Documentation, Release 13.0.0

device_id(self)

static initAll(devices)
Initialize NCCL communicators for multiple devices in a single process.

Parameters
devices (int or list of int) – The number of GPUs or a list of GPUs to be used. For
the former case, the first devices GPUs will be used.

Returns
A list of NcclCommunicator instances.

Return type
list

Note: This method is for creating a group of NCCL communicators, each controlling one device, in a
single process like this:

from cupy.cuda import nccl
Use 3 GPUs: #0, #2, and #3
comms = nccl.NcclCommunicator.initAll([0, 2, 3])
assert len(comms) == 3

In a multi-process setup, use the default initializer instead.

See also:
ncclCommInitAll

rank_id(self)

recv(self, intptr_t recvbuf, size_t count, int datatype, int peer, intptr_t stream)

reduce(self, intptr_t sendbuf, intptr_t recvbuf, size_t count, int datatype, int op, int root, intptr_t stream)

reduceScatter(self, intptr_t sendbuf, intptr_t recvbuf, size_t recvcount, int datatype, int op, intptr_t stream)

send(self, intptr_t sendbuf, size_t count, int datatype, int peer, intptr_t stream)

size(self)

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

798 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/api/comms.html#ncclcomminitall

CuPy Documentation, Release 13.0.0

Attributes

comm

cupy.cuda.nccl.get_build_version

cupy.cuda.nccl.get_build_version()

cupy.cuda.nccl.get_version

cupy.cuda.nccl.get_version()

Returns the runtime version of NCCL.

This function will return 0 when built with NCCL version earlier than 2.3.4, which does not support
ncclGetVersion API.

cupy.cuda.nccl.get_unique_id

cupy.cuda.nccl.get_unique_id()

cupy.cuda.nccl.groupStart

cupy.cuda.nccl.groupStart()

Start a group of NCCL calls. Must be paired with groupEnd().

Note: This method is useful when the NcclCommunicator instances are created via initAll(). A typical
usage pattern is like this:

comms = cupy.cuda.nccl.NcclCommunicator.initAll(n, dev_list)
... do some preparation work
cupy.cuda.nccl.groupStart()
for rank, comm in enumerate(comms):

... make some collective calls ...
cupy.cuda.nccl.groupEnd()

Other use cases include fusing several NCCL calls into one, and point-to-point communications using send()
and recv() (with NCCL 2.7+).

See also:
ncclGroupStart, Group Calls

5.6. Low-level CUDA support 799

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/group.html#ncclgroupstart
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/groups.html

CuPy Documentation, Release 13.0.0

cupy.cuda.nccl.groupEnd

cupy.cuda.nccl.groupEnd()

End a group of NCCL calls. Must be paired with groupStart().

Note: This method is useful when the NcclCommunicator instances are created via initAll(). A typical
usage pattern is like this:

comms = cupy.cuda.nccl.NcclCommunicator.initAll(n, dev_list)
... do some preparation work
cupy.cuda.nccl.groupStart()
for rank, comm in enumerate(comms):

... make some collective calls ...
cupy.cuda.nccl.groupEnd()

Other use cases include fusing several NCCL calls into one, and point-to-point communications using send()
and recv() (with NCCL 2.7+).

See also:
ncclGroupEnd, Group Calls

5.6.9 Version

cupy.cuda.get_local_runtime_version() Returns the version of the CUDA Runtime installed in
the environment.

cupy.cuda.get_local_runtime_version

cupy.cuda.get_local_runtime_version()

Returns the version of the CUDA Runtime installed in the environment.

Unlike cupy.cuda.runtime.runtimeGetVersion(), which returns the CUDA Runtime version statically
linked to CuPy, this function returns the version retrieved from the shared library installed on the host. Use this
method to probe the CUDA Runtime version installed in the environment.

Return type
int

5.6.10 Runtime API

CuPy wraps CUDA Runtime APIs to provide the native CUDA operations. Please check the CUDA Runtime API
documentation to use these functions.

cupy.cuda.runtime.driverGetVersion()

cupy.cuda.runtime.runtimeGetVersion() Returns the version of the CUDA Runtime statically
linked to CuPy.

continues on next page

800 Chapter 5. API Reference

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/group.html#ncclgroupend
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/groups.html
https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

CuPy Documentation, Release 13.0.0

Table 3 – continued from previous page
cupy.cuda.runtime.getDevice()

cupy.cuda.runtime.getDeviceProperties(int de-
vice)
cupy.cuda.runtime.deviceGetAttribute(...)

cupy.cuda.runtime.deviceGetByPCIBusId(...)

cupy.cuda.runtime.deviceGetPCIBusId(int
device)
cupy.cuda.runtime.
deviceGetDefaultMemPool(...)

Get the default mempool on the current device.

cupy.cuda.runtime.deviceGetMemPool(int de-
vice)

Get the current mempool on the current device.

cupy.cuda.runtime.deviceSetMemPool(...) Set the current mempool on the current device to pool.
cupy.cuda.runtime.memPoolCreate(...)

cupy.cuda.runtime.memPoolDestroy(intptr_t
pool)
cupy.cuda.runtime.memPoolTrimTo(...)

cupy.cuda.runtime.getDeviceCount()

cupy.cuda.runtime.setDevice(int device)

cupy.cuda.runtime.deviceSynchronize()

cupy.cuda.runtime.deviceCanAccessPeer(...)

cupy.cuda.runtime.
deviceEnablePeerAccess(...)
cupy.cuda.runtime.deviceGetLimit(int limit)

cupy.cuda.runtime.deviceSetLimit(int limit, ...)

cupy.cuda.runtime.malloc(size_t size)

cupy.cuda.runtime.mallocManaged(size_t size, ...)

cupy.cuda.runtime.malloc3DArray(...)

cupy.cuda.runtime.mallocArray(...)

cupy.cuda.runtime.mallocAsync(size_t size, ...)

cupy.cuda.runtime.mallocFromPoolAsync(...)

cupy.cuda.runtime.hostAlloc(size_t size, ...)

cupy.cuda.runtime.hostRegister(intptr_t ptr, ...)

continues on next page

5.6. Low-level CUDA support 801

CuPy Documentation, Release 13.0.0

Table 3 – continued from previous page
cupy.cuda.runtime.hostUnregister(intptr_t ptr)

cupy.cuda.runtime.free(intptr_t ptr)

cupy.cuda.runtime.freeHost(intptr_t ptr)

cupy.cuda.runtime.freeArray(intptr_t ptr)

cupy.cuda.runtime.freeAsync(intptr_t ptr, ...)

cupy.cuda.runtime.memGetInfo()

cupy.cuda.runtime.memcpy(intptr_t dst, ...)

cupy.cuda.runtime.memcpyAsync(intptr_t dst, ...)

cupy.cuda.runtime.memcpyPeer(intptr_t dst, ...)

cupy.cuda.runtime.memcpyPeerAsync(...)

cupy.cuda.runtime.memcpy2D(intptr_t dst, ...)

cupy.cuda.runtime.memcpy2DAsync(...)

cupy.cuda.runtime.memcpy2DFromArray(...)

cupy.cuda.runtime.
memcpy2DFromArrayAsync(...)
cupy.cuda.runtime.memcpy2DToArray(...)

cupy.cuda.runtime.memcpy2DToArrayAsync(...)

cupy.cuda.runtime.memcpy3D(...)

cupy.cuda.runtime.memcpy3DAsync(...)

cupy.cuda.runtime.memset(intptr_t ptr, ...)

cupy.cuda.runtime.memsetAsync(intptr_t ptr, ...)

cupy.cuda.runtime.memPrefetchAsync(...)

cupy.cuda.runtime.memAdvise(intptr_t devPtr, ...)

cupy.cuda.runtime.pointerGetAttributes(...)

cupy.cuda.runtime.streamCreate()

cupy.cuda.runtime.streamCreateWithFlags(...)

continues on next page

802 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

Table 3 – continued from previous page
cupy.cuda.runtime.streamDestroy(intptr_t
stream)
cupy.cuda.runtime.streamSynchronize(...)

cupy.cuda.runtime.streamAddCallback(...)

cupy.cuda.runtime.streamQuery(intptr_t stream)

cupy.cuda.runtime.streamWaitEvent(...)

cupy.cuda.runtime.launchHostFunc(...)

cupy.cuda.runtime.eventCreate()

cupy.cuda.runtime.eventCreateWithFlags(...)

cupy.cuda.runtime.eventDestroy(intptr_t event)

cupy.cuda.runtime.eventElapsedTime(...)

cupy.cuda.runtime.eventQuery(intptr_t event)

cupy.cuda.runtime.eventRecord(...)

cupy.cuda.runtime.eventSynchronize(...)

cupy.cuda.runtime.ipcGetMemHandle(...)

cupy.cuda.runtime.ipcOpenMemHandle(...)

cupy.cuda.runtime.ipcCloseMemHandle(...)

cupy.cuda.runtime.ipcGetEventHandle(...)

cupy.cuda.runtime.ipcOpenEventHandle(...)

cupy.cuda.runtime.profilerStart() Enable profiling.
cupy.cuda.runtime.profilerStop() Disable profiling.

cupy.cuda.runtime.driverGetVersion

cupy.cuda.runtime.driverGetVersion()→ int

5.6. Low-level CUDA support 803

https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

cupy.cuda.runtime.runtimeGetVersion

cupy.cuda.runtime.runtimeGetVersion()→ int
Returns the version of the CUDA Runtime statically linked to CuPy.

See also:
cupy.cuda.get_local_runtime_version()

cupy.cuda.runtime.getDevice

cupy.cuda.runtime.getDevice()→ int

cupy.cuda.runtime.getDeviceProperties

cupy.cuda.runtime.getDeviceProperties(int device)

cupy.cuda.runtime.deviceGetAttribute

cupy.cuda.runtime.deviceGetAttribute(int attrib, int device)→ int

cupy.cuda.runtime.deviceGetByPCIBusId

cupy.cuda.runtime.deviceGetByPCIBusId(unicode pci_bus_id)→ int

cupy.cuda.runtime.deviceGetPCIBusId

cupy.cuda.runtime.deviceGetPCIBusId(int device)→ unicode

cupy.cuda.runtime.deviceGetDefaultMemPool

cupy.cuda.runtime.deviceGetDefaultMemPool(int device)→ intptr_t
Get the default mempool on the current device.

cupy.cuda.runtime.deviceGetMemPool

cupy.cuda.runtime.deviceGetMemPool(int device)→ intptr_t
Get the current mempool on the current device.

804 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

cupy.cuda.runtime.deviceSetMemPool

cupy.cuda.runtime.deviceSetMemPool(int device, intptr_t pool)
Set the current mempool on the current device to pool.

cupy.cuda.runtime.memPoolCreate

cupy.cuda.runtime.memPoolCreate(MemPoolProps props)→ intptr_t

cupy.cuda.runtime.memPoolDestroy

cupy.cuda.runtime.memPoolDestroy(intptr_t pool)

cupy.cuda.runtime.memPoolTrimTo

cupy.cuda.runtime.memPoolTrimTo(intptr_t pool, size_t size)

cupy.cuda.runtime.getDeviceCount

cupy.cuda.runtime.getDeviceCount()→ int

cupy.cuda.runtime.setDevice

cupy.cuda.runtime.setDevice(int device)

cupy.cuda.runtime.deviceSynchronize

cupy.cuda.runtime.deviceSynchronize()

cupy.cuda.runtime.deviceCanAccessPeer

cupy.cuda.runtime.deviceCanAccessPeer(int device, int peerDevice)→ int

cupy.cuda.runtime.deviceEnablePeerAccess

cupy.cuda.runtime.deviceEnablePeerAccess(int peerDevice)

5.6. Low-level CUDA support 805

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

cupy.cuda.runtime.deviceGetLimit

cupy.cuda.runtime.deviceGetLimit(int limit)→ size_t

cupy.cuda.runtime.deviceSetLimit

cupy.cuda.runtime.deviceSetLimit(int limit, size_t value)

cupy.cuda.runtime.malloc

cupy.cuda.runtime.malloc(size_t size)→ intptr_t

cupy.cuda.runtime.mallocManaged

cupy.cuda.runtime.mallocManaged(size_t size, unsigned int flags=cudaMemAttachGlobal)→ intptr_t

cupy.cuda.runtime.malloc3DArray

cupy.cuda.runtime.malloc3DArray(intptr_t descPtr, size_t width, size_t height, size_t depth, unsigned int
flags=0)→ intptr_t

cupy.cuda.runtime.mallocArray

cupy.cuda.runtime.mallocArray(intptr_t descPtr, size_t width, size_t height, unsigned int flags=0)→ intptr_t

cupy.cuda.runtime.mallocAsync

cupy.cuda.runtime.mallocAsync(size_t size, intptr_t stream)→ intptr_t

cupy.cuda.runtime.mallocFromPoolAsync

cupy.cuda.runtime.mallocFromPoolAsync(size_t size, intptr_t pool, intptr_t stream)→ intptr_t

cupy.cuda.runtime.hostAlloc

cupy.cuda.runtime.hostAlloc(size_t size, unsigned int flags)→ intptr_t

806 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupy.cuda.runtime.hostRegister

cupy.cuda.runtime.hostRegister(intptr_t ptr, size_t size, unsigned int flags)

cupy.cuda.runtime.hostUnregister

cupy.cuda.runtime.hostUnregister(intptr_t ptr)

cupy.cuda.runtime.free

cupy.cuda.runtime.free(intptr_t ptr)

cupy.cuda.runtime.freeHost

cupy.cuda.runtime.freeHost(intptr_t ptr)

cupy.cuda.runtime.freeArray

cupy.cuda.runtime.freeArray(intptr_t ptr)

cupy.cuda.runtime.freeAsync

cupy.cuda.runtime.freeAsync(intptr_t ptr, intptr_t stream)

cupy.cuda.runtime.memGetInfo

cupy.cuda.runtime.memGetInfo()

cupy.cuda.runtime.memcpy

cupy.cuda.runtime.memcpy(intptr_t dst, intptr_t src, size_t size, int kind)

cupy.cuda.runtime.memcpyAsync

cupy.cuda.runtime.memcpyAsync(intptr_t dst, intptr_t src, size_t size, int kind, intptr_t stream)

cupy.cuda.runtime.memcpyPeer

cupy.cuda.runtime.memcpyPeer(intptr_t dst, int dstDevice, intptr_t src, int srcDevice, size_t size)

5.6. Low-level CUDA support 807

CuPy Documentation, Release 13.0.0

cupy.cuda.runtime.memcpyPeerAsync

cupy.cuda.runtime.memcpyPeerAsync(intptr_t dst, int dstDevice, intptr_t src, int srcDevice, size_t size, intptr_t
stream)

cupy.cuda.runtime.memcpy2D

cupy.cuda.runtime.memcpy2D(intptr_t dst, size_t dpitch, intptr_t src, size_t spitch, size_t width, size_t height,
MemoryKind kind)

cupy.cuda.runtime.memcpy2DAsync

cupy.cuda.runtime.memcpy2DAsync(intptr_t dst, size_t dpitch, intptr_t src, size_t spitch, size_t width, size_t
height, MemoryKind kind, intptr_t stream)

cupy.cuda.runtime.memcpy2DFromArray

cupy.cuda.runtime.memcpy2DFromArray(intptr_t dst, size_t dpitch, intptr_t src, size_t wOffset, size_t hOffset,
size_t width, size_t height, int kind)

cupy.cuda.runtime.memcpy2DFromArrayAsync

cupy.cuda.runtime.memcpy2DFromArrayAsync(intptr_t dst, size_t dpitch, intptr_t src, size_t wOffset, size_t
hOffset, size_t width, size_t height, int kind, intptr_t stream)

cupy.cuda.runtime.memcpy2DToArray

cupy.cuda.runtime.memcpy2DToArray(intptr_t dst, size_t wOffset, size_t hOffset, intptr_t src, size_t spitch,
size_t width, size_t height, int kind)

cupy.cuda.runtime.memcpy2DToArrayAsync

cupy.cuda.runtime.memcpy2DToArrayAsync(intptr_t dst, size_t wOffset, size_t hOffset, intptr_t src, size_t
spitch, size_t width, size_t height, int kind, intptr_t stream)

cupy.cuda.runtime.memcpy3D

cupy.cuda.runtime.memcpy3D(intptr_t Memcpy3DParmsPtr)

808 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupy.cuda.runtime.memcpy3DAsync

cupy.cuda.runtime.memcpy3DAsync(intptr_t Memcpy3DParmsPtr, intptr_t stream)

cupy.cuda.runtime.memset

cupy.cuda.runtime.memset(intptr_t ptr, int value, size_t size)

cupy.cuda.runtime.memsetAsync

cupy.cuda.runtime.memsetAsync(intptr_t ptr, int value, size_t size, intptr_t stream)

cupy.cuda.runtime.memPrefetchAsync

cupy.cuda.runtime.memPrefetchAsync(intptr_t devPtr, size_t count, int dstDevice, intptr_t stream)

cupy.cuda.runtime.memAdvise

cupy.cuda.runtime.memAdvise(intptr_t devPtr, size_t count, int advice, int device)

cupy.cuda.runtime.pointerGetAttributes

cupy.cuda.runtime.pointerGetAttributes(intptr_t ptr)→ PointerAttributes

cupy.cuda.runtime.streamCreate

cupy.cuda.runtime.streamCreate()→ intptr_t

cupy.cuda.runtime.streamCreateWithFlags

cupy.cuda.runtime.streamCreateWithFlags(unsigned int flags)→ intptr_t

cupy.cuda.runtime.streamDestroy

cupy.cuda.runtime.streamDestroy(intptr_t stream)

cupy.cuda.runtime.streamSynchronize

cupy.cuda.runtime.streamSynchronize(intptr_t stream)

5.6. Low-level CUDA support 809

CuPy Documentation, Release 13.0.0

cupy.cuda.runtime.streamAddCallback

cupy.cuda.runtime.streamAddCallback(intptr_t stream, callback, intptr_t arg, unsigned int flags=0)

cupy.cuda.runtime.streamQuery

cupy.cuda.runtime.streamQuery(intptr_t stream)

cupy.cuda.runtime.streamWaitEvent

cupy.cuda.runtime.streamWaitEvent(intptr_t stream, intptr_t event, unsigned int flags=0)

cupy.cuda.runtime.launchHostFunc

cupy.cuda.runtime.launchHostFunc(intptr_t stream, callback, intptr_t arg)

cupy.cuda.runtime.eventCreate

cupy.cuda.runtime.eventCreate()→ intptr_t

cupy.cuda.runtime.eventCreateWithFlags

cupy.cuda.runtime.eventCreateWithFlags(unsigned int flags)→ intptr_t

cupy.cuda.runtime.eventDestroy

cupy.cuda.runtime.eventDestroy(intptr_t event)

cupy.cuda.runtime.eventElapsedTime

cupy.cuda.runtime.eventElapsedTime(intptr_t start, intptr_t end)→ float

cupy.cuda.runtime.eventQuery

cupy.cuda.runtime.eventQuery(intptr_t event)

cupy.cuda.runtime.eventRecord

cupy.cuda.runtime.eventRecord(intptr_t event, intptr_t stream)

810 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#float

CuPy Documentation, Release 13.0.0

cupy.cuda.runtime.eventSynchronize

cupy.cuda.runtime.eventSynchronize(intptr_t event)

cupy.cuda.runtime.ipcGetMemHandle

cupy.cuda.runtime.ipcGetMemHandle(intptr_t devPtr)

cupy.cuda.runtime.ipcOpenMemHandle

cupy.cuda.runtime.ipcOpenMemHandle(bytes handle, unsigned int flags=cudaIpcMemLazyEnablePeerAccess)

cupy.cuda.runtime.ipcCloseMemHandle

cupy.cuda.runtime.ipcCloseMemHandle(intptr_t devPtr)

cupy.cuda.runtime.ipcGetEventHandle

cupy.cuda.runtime.ipcGetEventHandle(intptr_t event)

cupy.cuda.runtime.ipcOpenEventHandle

cupy.cuda.runtime.ipcOpenEventHandle(bytes handle)

cupy.cuda.runtime.profilerStart

cupy.cuda.runtime.profilerStart()

Enable profiling.

A user can enable CUDA profiling. When an error occurs, it raises an exception.

See the CUDA document for detail.

cupy.cuda.runtime.profilerStop

cupy.cuda.runtime.profilerStop()

Disable profiling.

A user can disable CUDA profiling. When an error occurs, it raises an exception.

See the CUDA document for detail.

5.6. Low-level CUDA support 811

CuPy Documentation, Release 13.0.0

5.7 Custom kernels

cupy.ElementwiseKernel(in_params, ...[, ...]) User-defined elementwise kernel.
cupy.ReductionKernel(unicode in_params, ...) User-defined reduction kernel.
cupy.RawKernel(unicode code, unicode name, ...) User-defined custom kernel.
cupy.RawModule(unicode code=None, *, ...[, ...]) User-defined custom module.
cupy.fuse(*args, **kwargs) Decorator that fuses a function.

5.7.1 cupy.ElementwiseKernel

class cupy.ElementwiseKernel(in_params, out_params, operation, name='kernel', reduce_dims=True,
preamble='', no_return=False, return_tuple=False, **kwargs)

User-defined elementwise kernel.

This class can be used to define an elementwise kernel with or without broadcasting.

The kernel is compiled at an invocation of the __call__() method, which is cached for each device. The
compiled binary is also cached into a file under the $HOME/.cupy/kernel_cache/ directory with a hashed file
name. The cached binary is reused by other processes.

Parameters
• in_params (str) – Input argument list.

• out_params (str) – Output argument list.

• operation (str) – The body in the loop written in CUDA-C/C++.

• name (str) – Name of the kernel function. It should be set for readability of the performance
profiling.

• reduce_dims (bool) – If False, the shapes of array arguments are kept within the kernel
invocation. The shapes are reduced (i.e., the arrays are reshaped without copy to the mini-
mum dimension) by default. It may make the kernel fast by reducing the index calculations.

• options (tuple) – Compile options passed to NVRTC. For details, see https://docs.nvidia.
com/cuda/nvrtc/index.html#group__options.

• preamble (str) – Fragment of the CUDA-C/C++ code that is inserted at the top of the cu
file.

• no_return (bool) – If True, __call__ returns None.

• return_tuple (bool) – If True, __call__ always returns tuple of array even if single value
is returned.

• loop_prep (str) – Fragment of the CUDA-C/C++ code that is inserted at the top of the
kernel function definition and above the for loop.

• after_loop (str) – Fragment of the CUDA-C/C++ code that is inserted at the bottom of
the kernel function definition.

812 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Methods

__call__()

Compiles and invokes the elementwise kernel.

The compilation runs only if the kernel is not cached. Note that the kernels with different argument dtypes
or dimensions are not compatible. It means that single ElementwiseKernel object may be compiled into
multiple kernel binaries.

Parameters
• args – Arguments of the kernel.

• size (int) – Range size of the indices. By default, the range size is automatically deter-
mined from the result of broadcasting. This parameter must be specified if and only if all
ndarrays are raw and the range size cannot be determined automatically.

• block_size (int) – Number of threads per block. By default, the value is set to 128.

Returns
If no_return has not set, arrays are returned according to the out_params argument of the
__init__ method. If no_return has set, None is returned.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

cached_code

Returns next(iter(self.cached_codes.values())).

This proprety method is for debugging purpose. The return value is not guaranteed to keep backward
compatibility.

cached_codes

Returns a dict that has input types as keys and codes values.

This proprety method is for debugging purpose. The return value is not guaranteed to keep backward
compatibility.

in_params

kwargs

5.7. Custom kernels 813

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

name

nargs

nin

no_return

nout

operation

out_params

params

preamble

reduce_dims

return_tuple

5.7.2 cupy.ReductionKernel

class cupy.ReductionKernel(unicode in_params, unicode out_params, map_expr, reduce_expr,
post_map_expr, identity, name=u'reduce_kernel', reduce_type=None,
reduce_dims=True, preamble=u'', options=())

User-defined reduction kernel.

This class can be used to define a reduction kernel with or without broadcasting.

The kernel is compiled at an invocation of the __call__() method, which is cached for each device. The
compiled binary is also cached into a file under the $HOME/.cupy/kernel_cache/ directory with a hashed file
name. The cached binary is reused by other processes.

Parameters
• in_params (str) – Input argument list.

• out_params (str) – Output argument list.

• map_expr (str) – Mapping expression for input values.

• reduce_expr (str) – Reduction expression.

• post_map_expr (str) – Mapping expression for reduced values.

• identity (str) – Identity value for starting the reduction.

• name (str) – Name of the kernel function. It should be set for readability of the performance
profiling.

• reduce_type (str) – Type of values to be used for reduction. This type is used to store the
special variables a.

• reduce_dims (bool) – If True, input arrays are reshaped without copy to smaller dimen-
sions for efficiency.

• preamble (str) – Fragment of the CUDA-C/C++ code that is inserted at the top of the cu
file.

• options (tuple of str) – Additional compilation options.

814 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Methods

__call__()

Compiles and invokes the reduction kernel.

The compilation runs only if the kernel is not cached. Note that the kernels with different argument dtypes,
ndims, or axis are not compatible. It means that single ReductionKernel object may be compiled into
multiple kernel binaries.

Parameters
• args – Arguments of the kernel.

• out (cupy.ndarray) – The output array. This can only be specified if args does not
contain the output array.

• axis (int or tuple of ints) – Axis or axes along which the reduction is performed.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

• stream (cupy.cuda.Stream, optional) – The CUDA stream to launch the kernel on.
If not given, the current stream will be used.

Returns
Arrays are returned according to the out_params argument of the __init__ method.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

cached_code

Returns next(iter(self.cached_codes.values())).

This proprety method is for debugging purpose. The return value is not guaranteed to keep backward
compatibility.

cached_codes

Returns a dict that has input types as keys and codes values.

This proprety method is for debugging purpose. The return value is not guaranteed to keep backward
compatibility.

5.7. Custom kernels 815

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

identity

unicode

Type
identity

in_params

map_expr

name

nargs

nin

nout

options

out_params

params

post_map_expr

preamble

reduce_dims

reduce_expr

reduce_type

5.7.3 cupy.RawKernel

class cupy.RawKernel(unicode code, unicode name, tuple options=(), unicode backend=u'nvrtc', bool
translate_cucomplex=False, *, bool enable_cooperative_groups=False, bool
jitify=False)

User-defined custom kernel.

This class can be used to define a custom kernel using raw CUDA source.

The kernel is compiled at an invocation of the __call__() method, which is cached for each device. The
compiled binary is also cached into a file under the $HOME/.cupy/kernel_cache/ directory with a hashed file
name. The cached binary is reused by other processes.

Parameters
• code (str) – CUDA source code.

• name (str) – Name of the kernel function.

• options (tuple of str) – Compiler options passed to the backend (NVRTC
or NVCC). For details, see https://docs.nvidia.com/cuda/nvrtc/index.html#group_
_options or https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#
command-option-description

• backend (str) – Either nvrtc or nvcc. Defaults to nvrtc

816 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#command-option-description
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#command-option-description
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

• translate_cucomplex (bool) – Whether the CUDA source includes the header cuCom-
plex.h or not. If set to True, any code that uses the functions from cuComplex.h will be
translated to its Thrust counterpart. Defaults to False.

• enable_cooperative_groups (bool) – Whether to enable cooperative groups in the
CUDA source. If set to True, compile options are configured properly and the kernel is
launched with cuLaunchCooperativeKernel so that cooperative groups can be used from
the CUDA source. This feature is only supported in CUDA 9 or later.

• jitify (bool) – Whether or not to use Jitify to assist NVRTC to compile C++ kernels.
Defaults to False.

Note: Starting CuPy v13.0.0, RawKernel by default compiles with the C++11 standard (-std=c++11) if it’s
not specified in options.

Methods

__call__(self, grid, block, args, *, shared_mem=0)
Compiles and invokes the kernel.

The compilation runs only if the kernel is not cached.

Parameters
• grid (tuple) – Size of grid in blocks.

• block (tuple) – Dimensions of each thread block.

• args (tuple) – Arguments of the kernel.

• shared_mem (int) – Dynamic shared-memory size per thread block in bytes.

compile(self, log_stream=None)
Compile the current kernel.

In general, you don’t have to call this method; kernels are compiled implicitly on the first call.

Parameters
log_stream (object) – Pass either sys.stdout or a file object to which the compiler output
will be written. Defaults to None.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

5.7. Custom kernels 817

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://github.com/NVIDIA/jitify
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

CuPy Documentation, Release 13.0.0

Attributes

attributes

Returns a dictionary containing runtime kernel attributes. This is a read-only property; to overwrite the
attributes, use

kernel = RawKernel(...) # arguments omitted
kernel.max_dynamic_shared_size_bytes = ...
kernel.preferred_shared_memory_carveout = ...

Note that the two attributes shown in the above example are the only two currently settable in CUDA.

Any attribute not existing in the present CUDA toolkit version will have the value -1.

Returns
A dictionary containing the kernel’s attributes.

Return type
dict

backend

binary_version

The binary architecture version that was used during compilation, in the format: 10*major + minor.

cache_mode_ca

Indicates whether option “-Xptxas –dlcm=ca” was set during compilation.

code

const_size_bytes

The size in bytes of constant memory used by the function.

enable_cooperative_groups

file_path

kernel

local_size_bytes

The size in bytes of local memory used by the function.

max_dynamic_shared_size_bytes

The maximum dynamically-allocated shared memory size in bytes that can be used by the function. Can
be set.

max_threads_per_block

The maximum number of threads per block that can successfully launch the function on the device.

name

num_regs

The number of registers used by the function.

options

818 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#dict

CuPy Documentation, Release 13.0.0

preferred_shared_memory_carveout

On devices that have a unified L1 cache and shared memory, indicates the fraction to be used for shared
memory as a percentage of the total. If the fraction does not exactly equal a supported shared memory
capacity, then the next larger supported capacity is used. Can be set.

ptx_version

The PTX virtual architecture version that was used during compilation, in the format: 10*major + minor.

shared_size_bytes

The size in bytes of the statically-allocated shared memory used by the function. This is separate from any
dynamically-allocated shared memory, which must be specified when the function is called.

5.7.4 cupy.RawModule

class cupy.RawModule(unicode code=None, *, unicode path=None, tuple options=(), unicode backend=u'nvrtc',
bool translate_cucomplex=False, bool enable_cooperative_groups=False,
name_expressions=None, bool jitify=False)

User-defined custom module.

This class can be used to either compile raw CUDA sources or load CUDA modules (*.cubin, *.ptx). This class
is useful when a number of CUDA kernels in the same source need to be retrieved.

For the former case, the CUDA source code is compiled when any method is called. For the latter case, an
existing CUDA binary (*.cubin) or a PTX file can be loaded by providing its path.

CUDA kernels in a RawModule can be retrieved by calling get_function(), which will return an instance of
RawKernel. (Same as in RawKernel, the generated binary is also cached.)

Parameters
• code (str) – CUDA source code. Mutually exclusive with path.

• path (str) – Path to cubin/ptx. Mutually exclusive with code.

• options (tuple of str) – Compiler options passed to the backend (NVRTC
or NVCC). For details, see https://docs.nvidia.com/cuda/nvrtc/index.html#group_
_options or https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#
command-option-description.

• backend (str) – Either nvrtc or nvcc. Defaults to nvrtc

• translate_cucomplex (bool) – Whether the CUDA source includes the header cuCom-
plex.h or not. If set to True, any code that uses the functions from cuComplex.h will be
translated to its Thrust counterpart. Defaults to False.

• enable_cooperative_groups (bool) – Whether to enable cooperative groups in the
CUDA source. If set to True, compile options are configured properly and the kernel is
launched with cuLaunchCooperativeKernel so that cooperative groups can be used from
the CUDA source. This feature is only supported in CUDA 9 or later.

• name_expressions (sequence of str) – A sequence (e.g. list) of
strings referring to the names of C++ global/template kernels. For example,
name_expressions=['func1<int>', 'func1<double>', 'func2'] for the template
kernel func1<T> and non-template kernel func2. Strings in this tuple must then be passed,
one at a time, to get_function() to retrieve the corresponding kernel.

• jitify (bool) – Whether or not to use Jitify to assist NVRTC to compile C++ kernels.
Defaults to False.

5.7. Custom kernels 819

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options
https://docs.nvidia.com/cuda/nvrtc/index.html#group__options
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#command-option-description
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#command-option-description
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://github.com/NVIDIA/jitify

CuPy Documentation, Release 13.0.0

Note: Starting CuPy v13.0.0, RawModule by default compiles with the C++11 standard (-std=c++11) if it’s
not specified in options.

Note: Each kernel in RawModule possesses independent function attributes.

Note: Before CuPy v8.0.0, the compilation happens at initialization. Now, it happens at the first time retrieving
any object (kernels or pointers) from the module.

Methods

compile(self, log_stream=None)
Compile the current module.

In general, you don’t have to call this method; kernels are compiled implicitly on the first call.

Parameters
log_stream (object) – Pass either sys.stdout or a file object to which the compiler output
will be written. Defaults to None.

Note: Calling compile() will reset the internal state of a RawKernel.

get_function(self, unicode name)
Retrieve a CUDA kernel by its name from the module.

Parameters
name (str) – Name of the kernel function. For C++ global/template kernels, name refers to
one of the name expressions specified when initializing the present RawModule instance.

Returns
An RawKernel instance.

Return type
RawKernel

Note: The following example shows how to retrieve one of the specialized C++ template kernels:

code = r'''
template<typename T>
__global__ void func(T* in_arr) { /* do something */ }
'''

kers = ('func<int>', 'func<float>', 'func<double>')
mod = cupy.RawModule(code=code, options=('--std=c++11',),

name_expressions=kers)

// retrieve func<int>
ker_int = mod.get_function(kers[0])

820 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

See also:
nvrtcAddNameExpression and nvrtcGetLoweredName from Accessing Lowered Names of the NVRTC
documentation.

get_global(self, name)
Retrieve a pointer to a global symbol by its name from the module.

Parameters
name (str) – Name of the global symbol.

Returns
A handle to the global symbol.

Return type
MemoryPointer

Note: This method can be used to access, for example, constant memory:

to get a pointer to "arr" declared in the source like this:
__constant__ float arr[10];
memptr = mod.get_global("arr")
...wrap it using cupy.ndarray with a known shape
arr_ndarray = cp.ndarray((10,), cp.float32, memptr)
...perform data transfer to initialize it
arr_ndarray[...] = cp.random.random((10,), dtype=cp.float32)
...and arr is ready to be accessed by RawKernels

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

5.7. Custom kernels 821

https://docs.nvidia.com/cuda/nvrtc/index.html#accessing-lowered-names
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

Attributes

backend

code

enable_cooperative_groups

file_path

module

name_expressions

options

5.7.5 cupy.fuse

cupy.fuse(*args, **kwargs)
Decorator that fuses a function.

This decorator can be used to define an elementwise or reduction kernel more easily than ElementwiseKernel
or ReductionKernel.

Since the fused kernels are cached and reused, it is recommended to reuse the same decorated functions instead
of e.g. decorating local functions that are defined multiple times.

Parameters
kernel_name (str) – Name of the fused kernel function. If omitted, the name of the decorated
function is used.

Example

>>> @cupy.fuse(kernel_name='squared_diff')
... def squared_diff(x, y):
... return (x - y) * (x - y)
...
>>> x = cupy.arange(10)
>>> y = cupy.arange(10)[::-1]
>>> squared_diff(x, y)
array([81, 49, 25, 9, 1, 1, 9, 25, 49, 81])

5.7.6 JIT kernel definition

Supported Python built-in functions include: range, len(), max(), min().

Note: If loop unrolling is needed, use cupyx.jit.range() instead of the built-in range.

cupyx.jit.rawkernel(*[, mode, device]) A decorator compiles a Python function into CUDA ker-
nel.

continues on next page

822 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/stdtypes.html#range

CuPy Documentation, Release 13.0.0

Table 4 – continued from previous page
cupyx.jit.threadIdx dim3 threadIdx
cupyx.jit.blockDim dim3 blockDim
cupyx.jit.blockIdx dim3 blockIdx
cupyx.jit.gridDim dim3 gridDim
cupyx.jit.grid(ndim) Compute the thread index in the grid.
cupyx.jit.gridsize(ndim) Compute the grid size.
cupyx.jit.laneid() Returns the lane ID of the calling thread, ranging in [0,

jit.warpsize).
cupyx.jit.warpsize Returns the number of threads in a warp.
cupyx.jit.range(*args[, unroll]) Range with loop unrolling support.
cupyx.jit.syncthreads() Calls __syncthreads().
cupyx.jit.syncwarp(*[, mask]) Calls __syncwarp().
cupyx.jit.shfl_sync(mask, var, val_id, *[, ...]) Calls the __shfl_sync function.
cupyx.jit.shfl_up_sync(mask, var, val_id, *) Calls the __shfl_up_sync function.
cupyx.jit.shfl_down_sync(mask, var, val_id, *) Calls the __shfl_down_sync function.
cupyx.jit.shfl_xor_sync(mask, var, val_id, *) Calls the __shfl_xor_sync function.
cupyx.jit.shared_memory(dtype, size[, alignment]) Allocates shared memory and returns it as a 1-D array.
cupyx.jit.atomic_add(array, index, value[, ...]) Calls the atomicAdd function to operate atomically on

array[index].
cupyx.jit.atomic_sub(array, index, value[, ...]) Calls the atomicSub function to operate atomically on

array[index].
cupyx.jit.atomic_exch (array, index, value[, ...]) Calls the atomicExch function to operate atomically on

array[index].
cupyx.jit.atomic_min(array, index, value[, ...]) Calls the atomicMin function to operate atomically on

array[index].
cupyx.jit.atomic_max(array, index, value[, ...]) Calls the atomicMax function to operate atomically on

array[index].
cupyx.jit.atomic_inc(array, index, value[, ...]) Calls the atomicInc function to operate atomically on

array[index].
cupyx.jit.atomic_dec(array, index, value[, ...]) Calls the atomicDec function to operate atomically on

array[index].
cupyx.jit.atomic_cas(array, index, value[, ...]) Calls the atomicCAS function to operate atomically on

array[index].
cupyx.jit.atomic_and(array, index, value[, ...]) Calls the atomicAnd function to operate atomically on

array[index].
cupyx.jit.atomic_or(array, index, value[, ...]) Calls the atomicOr function to operate atomically on

array[index].
cupyx.jit.atomic_xor(array, index, value[, ...]) Calls the atomicXor function to operate atomically on

array[index].
cupyx.jit.cg.this_grid() Returns the current grid group (_GridGroup).
cupyx.jit.cg.this_thread_block() Returns the current thread block group

(_ThreadBlockGroup).
cupyx.jit.cg.sync(group) Calls cg::sync().
cupyx.jit.cg.memcpy_async(group, dst, ...[, ...]) Calls cg::memcpy_sync().
cupyx.jit.cg.wait(group) Calls cg::wait().
cupyx.jit.cg.wait_prior(group) Calls cg::wait_prior<N>().
cupyx.jit._interface._JitRawKernel(func, ...) JIT CUDA kernel object.

5.7. Custom kernels 823

CuPy Documentation, Release 13.0.0

cupyx.jit.rawkernel

cupyx.jit.rawkernel(*, mode='cuda', device=False)
A decorator compiles a Python function into CUDA kernel.

cupyx.jit.threadIdx

cupyx.jit.threadIdx = <Data code = "threadIdx", type = dim3>

dim3 threadIdx

An integer vector type based on uint3 that is used to specify dimensions.

Variables
• x (uint32) –

• y (uint32) –

• z (uint32) –

cupyx.jit.blockDim

cupyx.jit.blockDim = <Data code = "blockDim", type = dim3>

dim3 blockDim

An integer vector type based on uint3 that is used to specify dimensions.

Variables
• x (uint32) –

• y (uint32) –

• z (uint32) –

cupyx.jit.blockIdx

cupyx.jit.blockIdx = <Data code = "blockIdx", type = dim3>

dim3 blockIdx

An integer vector type based on uint3 that is used to specify dimensions.

Variables
• x (uint32) –

• y (uint32) –

• z (uint32) –

824 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupyx.jit.gridDim

cupyx.jit.gridDim = <Data code = "gridDim", type = dim3>

dim3 gridDim

An integer vector type based on uint3 that is used to specify dimensions.

Variables
• x (uint32) –

• y (uint32) –

• z (uint32) –

cupyx.jit.grid

cupyx.jit.grid(ndim) = <cupyx.jit function>

Compute the thread index in the grid.

Computation of the first integer is as follows:

jit.threadIdx.x + jit.blockIdx.x * jit.blockDim.x

and for the other two integers the y and z attributes are used.

Parameters
ndim (int) – The dimension of the grid. Only 1, 2, or 3 is allowed.

Returns
If ndim is 1, an integer is returned, otherwise a tuple.

Return type
int or tuple

Note: This function follows the convention of Numba’s numba.cuda.grid().

cupyx.jit.gridsize

cupyx.jit.gridsize(ndim) = <cupyx.jit function>

Compute the grid size.

Computation of the first integer is as follows:

jit.blockDim.x * jit.gridDim.x

and for the other two integers the y and z attributes are used.

Parameters
ndim (int) – The dimension of the grid. Only 1, 2, or 3 is allowed.

Returns
If ndim is 1, an integer is returned, otherwise a tuple.

Return type
int or tuple

5.7. Custom kernels 825

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.grid
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

CuPy Documentation, Release 13.0.0

Note: This function follows the convention of Numba’s numba.cuda.gridsize().

cupyx.jit.laneid

cupyx.jit.laneid = <cupyx.jit function>

Returns the lane ID of the calling thread, ranging in [0, jit.warpsize).

Note: Unlike numba.cuda.laneid, this is a callable function instead of a property.

cupyx.jit.warpsize

cupyx.jit.warpsize = <Data code = "warpSize", type = int>

Returns the number of threads in a warp.

See also:
numba.cuda.warpsize

cupyx.jit.range

cupyx.jit.range(*args, unroll=None) = <cupyx.jit function>
Range with loop unrolling support.

Parameters
• start (int) – Same as that of built-in range.

• stop (int) – Same as that of built-in range.

• step (int) – Same as that of built-in range.

• unroll (int or bool or None) –

– If True, add #pragma unroll directive before the loop.

– If False, add #pragma unroll(1) directive before the loop to disable unrolling.

– If an int, add #pragma unroll(n) directive before the loop, where the integer n means
the number of iterations to unroll.

– If None (default), leave the control of loop unrolling to the compiler (no #pragma).

See also:
#pragma unroll

826 Chapter 5. API Reference

https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.gridsize
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.laneid
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.warpsize
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#pragma-unroll

CuPy Documentation, Release 13.0.0

cupyx.jit.syncthreads

cupyx.jit.syncthreads = <cupyx.jit function>

Calls __syncthreads().

See also:
Synchronization functions

cupyx.jit.syncwarp

cupyx.jit.syncwarp(*, mask=4294967295) = <cupyx.jit function>
Calls __syncwarp().

Parameters
mask (int) – Active threads in a warp. Default is 0xffffffff.

See also:
Synchronization functions

cupyx.jit.shfl_sync

cupyx.jit.shfl_sync(mask, var, val_id, *, width=32) = <cupyx.jit function>
Calls the __shfl_sync function. Please refer to Warp Shuffle Functions for detailed explanation.

cupyx.jit.shfl_up_sync

cupyx.jit.shfl_up_sync(mask, var, val_id, *, width=32) = <cupyx.jit function>
Calls the __shfl_up_sync function. Please refer to Warp Shuffle Functions for detailed explanation.

cupyx.jit.shfl_down_sync

cupyx.jit.shfl_down_sync(mask, var, val_id, *, width=32) = <cupyx.jit function>
Calls the __shfl_down_sync function. Please refer to Warp Shuffle Functions for detailed explanation.

cupyx.jit.shfl_xor_sync

cupyx.jit.shfl_xor_sync(mask, var, val_id, *, width=32) = <cupyx.jit function>
Calls the __shfl_xor_sync function. Please refer to Warp Shuffle Functions for detailed explanation.

cupyx.jit.shared_memory

cupyx.jit.shared_memory(dtype, size, alignment=None) = <cupyx.jit function>
Allocates shared memory and returns it as a 1-D array.

Parameters
• dtype (dtype) – The dtype of the returned array.

• size (int or None) – If int type, the size of static shared memory. If None, declares the
shared memory with extern specifier.

5.7. Custom kernels 827

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#synchronization-functions
https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#synchronization-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• alignment (int or None) – Enforce the alignment via __align__(N).

cupyx.jit.atomic_add

cupyx.jit.atomic_add(array, index, value, alt_value=None) = <cupyx.jit function>
Calls the atomicAdd function to operate atomically on array[index]. Please refer to Atomic Functions for
detailed explanation.

Parameters
• array – A cupy.ndarray to index over.

• index – A valid index such that the address to the corresponding array element
array[index] can be computed.

• value – Represent the value to use for the specified operation. For the case of atomic_cas,
this is the value for array[index] to compare with.

• alt_value – Only used in atomic_cas to represent the value to swap to.

See also:
Numba’s corresponding atomic functions

cupyx.jit.atomic_sub

cupyx.jit.atomic_sub(array, index, value, alt_value=None) = <cupyx.jit function>
Calls the atomicSub function to operate atomically on array[index]. Please refer to Atomic Functions for
detailed explanation.

Parameters
• array – A cupy.ndarray to index over.

• index – A valid index such that the address to the corresponding array element
array[index] can be computed.

• value – Represent the value to use for the specified operation. For the case of atomic_cas,
this is the value for array[index] to compare with.

• alt_value – Only used in atomic_cas to represent the value to swap to.

See also:
Numba’s corresponding atomic functions

cupyx.jit.atomic_exch

cupyx.jit.atomic_exch(array, index, value, alt_value=None) = <cupyx.jit function>
Calls the atomicExch function to operate atomically on array[index]. Please refer to Atomic Functions for
detailed explanation.

Parameters
• array – A cupy.ndarray to index over.

• index – A valid index such that the address to the corresponding array element
array[index] can be computed.

828 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

CuPy Documentation, Release 13.0.0

• value – Represent the value to use for the specified operation. For the case of atomic_cas,
this is the value for array[index] to compare with.

• alt_value – Only used in atomic_cas to represent the value to swap to.

See also:
Numba’s corresponding atomic functions

cupyx.jit.atomic_min

cupyx.jit.atomic_min(array, index, value, alt_value=None) = <cupyx.jit function>
Calls the atomicMin function to operate atomically on array[index]. Please refer to Atomic Functions for
detailed explanation.

Parameters
• array – A cupy.ndarray to index over.

• index – A valid index such that the address to the corresponding array element
array[index] can be computed.

• value – Represent the value to use for the specified operation. For the case of atomic_cas,
this is the value for array[index] to compare with.

• alt_value – Only used in atomic_cas to represent the value to swap to.

See also:
Numba’s corresponding atomic functions

cupyx.jit.atomic_max

cupyx.jit.atomic_max(array, index, value, alt_value=None) = <cupyx.jit function>
Calls the atomicMax function to operate atomically on array[index]. Please refer to Atomic Functions for
detailed explanation.

Parameters
• array – A cupy.ndarray to index over.

• index – A valid index such that the address to the corresponding array element
array[index] can be computed.

• value – Represent the value to use for the specified operation. For the case of atomic_cas,
this is the value for array[index] to compare with.

• alt_value – Only used in atomic_cas to represent the value to swap to.

See also:
Numba’s corresponding atomic functions

5.7. Custom kernels 829

https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations

CuPy Documentation, Release 13.0.0

cupyx.jit.atomic_inc

cupyx.jit.atomic_inc(array, index, value, alt_value=None) = <cupyx.jit function>
Calls the atomicInc function to operate atomically on array[index]. Please refer to Atomic Functions for
detailed explanation.

Parameters
• array – A cupy.ndarray to index over.

• index – A valid index such that the address to the corresponding array element
array[index] can be computed.

• value – Represent the value to use for the specified operation. For the case of atomic_cas,
this is the value for array[index] to compare with.

• alt_value – Only used in atomic_cas to represent the value to swap to.

See also:
Numba’s corresponding atomic functions

cupyx.jit.atomic_dec

cupyx.jit.atomic_dec(array, index, value, alt_value=None) = <cupyx.jit function>
Calls the atomicDec function to operate atomically on array[index]. Please refer to Atomic Functions for
detailed explanation.

Parameters
• array – A cupy.ndarray to index over.

• index – A valid index such that the address to the corresponding array element
array[index] can be computed.

• value – Represent the value to use for the specified operation. For the case of atomic_cas,
this is the value for array[index] to compare with.

• alt_value – Only used in atomic_cas to represent the value to swap to.

See also:
Numba’s corresponding atomic functions

cupyx.jit.atomic_cas

cupyx.jit.atomic_cas(array, index, value, alt_value=None) = <cupyx.jit function>
Calls the atomicCAS function to operate atomically on array[index]. Please refer to Atomic Functions for
detailed explanation.

Parameters
• array – A cupy.ndarray to index over.

• index – A valid index such that the address to the corresponding array element
array[index] can be computed.

• value – Represent the value to use for the specified operation. For the case of atomic_cas,
this is the value for array[index] to compare with.

• alt_value – Only used in atomic_cas to represent the value to swap to.

830 Chapter 5. API Reference

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

CuPy Documentation, Release 13.0.0

See also:
Numba’s corresponding atomic functions

cupyx.jit.atomic_and

cupyx.jit.atomic_and(array, index, value, alt_value=None) = <cupyx.jit function>
Calls the atomicAnd function to operate atomically on array[index]. Please refer to Atomic Functions for
detailed explanation.

Parameters
• array – A cupy.ndarray to index over.

• index – A valid index such that the address to the corresponding array element
array[index] can be computed.

• value – Represent the value to use for the specified operation. For the case of atomic_cas,
this is the value for array[index] to compare with.

• alt_value – Only used in atomic_cas to represent the value to swap to.

See also:
Numba’s corresponding atomic functions

cupyx.jit.atomic_or

cupyx.jit.atomic_or(array, index, value, alt_value=None) = <cupyx.jit function>
Calls the atomicOr function to operate atomically on array[index]. Please refer to Atomic Functions for
detailed explanation.

Parameters
• array – A cupy.ndarray to index over.

• index – A valid index such that the address to the corresponding array element
array[index] can be computed.

• value – Represent the value to use for the specified operation. For the case of atomic_cas,
this is the value for array[index] to compare with.

• alt_value – Only used in atomic_cas to represent the value to swap to.

See also:
Numba’s corresponding atomic functions

cupyx.jit.atomic_xor

cupyx.jit.atomic_xor(array, index, value, alt_value=None) = <cupyx.jit function>
Calls the atomicXor function to operate atomically on array[index]. Please refer to Atomic Functions for
detailed explanation.

Parameters
• array – A cupy.ndarray to index over.

• index – A valid index such that the address to the corresponding array element
array[index] can be computed.

5.7. Custom kernels 831

https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

CuPy Documentation, Release 13.0.0

• value – Represent the value to use for the specified operation. For the case of atomic_cas,
this is the value for array[index] to compare with.

• alt_value – Only used in atomic_cas to represent the value to swap to.

See also:
Numba’s corresponding atomic functions

cupyx.jit.cg.this_grid

cupyx.jit.cg.this_grid = <cupyx.jit function>

Returns the current grid group (_GridGroup).

See also:
cupyx.jit.cg._GridGroup, numba.cuda.cg.this_grid()

cupyx.jit.cg.this_thread_block

cupyx.jit.cg.this_thread_block = <cupyx.jit function>

Returns the current thread block group (_ThreadBlockGroup).

See also:
cupyx.jit.cg._ThreadBlockGroup

cupyx.jit.cg.sync

cupyx.jit.cg.sync(group) = <cupyx.jit function>
Calls cg::sync().

Parameters
group – a valid cooperative group

See also:
cg::sync

cupyx.jit.cg.memcpy_async

cupyx.jit.cg.memcpy_async(group, dst, dst_idx, src, src_idx, size, *, aligned_size=None) = <cupyx.jit
function>

Calls cg::memcpy_sync().

Parameters
• group – a valid cooperative group

• dst – the destination array that can be viewed as a 1D C-contiguous array

• dst_idx – the start index of the destination array element

• src – the source array that can be viewed as a 1D C-contiguous array

• src_idx – the start index of the source array element

• size (int) – the number of bytes to be copied from src[src_index] to dst[dst_idx]

832 Chapter 5. API Reference

https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#synchronization-and-atomic-operations
https://numba.readthedocs.io/en/stable/cuda-reference/kernel.html#numba.cuda.cg.this_grid
https://docs.nvidia.com/cuda/archive/11.6.0/cuda-c-programming-guide/index.html#collectives-cg-sync
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• aligned_size (int) – Use cuda::aligned_size_t<N> to guarantee the compiler that
src/dst are at least N-bytes aligned. The behavior is undefined if the guarantee is not held.

See also:
cg::memcpy_sync

cupyx.jit.cg.wait

cupyx.jit.cg.wait(group) = <cupyx.jit function>
Calls cg::wait().

Parameters
group – a valid cooperative group

cupyx.jit.cg.wait_prior

cupyx.jit.cg.wait_prior(group) = <cupyx.jit function>
Calls cg::wait_prior<N>().

Parameters
• group – a valid cooperative group

• step (int) – wait for the first N steps to finish

cupyx.jit._interface._JitRawKernel

class cupyx.jit._interface._JitRawKernel(func, mode, device)
JIT CUDA kernel object.

The decorator :func:cupyx.jit.rawkernel converts the target function to an object of this class. This class is
not inteded to be instantiated by users.

Methods

__call__(grid, block, args, shared_mem=0, stream=None)
Calls the CUDA kernel.

The compilation will be deferred until the first function call. CuPy’s JIT compiler infers the types of
arguments at the call time, and will cache the compiled kernels for speeding up any subsequent calls.

Parameters
• grid (tuple of int) – Size of grid in blocks.

• block (tuple of int) – Dimensions of each thread block.

• args (tuple) – Arguments of the kernel. The type of all elements must be bool, int,
float, complex, NumPy scalar or cupy.ndarray.

• shared_mem (int) – Dynamic shared-memory size per thread block in bytes.

• stream (cupy.cuda.Stream) – CUDA stream.

See also:
JIT kernel definition

5.7. Custom kernels 833

https://docs.python.org/3/library/functions.html#int
https://docs.nvidia.com/cuda/archive/11.6.0/cuda-c-programming-guide/index.html#collectives-cg-memcpy-async
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

__getitem__(grid_and_block)
Numba-style kernel call.

See also:
JIT kernel definition

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

Attributes

cached_code

Returns next(iter(self.cached_codes.values())).

This proprety method is for debugging purpose. The return value is not guaranteed to keep backward
compatibility.

cached_codes

Returns a dict that has input types as keys and codes values.

This proprety method is for debugging purpose. The return value is not guaranteed to keep backward
compatibility.

5.7.7 Kernel binary memoization

cupy.memoize(bool for_each_device=False) Makes a function memoizing the result for each argu-
ment and device.

cupy.clear_memo() Clears the memoized results for all functions decorated
by memoize.

834 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupy.memoize

cupy.memoize(bool for_each_device=False)
Makes a function memoizing the result for each argument and device.

This decorator provides automatic memoization of the function result.

Parameters
for_each_device (bool) – If True, it memoizes the results for each device. Otherwise, it
memoizes the results only based on the arguments.

cupy.clear_memo

cupy.clear_memo()

Clears the memoized results for all functions decorated by memoize.

5.8 Distributed

5.8.1 Communication between processes

init_process_group(n_devices, rank, *[, ...]) Start cupyx.distributed and obtain a communicator.
NCCLBackend(n_devices, rank[, host, port, ...]) Interface that uses NVIDIA's NCCL to perform commu-

nications.

cupyx.distributed.init_process_group

cupyx.distributed.init_process_group(n_devices, rank, *, backend='nccl', host=None, port=None,
use_mpi=False)

Start cupyx.distributed and obtain a communicator.

This call initializes the distributed environment, it needs to be called for every process that is involved in the
communications.

A single device per returned communication is only allowed. It is the user responsibility of setting the appropiated
gpu to be used before creating and using the communicator.

Currently the user needs to specify each process rank and the total number of processes, and start all the processes
in different hosts manually.

The process with rank 0 will spawn a TCP server using a subprocess that listens in the port indicated by the
env var CUPYX_DISTRIBUTED_PORT, the rank 0 must be executed in the host determined by the env var
CUPYX_DISTRIBUTED_HOST. In case their values are not specified, ‘127.0.0.1’ and 13333 will be used by
default.

Note that this feature is expected to be used within a trusted cluster environment.

5.8. Distributed 835

https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Example

>>> import cupy
>>> def process_0():
... import cupyx.distributed
... cupy.cuda.Device(0).use()
... comm = cupyx.distributed.init_process_group(2, 0)
... array = cupy.ones(1)
... comm.broadcast(array, 0)
...
>>> def process_1():
... import cupyx.distributed
... cupy.cuda.Device(1).use()
... comm = cupyx.distributed.init_process_group(2, 1)
... array = cupy.zeros(1)
... comm.broadcast(array, 0)
... cupy.equal(array, cupy.ones(1))

Parameters
• n_devices (int) – Total number of devices that will be used in the distributed execution.

• rank (int) – Unique id of the GPU that the communicator is associated to its value needs
to be 0 <= rank < n_devices.

• backend (str) – Backend to use for the communications. Optional, defaults to “nccl”.

• host (str) – host address for the process rendezvous on initialization defaults to None.

• port (int) – port for the process rendezvous on initialization defaults to None.

• use_mpi (bool) – if False, it avoids using MPI for synchronization and uses the provided
TCP server for exchanging CPU only information. defaults to False.

Returns
object used to perform communications, adheres to the

Backend specification:

Return type
Backend

cupyx.distributed.NCCLBackend

class cupyx.distributed.NCCLBackend(n_devices, rank, host='127.0.0.1', port=13333, use_mpi=False)
Interface that uses NVIDIA’s NCCL to perform communications.

Parameters
• n_devices (int) – Total number of devices that will be used in the distributed execution.

• rank (int) – Unique id of the GPU that the communicator is associated to its value needs
to be 0 <= rank < n_devices.

• host (str, optional) – host address for the process rendezvous on initialization. Defaults
to “127.0.0.1”.

• port (int, optional) – port used for the process rendezvous on initialization. Defaults
to 13333.

836 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

• use_mpi (bool, optional) – switch between MPI and use the included TCP server for
initialization & synchronization. Defaults to False.

Methods

all_gather(in_array, out_array, count, stream=None)
Performs an all gather operation.

Parameters
• in_array (cupy.ndarray) – array to be sent.

• out_array (cupy.ndarray) – array where the result with be stored.

• count (int) – Number of elements to send to each rank.

• stream (cupy.cuda.Stream, optional) – if supported, stream to perform the commu-
nication.

all_reduce(in_array, out_array, op='sum', stream=None)
Performs an all reduce operation.

Parameters
• in_array (cupy.ndarray) – array to be sent.

• out_array (cupy.ndarray) – array where the result with be stored.

• op (str) – reduction operation, can be one of (‘sum’, ‘prod’, ‘min’ ‘max’), arrays of com-
plex type only support ‘sum’. Defaults to ‘sum’.

• stream (cupy.cuda.Stream, optional) – if supported, stream to perform the commu-
nication.

all_to_all(in_array, out_array, stream=None)
Performs an all to all operation.

Parameters
• in_array (cupy.ndarray) – array to be sent. Its shape must be (total_ranks, . . .).

• out_array (cupy.ndarray) – array where the result with be stored. Its shape must be
(total_ranks, . . .).

• stream (cupy.cuda.Stream, optional) – if supported, stream to perform the commu-
nication.

barrier()

Performs a barrier operation.

The barrier is done in the cpu and is a explicit synchronization mechanism that halts the thread progression.

broadcast(in_out_array, root=0, stream=None)
Performs a broadcast operation.

Parameters
• in_out_array (cupy.ndarray) – array to be sent for root rank. Other ranks will receive

the broadcast data here.

• root (int, optional) – rank of the process that will send the broadcast. Defaults to 0.

• stream (cupy.cuda.Stream, optional) – if supported, stream to perform the commu-
nication.

5.8. Distributed 837

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

gather(in_array, out_array, root=0, stream=None)
Performs a gather operation.

Parameters
• in_array (cupy.ndarray) – array to be sent.

• out_array (cupy.ndarray) – array where the result with be stored. Its shape must be
(total_ranks, . . .).

• root (int) – rank that will receive in_array from other ranks.

• stream (cupy.cuda.Stream, optional) – if supported, stream to perform the commu-
nication.

recv(out_array, peer, stream=None)
Performs a receive operation.

Parameters
• array (cupy.ndarray) – array used to receive data.

• peer (int) – rank of the process array will be received from.

• stream (cupy.cuda.Stream, optional) – if supported, stream to perform the commu-
nication.

reduce(in_array, out_array, root=0, op='sum', stream=None)
Performs a reduce operation.

Parameters
• in_array (cupy.ndarray) – array to be sent.

• out_array (cupy.ndarray) – array where the result with be stored. will only be modified
by the root process.

• root (int, optional) – rank of the process that will perform the reduction. Defaults to
0.

• op (str) – reduction operation, can be one of (‘sum’, ‘prod’, ‘min’ ‘max’), arrays of com-
plex type only support ‘sum’. Defaults to ‘sum’.

• stream (cupy.cuda.Stream, optional) – if supported, stream to perform the commu-
nication.

reduce_scatter(in_array, out_array, count, op='sum', stream=None)
Performs a reduce scatter operation.

Parameters
• in_array (cupy.ndarray) – array to be sent.

• out_array (cupy.ndarray) – array where the result with be stored.

• count (int) – Number of elements to send to each rank.

• op (str) – reduction operation, can be one of (‘sum’, ‘prod’, ‘min’ ‘max’), arrays of com-
plex type only support ‘sum’. Defaults to ‘sum’.

• stream (cupy.cuda.Stream, optional) – if supported, stream to perform the commu-
nication.

838 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CuPy Documentation, Release 13.0.0

scatter(in_array, out_array, root=0, stream=None)
Performs a scatter operation.

Parameters
• in_array (cupy.ndarray) – array to be sent. Its shape must be (total_ranks, . . .).

• out_array (cupy.ndarray) – array where the result with be stored.

• root (int) – rank that will send the in_array to other ranks.

• stream (cupy.cuda.Stream, optional) – if supported, stream to perform the commu-
nication.

send(array, peer, stream=None)
Performs a send operation.

Parameters
• array (cupy.ndarray) – array to be sent.

• peer (int) – rank of the process array will be sent to.

• stream (cupy.cuda.Stream, optional) – if supported, stream to perform the commu-
nication.

send_recv(in_array, out_array, peer, stream=None)
Performs a send and receive operation.

Parameters
• in_array (cupy.ndarray) – array to be sent.

• out_array (cupy.ndarray) – array used to receive data.

• peer (int) – rank of the process to send in_array and receive out_array.

• stream (cupy.cuda.Stream, optional) – if supported, stream to perform the commu-
nication.

stop()

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

5.8. Distributed 839

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CuPy Documentation, Release 13.0.0

5.8.2 ndarray distributed across devices

distributed_array(array, index_map[, mode]) Creates a distributed array from the given data.
DistributedArray(self, shape, dtype, chunks_map) Multi-dimensional array distributed across multiple

CUDA devices.
make_2d_index_map(i_partitions, ...) Create an index_map for a 2D matrix with a specified

blocking.
matmul(a, b[, out]) Matrix multiplication between distributed arrays.

cupyx.distributed.array.distributed_array

cupyx.distributed.array.distributed_array(array, index_map, mode=None)
Creates a distributed array from the given data.

This function does not check if all elements of the given array are stored in some of the chunks.

Parameters
• array (array_like) – DistributedArray object, cupy.ndarray object or any other

object that can be passed to numpy.array().

• index_map (dict from int to array indices) – Indices for the chunks that devices
with designated IDs own. One device can have multiple chunks, which can be specified as a
list of array indices.

• mode (mode object, optional) – Mode that determines how overlaps of the chunks are
interpreted. Defaults to cupyx.distributed.array.REPLICA.

Return type
DistributedArray

See also:
DistributedArray.mode for details about modes.

Example

>>> array = cupy.arange(9).reshape(3, 3)
>>> A = distributed_array(
... array,
... {0: [(slice(2), slice(2)), # array[:2, :2]
... slice(None, None, 2)], # array[::2]
... 1: (slice(1, None), 2)}) # array[1:, 2]

cupyx.distributed.array.DistributedArray

class cupyx.distributed.array.DistributedArray(self, shape, dtype, chunks_map, mode=REPLICA,
comms=None)

Multi-dimensional array distributed across multiple CUDA devices.

This class implements some elementary operations that cupy.ndarray provides. The array content is split into
chunks, contiguous arrays corresponding to slices of the original array. Note that one device can hold multiple
chunks.

840 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array

CuPy Documentation, Release 13.0.0

This direct constructor is designed for internal calls. Users should create distributed arrays using
distributed_array().

Parameters
• shape (tuple of ints) – Shape of created array.

• dtype (dtype_like) – Any object that can be interpreted as a numpy data type.

• chunks_map (dict from int to list of chunks) – Lists of chunk objects associated
with each device.

• mode (mode object, optional) – Mode that determines how overlaps of the chunks are
interpreted. Defaults to cupyx.distributed.array.REPLICA.

• comms (optional) – Communicator objects which a distributed array hold internally. Shar-
ing them with other distributed arrays can save time because their initialization is a costly
operation.

Return type
DistributedArray

See also:
DistributedArray.mode for details about modes.

Methods

__getitem__(*args, **kwargs)
Not supported.

__setitem__(*args, **kwargs)
Not supported.

__len__(*args, **kwargs)
Not supported.

__iter__(*args, **kwargs)
Not supported.

__copy__(*args, **kwargs)
Not supported.

all(*args, **kwargs)
Not supported.

all_chunks()

Return the chunks with all buffered data flushed.

Buffered data are created in situations such as resharding and mode changing.

Return type
dict[int, list[cupy.ndarray]]

any(*args, **kwargs)
Not supported.

argmax(*args, **kwargs)
Not supported.

5.8. Distributed 841

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

CuPy Documentation, Release 13.0.0

argmin(*args, **kwargs)
Not supported.

argpartition(*args, **kwargs)
Not supported.

argsort(*args, **kwargs)
Not supported.

astype(*args, **kwargs)
Not supported.

change_mode(mode)
Return a view or a copy in the given mode.

Parameters
mode (mode Object) – How overlaps of the chunks are interpreted.

Return type
DistributedArray

See also:
DistributedArray.mode for details about modes.

choose(*args, **kwargs)
Not supported.

clip(*args, **kwargs)
Not supported.

compress(*args, **kwargs)
Not supported.

conj(self)→ ndarray

conjugate(self)→ ndarray

copy(*args, **kwargs)
Not supported.

cumprod(*args, **kwargs)
Not supported.

cumsum(*args, **kwargs)
Not supported.

diagonal(*args, **kwargs)
Not supported.

dot(*args, **kwargs)
Not supported.

dump(*args, **kwargs)
Not supported.

dumps(*args, **kwargs)
Not supported.

842 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

fill(*args, **kwargs)
Not supported.

flatten(*args, **kwargs)
Not supported.

get(stream=None, order='C', out=None, blocking=True)
Return a copy of the array on the host memory.

Return type
ndarray

item(*args, **kwargs)
Not supported.

max(axis=None, out=None, keepdims=False)
Return the maximum along a given axis.

Note: Currently, it only supports non-None values for axis and the default values for out and keepdims.

See also:
cupy.ndarray.max(), numpy.ndarray.max()

mean(*args, **kwargs)
Not supported.

min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Note: Currently, it only supports non-None values for axis and the default values for out and keepdims.

See also:
cupy.ndarray.min(), numpy.ndarray.min()

nonzero(*args, **kwargs)
Not supported.

partition(*args, **kwargs)
Not supported.

prod(axis=None, dtype=None, out=None, keepdims=None)
Return the minimum along a given axis.

Note: Currently, it only supports non-None values for axis and the default values for out and keepdims.

See also:
cupy.ndarray.prod(), numpy.ndarray.prod()

ptp(*args, **kwargs)
Not supported.

5.8. Distributed 843

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.prod.html#numpy.ndarray.prod

CuPy Documentation, Release 13.0.0

put(*args, **kwargs)
Not supported.

ravel(*args, **kwargs)
Not supported.

reduced_view(*args, **kwargs)
Not supported.

repeat(*args, **kwargs)
Not supported.

reshape(*args, **kwargs)
Not supported.

reshard(index_map)
Return a view or a copy having the given index_map.

Data transfers across devices are done on separate streams created internally. To make them asynchronous,
transferred data is buffered and reflected to the chunks when necessary.

Parameters
index_map (dict from int to array indices) – Indices for the chunks that devices
with designated IDs own. The current index_map of a distributed array can be obtained from
DistributedArray.index_map.

Return type
DistributedArray

round(*args, **kwargs)
Not supported.

scatter_add(*args, **kwargs)
Not supported.

scatter_max(*args, **kwargs)
Not supported.

scatter_min(*args, **kwargs)
Not supported.

searchsorted(*args, **kwargs)
Not supported.

set(*args, **kwargs)
Not supported.

sort(*args, **kwargs)
Not supported.

squeeze(*args, **kwargs)
Not supported.

std(*args, **kwargs)
Not supported.

844 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

sum(axis=None, dtype=None, out=None, keepdims=False)
Return the minimum along a given axis.

Note: Currently, it only supports non-None values for axis and the default values for out and keepdims.

See also:
cupy.ndarray.sum(), numpy.ndarray.sum()

swapaxes(*args, **kwargs)
Not supported.

take(*args, **kwargs)
Not supported.

toDlpack(*args, **kwargs)
Not supported.

tobytes(*args, **kwargs)
Not supported.

tofile(*args, **kwargs)
Not supported.

tolist(*args, **kwargs)
Not supported.

trace(*args, **kwargs)
Not supported.

transpose(*args, **kwargs)
Not supported.

var(*args, **kwargs)
Not supported.

view(*args, **kwargs)
Not supported.

__eq__(value, /)
Return self==value.

__ne__(value, /)
Return self!=value.

__lt__(value, /)
Return self<value.

__le__(value, /)
Return self<=value.

__gt__(value, /)
Return self>value.

__ge__(value, /)
Return self>=value.

__bool__()

True if self else False

5.8. Distributed 845

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sum.html#numpy.ndarray.sum

CuPy Documentation, Release 13.0.0

Attributes

T

Not supported.

base

Not supported.

cstruct

Not supported.

data

Not supported.

device

Not supported.

devices

A collection of device IDs holding part of the data.

dtype

flags

Not supported.

flat

Not supported.

imag

Not supported.

index_map

Indices for the chunks that devices with designated IDs own.

itemsize

Size of each element in bytes.

See also:
numpy.ndarray.itemsize

mode

Describe how overlaps of the chunks are interpreted.

In the replica mode, chunks are guaranteed to have identical values on their overlapping segments. In other
modes, they are not necessarily identical and represent the original data as their max, sum, etc.

DistributedArray currently supports cupyx.distributed.array.REPLICA, cupyx.distributed.
array.MIN, cupyx.distributed.array.MAX, cupyx.distributed.array.SUM, cupyx.
distributed.array.PROD modes.

Many operations on distributed arrays including cupy.ufunc and matmul() involve changing their mode
beforehand. These mode conversions are done automatically, so in most cases users do not have to manage
modes manually.

846 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemsize.html#numpy.ndarray.itemsize

CuPy Documentation, Release 13.0.0

Example

>>> A = distributed_array(
... cupy.arange(6).reshape(2, 3),
... make_2d_index_map([0, 2], [0, 1, 3],
... [[{0}, {1, 2}]]))
>>> B = distributed_array(
... cupy.arange(12).reshape(3, 4),
... make_2d_index_map([0, 1, 3], [0, 2, 4],
... [[{0}, {0}],
... [{1}, {2}]]))
>>> C = A @ B
>>> C
array([[20, 23, 26, 29],

[56, 68, 80, 92]])
>>> C.mode
'sum'
>>> C.all_chunks()
{0: [array([[0, 0],

[0, 3]]), # left half
array([[0, 0],

[6, 9]])], # right half
1: [array([[20, 23],

[56, 65]])], # left half
2: [array([[26, 29],

[74, 83]])]} # right half
>>> C_replica = C.change_mode('replica')
>>> C_replica.mode
'replica'
>>> C_replica.all_chunks()
{0: [array([[20, 23],

[56, 68]]), # left half
array([[26, 29],

[80, 92]])], # right half
1: [array([[20, 23],

[56, 68]])], # left half
2: [array([[26, 29],

[80, 92]])]} # right half

nbytes

Total size of all elements in bytes.

It does not count skips between elements.

See also:
numpy.ndarray.nbytes

ndim

Number of dimensions.

a.ndim is equivalent to len(a.shape).

See also:
numpy.ndarray.ndim

5.8. Distributed 847

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim

CuPy Documentation, Release 13.0.0

real

Not supported.

shape

Tuple of array dimensions.

Assignment to this property is currently not supported.

size

strides

Not supported.

cupyx.distributed.array.make_2d_index_map

cupyx.distributed.array.make_2d_index_map(i_partitions, j_partitions, devices)
Create an index_map for a 2D matrix with a specified blocking.

Parameters
• i_partitions (list of ints) – boundaries of blocks on the i axis

• j_partitions (list of ints) – boundaries of blocks on the j axis

• devices (2D list of sets of ints) – devices owning each block

Returns
index_map

Indices for the chunks that devices with designated IDs are going to own.

Return type
dict from int to array indices

Example

>>> index_map = make_2d_index_map(
... [0, 2, 4], [0, 3, 5],
... [[{0}, {1}],
... [{2}, {0, 1}]])
>>> pprint(index_map)
{0: [(slice(0, 2, None), slice(0, 3, None)),

(slice(2, 4, None), slice(3, 5, None))],
1: [(slice(0, 2, None), slice(3, 5, None)),

(slice(2, 4, None), slice(3, 5, None))],
2: [(slice(2, 4, None), slice(0, 3, None))]}

848 Chapter 5. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

CuPy Documentation, Release 13.0.0

cupyx.distributed.array.matmul

cupyx.distributed.array.matmul(a, b, out=None, **kwargs)
Matrix multiplication between distributed arrays.

The arguments must have compatible shape and index_map.

This operation converts its operands into the replica mode, and compute their product in the sum mode.

Parameters
• a (DistributedArray) – Input distributed arrays.

• b (DistributedArray) – Input distributed arrays.

• out (optional) – A location into which the result is stored. This option is currently not
supported.

Returns
The matrix product of the inputs.

Return type
DistributedArray

Example

>>> A = distributed_array(
... cupy.arange(6).reshape(2, 3),
... make_2d_index_map([0, 2], [0, 1, 3],
... [[{0}, {1, 2}]]))
>>> B = distributed_array(
... cupy.arange(12).reshape(3, 4),
... make_2d_index_map([0, 1, 3], [0, 2, 4],
... [[{0}, {0}],
... [{1}, {2}]]))
>>> C = A @ B
>>> C.mode
'sum'
>>> C.all_chunks()
{0: [array([[0, 0],

[0, 3]]),
array([[0, 0],

[6, 9]])],
1: [array([[20, 23],

[56, 65]])],
2: [array([[26, 29],

[74, 83]])]}
>>> C
array([[20, 23, 26, 29],

[56, 68, 80, 92]])

See also:
numpy.matmul

5.8. Distributed 849

https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy.matmul

CuPy Documentation, Release 13.0.0

5.9 Environment variables

5.9.1 For runtime

Here are the environment variables that CuPy uses at runtime.

CUDA_PATH

Path to the directory containing CUDA. The parent of the directory containing nvcc is used as default. When
nvcc is not found, /usr/local/cuda is used. See Working with Custom CUDA Installation for details.

CUPY_CACHE_DIR

Default: ${HOME}/.cupy/kernel_cache

Path to the directory to store kernel cache. See Performance Best Practices for details.

CUPY_CACHE_SAVE_CUDA_SOURCE

Default: 0

If set to 1, CUDA source file will be saved along with compiled binary in the cache directory for debug purpose.
Note: the source file will not be saved if the compiled binary is already stored in the cache.

CUPY_CACHE_IN_MEMORY

Default: 0

If set to 1, CUPY_CACHE_DIR and CUPY_CACHE_SAVE_CUDA_SOURCE will be ignored, and the cache is in mem-
ory. This environment variable allows reducing disk I/O, but is ignoed when nvcc is set to be the compiler
backend.

CUPY_DISABLE_JITIFY_CACHE

Default: 0

If set to 1, headers loaded by Jitify would not be cached on disk (to CUPY_CACHE_DIR). The default is to always
cache.

CUPY_DUMP_CUDA_SOURCE_ON_ERROR

Default: 0

If set to 1, when CUDA kernel compilation fails, CuPy dumps CUDA kernel code to standard error.

CUPY_CUDA_COMPILE_WITH_DEBUG

Default: 0

If set to 1, CUDA kernel will be compiled with debug information (--device-debug and
--generate-line-info).

CUPY_GPU_MEMORY_LIMIT

Default: 0 (unlimited)

The amount of memory that can be allocated for each device. The value can be specified in absolute bytes or
fraction (e.g., "90%") of the total memory of each GPU. See Memory Management for details.

CUPY_SEED

Set the seed for random number generators.

CUPY_EXPERIMENTAL_SLICE_COPY

Default: 0

If set to 1, the following syntax is enabled:

850 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupy_ndarray[:] = numpy_ndarray

CUPY_ACCELERATORS

Default: "cub" (In ROCm HIP environment, the default value is "". i.e., no accelerators are used.)

A comma-separated string of backend names (cub, cutensor, or cutensornet) which indicates the acceler-
ation backends used in CuPy operations and its priority (in descending order). By default, all accelerators are
disabled on HIP and only CUB is enabled on CUDA.

CUPY_TF32

Default: 0

If set to 1, it allows CUDA libraries to use Tensor Cores TF32 compute for 32-bit floating point compute.

CUPY_CUDA_ARRAY_INTERFACE_SYNC

Default: 1

This controls CuPy’s behavior as a Consumer. If set to 0, a stream synchronization will not be performed when
a device array provided by an external library that implements the CUDA Array Interface is being consumed by
CuPy. For more detail, see the Synchronization requirement in the CUDA Array Interface v3 documentation.

CUPY_CUDA_ARRAY_INTERFACE_EXPORT_VERSION

Default: 3

This controls CuPy’s behavior as a Producer. If set to 2, the CuPy stream on which the data is being operated
will not be exported and thus the Consumer (another library) will not perform any stream synchronization. For
more detail, see the Synchronization requirement in the CUDA Array Interface v3 documentation.

CUPY_DLPACK_EXPORT_VERSION

Default: 0.6

This controls CuPy’s DLPack support. Currently, setting a value smaller than 0.6 would disguise managed
memory as normal device memory, which enables data exchanges with libraries that have not updated their
DLPack support, whereas starting 0.6 CUDA managed memory can be correctly recognized as a valid device
type.

NVCC

Default: nvcc

Define the compiler to use when compiling CUDA source. Note that most CuPy kernels are built with NVRTC;
this environment variable is only effective for RawKernel/RawModule with the nvcc backend or when using
cub as the accelerator.

CUPY_CUDA_PER_THREAD_DEFAULT_STREAM

Default: 0

If set to 1, CuPy will use the CUDA per-thread default stream, effectively causing each host thread to automat-
ically execute in its own stream, unless the CUDA default (null) stream or a user-created stream is specified.
If set to 0 (default), the CUDA default (null) stream is used, unless the per-thread default stream (ptds) or a
user-created stream is specified.

CUPY_COMPILE_WITH_PTX

Default: 0

By default, CuPy directly compiles kernels into SASS (CUBIN) to support CUDA Enhanced Compatibility If
set to 1, CuPy instead compiles kernels into PTX and lets CUDA Driver assemble SASS from PTX. This option
is only effective for CUDA 11.1 or later; CuPy always compiles into PTX on earlier CUDA versions. Also, this
option only applies when NVRTC is selected as the compilation backend. NVCC backend always compiles into
SASS (CUBIN).

5.9. Environment variables 851

https://numba.readthedocs.io/en/latest/cuda/cuda_array_interface.html#synchronization
https://numba.readthedocs.io/en/latest/cuda/cuda_array_interface.html#synchronization
https://docs.nvidia.com/deploy/cuda-compatibility/

CuPy Documentation, Release 13.0.0

CUDA Toolkit Environment Variables
In addition to the environment variables listed above, as in any CUDA programs, all of the CUDA environment
variables listed in the CUDA Toolkit Documentation will also be honored.

Note: When CUPY_ACCELERATORS or NVCC environment variables are set, g++-6 or later is required as the runtime
host compiler. Please refer to Installing CuPy from Source for the details on how to install g++.

5.9.2 For installation

These environment variables are used during installation (building CuPy from source).

CUTENSOR_PATH

Path to the cuTENSOR root directory that contains lib and include directories. (experimental)

CUPY_INSTALL_USE_HIP

Default: 0

If set to 1, CuPy is built for AMD ROCm Platform (experimental). For building the ROCm support, see Installing
Binary Packages for further detail.

CUPY_USE_CUDA_PYTHON

Default: 0

If set to 1, CuPy is built using CUDA Python.

CUPY_NVCC_GENERATE_CODE

Build CuPy for a particular CUDA architecture. For example:

CUPY_NVCC_GENERATE_CODE="arch=compute_60,code=sm_60"

For specifying multiple archs, concatenate the arch=... strings with semicolons (;). If current is specified,
then it will automatically detect the currently installed GPU architectures in build time. When this is not set, the
default is to support all architectures.

CUPY_NUM_BUILD_JOBS

Default: 4

To enable or disable parallel build, sets the number of processes used to build the extensions in parallel.

CUPY_NUM_NVCC_THREADS

Default: 2

To enable or disable nvcc parallel compilation, sets the number of threads used to compile files using nvcc.

Additionally, the environment variables CUDA_PATH and NVCC are also respected at build time.

852 Chapter 5. API Reference

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars
https://github.com/NVIDIA/cuda-python

CuPy Documentation, Release 13.0.0

5.10 Comparison Table

Here is a list of NumPy / SciPy APIs and its corresponding CuPy implementations.

- in CuPy column denotes that CuPy implementation is not provided yet. We welcome contributions for these functions.

5.10.1 NumPy / CuPy APIs

Module-Level

NumPy CuPy
numpy.DataSource cupy.DataSource (alias of numpy.DataSource)
numpy.ScalarType -
numpy.abs cupy.abs
numpy.absolute cupy.absolute
numpy.add cupy.add
numpy.all cupy.all
numpy.allclose cupy.allclose
numpy.alltrue cupy.alltrue
numpy.amax cupy.amax
numpy.amin cupy.amin
numpy.angle cupy.angle
numpy.any cupy.any
numpy.append cupy.append
numpy.apply_along_axis cupy.apply_along_axis
numpy.apply_over_axes -
numpy.arange cupy.arange
numpy.arccos cupy.arccos
numpy.arccosh cupy.arccosh
numpy.arcsin cupy.arcsin
numpy.arcsinh cupy.arcsinh
numpy.arctan cupy.arctan
numpy.arctan2 cupy.arctan2
numpy.arctanh cupy.arctanh
numpy.argmax cupy.argmax
numpy.argmin cupy.argmin
numpy.argpartition cupy.argpartition
numpy.argsort cupy.argsort
numpy.argwhere cupy.argwhere
numpy.around cupy.around
numpy.array cupy.array
numpy.array2string cupy.array2string
numpy.array_equal cupy.array_equal
numpy.array_equiv cupy.array_equiv
numpy.array_repr cupy.array_repr
numpy.array_split cupy.array_split
numpy.array_str cupy.array_str
numpy.asanyarray cupy.asanyarray
numpy.asarray cupy.asarray
numpy.asarray_chkfinite cupy.asarray_chkfinite

continues on next page

5.10. Comparison Table 853

https://numpy.org/doc/stable/reference/generated/numpy.DataSource.html#numpy.DataSource
https://numpy.org/doc/stable/reference/generated/numpy.DataSource.html#numpy.DataSource
https://numpy.org/doc/stable/reference/generated/numpy.absolute.html#numpy.absolute
https://numpy.org/doc/stable/reference/generated/numpy.add.html#numpy.add
https://numpy.org/doc/stable/reference/generated/numpy.all.html#numpy.all
https://numpy.org/doc/stable/reference/generated/numpy.allclose.html#numpy.allclose
https://numpy.org/doc/stable/reference/generated/numpy.amax.html#numpy.amax
https://numpy.org/doc/stable/reference/generated/numpy.amin.html#numpy.amin
https://numpy.org/doc/stable/reference/generated/numpy.angle.html#numpy.angle
https://numpy.org/doc/stable/reference/generated/numpy.any.html#numpy.any
https://numpy.org/doc/stable/reference/generated/numpy.append.html#numpy.append
https://numpy.org/doc/stable/reference/generated/numpy.apply_along_axis.html#numpy.apply_along_axis
https://numpy.org/doc/stable/reference/generated/numpy.apply_over_axes.html#numpy.apply_over_axes
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://numpy.org/doc/stable/reference/generated/numpy.arccos.html#numpy.arccos
https://numpy.org/doc/stable/reference/generated/numpy.arccosh.html#numpy.arccosh
https://numpy.org/doc/stable/reference/generated/numpy.arcsin.html#numpy.arcsin
https://numpy.org/doc/stable/reference/generated/numpy.arcsinh.html#numpy.arcsinh
https://numpy.org/doc/stable/reference/generated/numpy.arctan.html#numpy.arctan
https://numpy.org/doc/stable/reference/generated/numpy.arctan2.html#numpy.arctan2
https://numpy.org/doc/stable/reference/generated/numpy.arctanh.html#numpy.arctanh
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html#numpy.argmax
https://numpy.org/doc/stable/reference/generated/numpy.argmin.html#numpy.argmin
https://numpy.org/doc/stable/reference/generated/numpy.argpartition.html#numpy.argpartition
https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort
https://numpy.org/doc/stable/reference/generated/numpy.argwhere.html#numpy.argwhere
https://numpy.org/doc/stable/reference/generated/numpy.around.html#numpy.around
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/generated/numpy.array2string.html#numpy.array2string
https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html#numpy.array_equal
https://numpy.org/doc/stable/reference/generated/numpy.array_equiv.html#numpy.array_equiv
https://numpy.org/doc/stable/reference/generated/numpy.array_repr.html#numpy.array_repr
https://numpy.org/doc/stable/reference/generated/numpy.array_split.html#numpy.array_split
https://numpy.org/doc/stable/reference/generated/numpy.array_str.html#numpy.array_str
https://numpy.org/doc/stable/reference/generated/numpy.asanyarray.html#numpy.asanyarray
https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray
https://numpy.org/doc/stable/reference/generated/numpy.asarray_chkfinite.html#numpy.asarray_chkfinite

CuPy Documentation, Release 13.0.0

Table 5 – continued from previous page
NumPy CuPy
numpy.ascontiguousarray cupy.ascontiguousarray
numpy.asfarray cupy.asfarray
numpy.asfortranarray cupy.asfortranarray
numpy.asmatrix -1

numpy.atleast_1d cupy.atleast_1d
numpy.atleast_2d cupy.atleast_2d
numpy.atleast_3d cupy.atleast_3d
numpy.average cupy.average
numpy.bartlett cupy.bartlett
numpy.base_repr cupy.base_repr
numpy.binary_repr cupy.binary_repr
numpy.bincount cupy.bincount
numpy.bitwise_and cupy.bitwise_and
numpy.bitwise_not cupy.bitwise_not
numpy.bitwise_or cupy.bitwise_or
numpy.bitwise_xor cupy.bitwise_xor
numpy.blackman cupy.blackman
numpy.block -
numpy.bmat -Page 863, 1

numpy.bool_ cupy.bool_ (alias of numpy.bool_)
numpy.broadcast cupy.broadcast
numpy.broadcast_arrays cupy.broadcast_arrays
numpy.broadcast_shapes cupy.broadcast_shapes (alias of numpy.

broadcast_shapes)
numpy.broadcast_to cupy.broadcast_to
numpy.busday_count -2

numpy.busday_offset -Page 863, 2

numpy.busdaycalendar -Page 863, 2

numpy.byte cupy.byte (alias of numpy.byte)
numpy.byte_bounds cupy.byte_bounds
numpy.bytes_ -3

numpy.c_ cupy.c_
numpy.can_cast cupy.can_cast
numpy.cast -
numpy.cbrt cupy.cbrt
numpy.cdouble cupy.cdouble (alias of numpy.cdouble)
numpy.ceil cupy.ceil
numpy.cfloat cupy.cfloat (alias of numpy.cfloat)
numpy.character -Page 863, 3

numpy.chararray -Page 863, 3

numpy.choose cupy.choose
numpy.clip cupy.clip
numpy.clongdouble -
numpy.clongfloat -
numpy.column_stack cupy.column_stack
numpy.common_type cupy.common_type
numpy.compare_chararrays -Page 863, 3

numpy.complex128 cupy.complex128 (alias of numpy.complex128)
numpy.complex256 -

continues on next page

854 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray
https://numpy.org/doc/stable/reference/generated/numpy.asfarray.html#numpy.asfarray
https://numpy.org/doc/stable/reference/generated/numpy.asfortranarray.html#numpy.asfortranarray
https://numpy.org/doc/stable/reference/generated/numpy.asmatrix.html#numpy.asmatrix
https://numpy.org/doc/stable/reference/generated/numpy.atleast_1d.html#numpy.atleast_1d
https://numpy.org/doc/stable/reference/generated/numpy.atleast_2d.html#numpy.atleast_2d
https://numpy.org/doc/stable/reference/generated/numpy.atleast_3d.html#numpy.atleast_3d
https://numpy.org/doc/stable/reference/generated/numpy.average.html#numpy.average
https://numpy.org/doc/stable/reference/generated/numpy.bartlett.html#numpy.bartlett
https://numpy.org/doc/stable/reference/generated/numpy.base_repr.html#numpy.base_repr
https://numpy.org/doc/stable/reference/generated/numpy.binary_repr.html#numpy.binary_repr
https://numpy.org/doc/stable/reference/generated/numpy.bincount.html#numpy.bincount
https://numpy.org/doc/stable/reference/generated/numpy.bitwise_and.html#numpy.bitwise_and
https://numpy.org/doc/stable/reference/generated/numpy.bitwise_or.html#numpy.bitwise_or
https://numpy.org/doc/stable/reference/generated/numpy.bitwise_xor.html#numpy.bitwise_xor
https://numpy.org/doc/stable/reference/generated/numpy.blackman.html#numpy.blackman
https://numpy.org/doc/stable/reference/generated/numpy.block.html#numpy.block
https://numpy.org/doc/stable/reference/generated/numpy.bmat.html#numpy.bmat
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.bool_
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.bool_
https://numpy.org/doc/stable/reference/generated/numpy.broadcast.html#numpy.broadcast
https://numpy.org/doc/stable/reference/generated/numpy.broadcast_arrays.html#numpy.broadcast_arrays
https://numpy.org/doc/stable/reference/generated/numpy.broadcast_shapes.html#numpy.broadcast_shapes
https://numpy.org/doc/stable/reference/generated/numpy.broadcast_shapes.html#numpy.broadcast_shapes
https://numpy.org/doc/stable/reference/generated/numpy.broadcast_shapes.html#numpy.broadcast_shapes
https://numpy.org/doc/stable/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to
https://numpy.org/doc/stable/reference/generated/numpy.busday_count.html#numpy.busday_count
https://numpy.org/doc/stable/reference/generated/numpy.busday_offset.html#numpy.busday_offset
https://numpy.org/doc/stable/reference/generated/numpy.busdaycalendar.html#numpy.busdaycalendar
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.byte
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.byte
https://numpy.org/doc/stable/reference/generated/numpy.byte_bounds.html#numpy.byte_bounds
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.bytes_
https://numpy.org/doc/stable/reference/generated/numpy.c_.html#numpy.c_
https://numpy.org/doc/stable/reference/generated/numpy.can_cast.html#numpy.can_cast
https://numpy.org/doc/stable/reference/generated/numpy.cbrt.html#numpy.cbrt
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.cdouble
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.cdouble
https://numpy.org/doc/stable/reference/generated/numpy.ceil.html#numpy.ceil
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.cfloat
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.cfloat
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.character
https://numpy.org/doc/stable/reference/generated/numpy.char.chararray.html#numpy.char.chararray
https://numpy.org/doc/stable/reference/generated/numpy.choose.html#numpy.choose
https://numpy.org/doc/stable/reference/generated/numpy.clip.html#numpy.clip
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.clongdouble
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.clongfloat
https://numpy.org/doc/stable/reference/generated/numpy.column_stack.html#numpy.column_stack
https://numpy.org/doc/stable/reference/generated/numpy.common_type.html#numpy.common_type
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex128
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex128
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex256

CuPy Documentation, Release 13.0.0

Table 5 – continued from previous page
NumPy CuPy
numpy.complex64 cupy.complex64 (alias of numpy.complex64)
numpy.complex_ cupy.complex_ (alias of numpy.complex_)
numpy.complexfloating cupy.complexfloating (alias of numpy.

complexfloating)
numpy.compress cupy.compress
numpy.concatenate cupy.concatenate
numpy.conj cupy.conj
numpy.conjugate cupy.conjugate
numpy.convolve cupy.convolve
numpy.copy cupy.copy
numpy.copysign cupy.copysign
numpy.copyto cupy.copyto
numpy.corrcoef cupy.corrcoef
numpy.correlate cupy.correlate
numpy.cos cupy.cos
numpy.cosh cupy.cosh
numpy.count_nonzero cupy.count_nonzero
numpy.cov cupy.cov
numpy.cross cupy.cross
numpy.csingle cupy.csingle (alias of numpy.csingle)
numpy.cumprod cupy.cumprod
numpy.cumproduct cupy.cumproduct
numpy.cumsum cupy.cumsum
numpy.datetime64 -Page 863, 2

numpy.datetime_as_string -Page 863, 2

numpy.datetime_data -Page 863, 2

numpy.deg2rad cupy.deg2rad
numpy.degrees cupy.degrees
numpy.delete cupy.delete
numpy.deprecate -
numpy.deprecate_with_doc -
numpy.diag cupy.diag
numpy.diag_indices cupy.diag_indices
numpy.diag_indices_from cupy.diag_indices_from
numpy.diagflat cupy.diagflat
numpy.diagonal cupy.diagonal
numpy.diff cupy.diff
numpy.digitize cupy.digitize
numpy.disp cupy.disp (alias of numpy.disp)
numpy.divide cupy.divide
numpy.divmod cupy.divmod
numpy.dot cupy.dot
numpy.double cupy.double (alias of numpy.double)
numpy.dsplit cupy.dsplit
numpy.dstack cupy.dstack
numpy.dtype cupy.dtype (alias of numpy.dtype)
numpy.ediff1d cupy.ediff1d
numpy.einsum cupy.einsum
numpy.einsum_path -

continues on next page

5.10. Comparison Table 855

https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex_
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complex_
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complexfloating
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complexfloating
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.complexfloating
https://numpy.org/doc/stable/reference/generated/numpy.compress.html#numpy.compress
https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html#numpy.concatenate
https://numpy.org/doc/stable/reference/generated/numpy.conj.html#numpy.conj
https://numpy.org/doc/stable/reference/generated/numpy.conjugate.html#numpy.conjugate
https://numpy.org/doc/stable/reference/generated/numpy.convolve.html#numpy.convolve
https://numpy.org/doc/stable/reference/generated/numpy.copy.html#numpy.copy
https://numpy.org/doc/stable/reference/generated/numpy.copysign.html#numpy.copysign
https://numpy.org/doc/stable/reference/generated/numpy.copyto.html#numpy.copyto
https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html#numpy.corrcoef
https://numpy.org/doc/stable/reference/generated/numpy.correlate.html#numpy.correlate
https://numpy.org/doc/stable/reference/generated/numpy.cos.html#numpy.cos
https://numpy.org/doc/stable/reference/generated/numpy.cosh.html#numpy.cosh
https://numpy.org/doc/stable/reference/generated/numpy.count_nonzero.html#numpy.count_nonzero
https://numpy.org/doc/stable/reference/generated/numpy.cov.html#numpy.cov
https://numpy.org/doc/stable/reference/generated/numpy.cross.html#numpy.cross
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.csingle
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.csingle
https://numpy.org/doc/stable/reference/generated/numpy.cumprod.html#numpy.cumprod
https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html#numpy.cumsum
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.datetime64
https://numpy.org/doc/stable/reference/generated/numpy.datetime_as_string.html#numpy.datetime_as_string
https://numpy.org/doc/stable/reference/generated/numpy.datetime_data.html#numpy.datetime_data
https://numpy.org/doc/stable/reference/generated/numpy.deg2rad.html#numpy.deg2rad
https://numpy.org/doc/stable/reference/generated/numpy.degrees.html#numpy.degrees
https://numpy.org/doc/stable/reference/generated/numpy.delete.html#numpy.delete
https://numpy.org/doc/stable/reference/generated/numpy.deprecate.html#numpy.deprecate
https://numpy.org/doc/stable/reference/generated/numpy.deprecate_with_doc.html#numpy.deprecate_with_doc
https://numpy.org/doc/stable/reference/generated/numpy.diag.html#numpy.diag
https://numpy.org/doc/stable/reference/generated/numpy.diag_indices.html#numpy.diag_indices
https://numpy.org/doc/stable/reference/generated/numpy.diag_indices_from.html#numpy.diag_indices_from
https://numpy.org/doc/stable/reference/generated/numpy.diagflat.html#numpy.diagflat
https://numpy.org/doc/stable/reference/generated/numpy.diagonal.html#numpy.diagonal
https://numpy.org/doc/stable/reference/generated/numpy.diff.html#numpy.diff
https://numpy.org/doc/stable/reference/generated/numpy.digitize.html#numpy.digitize
https://numpy.org/doc/stable/reference/generated/numpy.disp.html#numpy.disp
https://numpy.org/doc/stable/reference/generated/numpy.disp.html#numpy.disp
https://numpy.org/doc/stable/reference/generated/numpy.divide.html#numpy.divide
https://numpy.org/doc/stable/reference/generated/numpy.divmod.html#numpy.divmod
https://numpy.org/doc/stable/reference/generated/numpy.dot.html#numpy.dot
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.double
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.double
https://numpy.org/doc/stable/reference/generated/numpy.dsplit.html#numpy.dsplit
https://numpy.org/doc/stable/reference/generated/numpy.dstack.html#numpy.dstack
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.ediff1d.html#numpy.ediff1d
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html#numpy.einsum
https://numpy.org/doc/stable/reference/generated/numpy.einsum_path.html#numpy.einsum_path

CuPy Documentation, Release 13.0.0

Table 5 – continued from previous page
NumPy CuPy
numpy.empty cupy.empty
numpy.empty_like cupy.empty_like
numpy.equal cupy.equal
numpy.errstate -4

numpy.exp cupy.exp
numpy.exp2 cupy.exp2
numpy.expand_dims cupy.expand_dims
numpy.expm1 cupy.expm1
numpy.extract cupy.extract
numpy.eye cupy.eye
numpy.fabs cupy.fabs
numpy.fill_diagonal cupy.fill_diagonal
numpy.find_common_type cupy.find_common_type (alias of numpy.

find_common_type)
numpy.finfo cupy.finfo (alias of numpy.finfo)
numpy.fix cupy.fix
numpy.flatiter cupy.flatiter
numpy.flatnonzero cupy.flatnonzero
numpy.flexible -Page 863, 3

numpy.flip cupy.flip
numpy.fliplr cupy.fliplr
numpy.flipud cupy.flipud
numpy.float128 -
numpy.float16 cupy.float16 (alias of numpy.float16)
numpy.float32 cupy.float32 (alias of numpy.float32)
numpy.float64 cupy.float64 (alias of numpy.float64)
numpy.float_ cupy.float_ (alias of numpy.float_)
numpy.float_power cupy.float_power
numpy.floating cupy.floating (alias of numpy.floating)
numpy.floor cupy.floor
numpy.floor_divide cupy.floor_divide
numpy.fmax cupy.fmax
numpy.fmin cupy.fmin
numpy.fmod cupy.fmod
numpy.format_float_positional cupy.format_float_positional
numpy.format_float_scientific cupy.format_float_scientific
numpy.format_parser cupy.format_parser (alias of numpy.

format_parser)
numpy.frexp cupy.frexp
numpy.from_dlpack cupy.from_dlpack
numpy.frombuffer cupy.frombuffer
numpy.fromfile cupy.fromfile
numpy.fromfunction cupy.fromfunction
numpy.fromiter cupy.fromiter
numpy.frompyfunc -
numpy.fromregex -5

numpy.fromstring cupy.fromstring
numpy.full cupy.full
numpy.full_like cupy.full_like

continues on next page

856 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty
https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like
https://numpy.org/doc/stable/reference/generated/numpy.equal.html#numpy.equal
https://numpy.org/doc/stable/reference/generated/numpy.errstate.html#numpy.errstate
https://numpy.org/doc/stable/reference/generated/numpy.exp.html#numpy.exp
https://numpy.org/doc/stable/reference/generated/numpy.exp2.html#numpy.exp2
https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html#numpy.expand_dims
https://numpy.org/doc/stable/reference/generated/numpy.expm1.html#numpy.expm1
https://numpy.org/doc/stable/reference/generated/numpy.extract.html#numpy.extract
https://numpy.org/doc/stable/reference/generated/numpy.eye.html#numpy.eye
https://numpy.org/doc/stable/reference/generated/numpy.fabs.html#numpy.fabs
https://numpy.org/doc/stable/reference/generated/numpy.fill_diagonal.html#numpy.fill_diagonal
https://numpy.org/doc/stable/reference/generated/numpy.find_common_type.html#numpy.find_common_type
https://numpy.org/doc/stable/reference/generated/numpy.find_common_type.html#numpy.find_common_type
https://numpy.org/doc/stable/reference/generated/numpy.find_common_type.html#numpy.find_common_type
https://numpy.org/doc/stable/reference/generated/numpy.finfo.html#numpy.finfo
https://numpy.org/doc/stable/reference/generated/numpy.finfo.html#numpy.finfo
https://numpy.org/doc/stable/reference/generated/numpy.fix.html#numpy.fix
https://numpy.org/doc/stable/reference/generated/numpy.flatiter.html#numpy.flatiter
https://numpy.org/doc/stable/reference/generated/numpy.flatnonzero.html#numpy.flatnonzero
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.flexible
https://numpy.org/doc/stable/reference/generated/numpy.flip.html#numpy.flip
https://numpy.org/doc/stable/reference/generated/numpy.fliplr.html#numpy.fliplr
https://numpy.org/doc/stable/reference/generated/numpy.flipud.html#numpy.flipud
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float128
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float16
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float16
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float_
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float_
https://numpy.org/doc/stable/reference/generated/numpy.float_power.html#numpy.float_power
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.floating
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.floating
https://numpy.org/doc/stable/reference/generated/numpy.floor.html#numpy.floor
https://numpy.org/doc/stable/reference/generated/numpy.floor_divide.html#numpy.floor_divide
https://numpy.org/doc/stable/reference/generated/numpy.fmax.html#numpy.fmax
https://numpy.org/doc/stable/reference/generated/numpy.fmin.html#numpy.fmin
https://numpy.org/doc/stable/reference/generated/numpy.fmod.html#numpy.fmod
https://numpy.org/doc/stable/reference/generated/numpy.format_float_positional.html#numpy.format_float_positional
https://numpy.org/doc/stable/reference/generated/numpy.format_float_scientific.html#numpy.format_float_scientific
https://numpy.org/doc/stable/reference/generated/numpy.format_parser.html#numpy.format_parser
https://numpy.org/doc/stable/reference/generated/numpy.format_parser.html#numpy.format_parser
https://numpy.org/doc/stable/reference/generated/numpy.format_parser.html#numpy.format_parser
https://numpy.org/doc/stable/reference/generated/numpy.frexp.html#numpy.frexp
https://numpy.org/doc/stable/reference/generated/numpy.from_dlpack.html#numpy.from_dlpack
https://numpy.org/doc/stable/reference/generated/numpy.frombuffer.html#numpy.frombuffer
https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile
https://numpy.org/doc/stable/reference/generated/numpy.fromfunction.html#numpy.fromfunction
https://numpy.org/doc/stable/reference/generated/numpy.fromiter.html#numpy.fromiter
https://numpy.org/doc/stable/reference/generated/numpy.frompyfunc.html#numpy.frompyfunc
https://numpy.org/doc/stable/reference/generated/numpy.fromregex.html#numpy.fromregex
https://numpy.org/doc/stable/reference/generated/numpy.fromstring.html#numpy.fromstring
https://numpy.org/doc/stable/reference/generated/numpy.full.html#numpy.full
https://numpy.org/doc/stable/reference/generated/numpy.full_like.html#numpy.full_like

CuPy Documentation, Release 13.0.0

Table 5 – continued from previous page
NumPy CuPy
numpy.gcd cupy.gcd
numpy.generic cupy.generic (alias of numpy.generic)
numpy.genfromtxt cupy.genfromtxt
numpy.geomspace -
numpy.get_array_wrap cupy.get_array_wrap (alias of numpy.

get_array_wrap)
numpy.get_include -
numpy.get_printoptions cupy.get_printoptions (alias of numpy.

get_printoptions)
numpy.getbufsize -
numpy.geterr -Page 863, 4

numpy.geterrcall -Page 863, 4

numpy.geterrobj -Page 863, 4

numpy.gradient cupy.gradient
numpy.greater cupy.greater
numpy.greater_equal cupy.greater_equal
numpy.half cupy.half (alias of numpy.half)
numpy.hamming cupy.hamming
numpy.hanning cupy.hanning
numpy.heaviside cupy.heaviside
numpy.histogram cupy.histogram
numpy.histogram2d cupy.histogram2d
numpy.histogram_bin_edges -
numpy.histogramdd cupy.histogramdd
numpy.hsplit cupy.hsplit
numpy.hstack cupy.hstack
numpy.hypot cupy.hypot
numpy.i0 cupy.i0
numpy.identity cupy.identity
numpy.iinfo cupy.iinfo (alias of numpy.iinfo)
numpy.imag cupy.imag
numpy.in1d cupy.in1d
numpy.index_exp cupy.index_exp (alias of numpy.index_exp)
numpy.indices cupy.indices
numpy.inexact cupy.inexact (alias of numpy.inexact)
numpy.info -
numpy.inner cupy.inner
numpy.insert -
numpy.int16 cupy.int16 (alias of numpy.int16)
numpy.int32 cupy.int32 (alias of numpy.int32)
numpy.int64 cupy.int64 (alias of numpy.int64)
numpy.int8 cupy.int8 (alias of numpy.int8)
numpy.int_ cupy.int_ (alias of numpy.int_)
numpy.intc cupy.intc (alias of numpy.intc)
numpy.integer cupy.integer (alias of numpy.integer)
numpy.interp cupy.interp
numpy.intersect1d cupy.intersect1d
numpy.intp cupy.intp (alias of numpy.intp)
numpy.invert cupy.invert

continues on next page

5.10. Comparison Table 857

https://numpy.org/doc/stable/reference/generated/numpy.gcd.html#numpy.gcd
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.generic
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.generic
https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt
https://numpy.org/doc/stable/reference/generated/numpy.geomspace.html#numpy.geomspace
https://numpy.org/doc/stable/reference/generated/numpy.get_include.html#numpy.get_include
https://numpy.org/doc/stable/reference/generated/numpy.get_printoptions.html#numpy.get_printoptions
https://numpy.org/doc/stable/reference/generated/numpy.get_printoptions.html#numpy.get_printoptions
https://numpy.org/doc/stable/reference/generated/numpy.get_printoptions.html#numpy.get_printoptions
https://numpy.org/doc/stable/reference/generated/numpy.getbufsize.html#numpy.getbufsize
https://numpy.org/doc/stable/reference/generated/numpy.geterr.html#numpy.geterr
https://numpy.org/doc/stable/reference/generated/numpy.geterrcall.html#numpy.geterrcall
https://numpy.org/doc/stable/reference/generated/numpy.geterrobj.html#numpy.geterrobj
https://numpy.org/doc/stable/reference/generated/numpy.gradient.html#numpy.gradient
https://numpy.org/doc/stable/reference/generated/numpy.greater.html#numpy.greater
https://numpy.org/doc/stable/reference/generated/numpy.greater_equal.html#numpy.greater_equal
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.half
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.half
https://numpy.org/doc/stable/reference/generated/numpy.hamming.html#numpy.hamming
https://numpy.org/doc/stable/reference/generated/numpy.hanning.html#numpy.hanning
https://numpy.org/doc/stable/reference/generated/numpy.heaviside.html#numpy.heaviside
https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram
https://numpy.org/doc/stable/reference/generated/numpy.histogram2d.html#numpy.histogram2d
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges
https://numpy.org/doc/stable/reference/generated/numpy.histogramdd.html#numpy.histogramdd
https://numpy.org/doc/stable/reference/generated/numpy.hsplit.html#numpy.hsplit
https://numpy.org/doc/stable/reference/generated/numpy.hstack.html#numpy.hstack
https://numpy.org/doc/stable/reference/generated/numpy.hypot.html#numpy.hypot
https://numpy.org/doc/stable/reference/generated/numpy.i0.html#numpy.i0
https://numpy.org/doc/stable/reference/generated/numpy.identity.html#numpy.identity
https://numpy.org/doc/stable/reference/generated/numpy.iinfo.html#numpy.iinfo
https://numpy.org/doc/stable/reference/generated/numpy.iinfo.html#numpy.iinfo
https://numpy.org/doc/stable/reference/generated/numpy.imag.html#numpy.imag
https://numpy.org/doc/stable/reference/generated/numpy.in1d.html#numpy.in1d
https://numpy.org/doc/stable/reference/generated/numpy.indices.html#numpy.indices
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.inexact
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.inexact
https://numpy.org/doc/stable/reference/generated/numpy.info.html#numpy.info
https://numpy.org/doc/stable/reference/generated/numpy.inner.html#numpy.inner
https://numpy.org/doc/stable/reference/generated/numpy.insert.html#numpy.insert
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int16
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int16
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int8
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int8
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int_
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.int_
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.intc
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.intc
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.integer
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.integer
https://numpy.org/doc/stable/reference/generated/numpy.interp.html#numpy.interp
https://numpy.org/doc/stable/reference/generated/numpy.intersect1d.html#numpy.intersect1d
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.intp
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.intp
https://numpy.org/doc/stable/reference/generated/numpy.invert.html#numpy.invert

CuPy Documentation, Release 13.0.0

Table 5 – continued from previous page
NumPy CuPy
numpy.is_busday -Page 863, 2

numpy.isclose cupy.isclose
numpy.iscomplex cupy.iscomplex
numpy.iscomplexobj cupy.iscomplexobj
numpy.isfinite cupy.isfinite
numpy.isfortran cupy.isfortran
numpy.isin cupy.isin
numpy.isinf cupy.isinf
numpy.isnan cupy.isnan
numpy.isnat -Page 863, 2

numpy.isneginf cupy.isneginf
numpy.isposinf cupy.isposinf
numpy.isreal cupy.isreal
numpy.isrealobj cupy.isrealobj
numpy.isscalar cupy.isscalar
numpy.issctype cupy.issctype (alias of numpy.issctype)
numpy.issubclass_ cupy.issubclass_ (alias of numpy.issubclass_)
numpy.issubdtype cupy.issubdtype (alias of numpy.issubdtype)
numpy.issubsctype cupy.issubsctype (alias of numpy.issubsctype)
numpy.iterable cupy.iterable (alias of numpy.iterable)
numpy.ix_ cupy.ix_
numpy.kaiser cupy.kaiser
numpy.kron cupy.kron
numpy.lcm cupy.lcm
numpy.ldexp cupy.ldexp
numpy.left_shift cupy.left_shift
numpy.less cupy.less
numpy.less_equal cupy.less_equal
numpy.lexsort cupy.lexsort
numpy.linspace cupy.linspace
numpy.load cupy.load
numpy.loadtxt cupy.loadtxt
numpy.log cupy.log
numpy.log10 cupy.log10
numpy.log1p cupy.log1p
numpy.log2 cupy.log2
numpy.logaddexp cupy.logaddexp
numpy.logaddexp2 cupy.logaddexp2
numpy.logical_and cupy.logical_and
numpy.logical_not cupy.logical_not
numpy.logical_or cupy.logical_or
numpy.logical_xor cupy.logical_xor
numpy.logspace cupy.logspace
numpy.longcomplex -
numpy.longdouble -
numpy.longfloat cupy.longfloat (alias of numpy.longfloat)
numpy.longlong cupy.longlong (alias of numpy.longlong)
numpy.lookfor -
numpy.mask_indices cupy.mask_indices

continues on next page

858 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.is_busday.html#numpy.is_busday
https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose
https://numpy.org/doc/stable/reference/generated/numpy.iscomplex.html#numpy.iscomplex
https://numpy.org/doc/stable/reference/generated/numpy.iscomplexobj.html#numpy.iscomplexobj
https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html#numpy.isfinite
https://numpy.org/doc/stable/reference/generated/numpy.isfortran.html#numpy.isfortran
https://numpy.org/doc/stable/reference/generated/numpy.isin.html#numpy.isin
https://numpy.org/doc/stable/reference/generated/numpy.isinf.html#numpy.isinf
https://numpy.org/doc/stable/reference/generated/numpy.isnan.html#numpy.isnan
https://numpy.org/doc/stable/reference/generated/numpy.isnat.html#numpy.isnat
https://numpy.org/doc/stable/reference/generated/numpy.isneginf.html#numpy.isneginf
https://numpy.org/doc/stable/reference/generated/numpy.isposinf.html#numpy.isposinf
https://numpy.org/doc/stable/reference/generated/numpy.isreal.html#numpy.isreal
https://numpy.org/doc/stable/reference/generated/numpy.isrealobj.html#numpy.isrealobj
https://numpy.org/doc/stable/reference/generated/numpy.isscalar.html#numpy.isscalar
https://numpy.org/doc/stable/reference/generated/numpy.issctype.html#numpy.issctype
https://numpy.org/doc/stable/reference/generated/numpy.issctype.html#numpy.issctype
https://numpy.org/doc/stable/reference/generated/numpy.issubclass_.html#numpy.issubclass_
https://numpy.org/doc/stable/reference/generated/numpy.issubclass_.html#numpy.issubclass_
https://numpy.org/doc/stable/reference/generated/numpy.issubdtype.html#numpy.issubdtype
https://numpy.org/doc/stable/reference/generated/numpy.issubdtype.html#numpy.issubdtype
https://numpy.org/doc/stable/reference/generated/numpy.issubsctype.html#numpy.issubsctype
https://numpy.org/doc/stable/reference/generated/numpy.issubsctype.html#numpy.issubsctype
https://numpy.org/doc/stable/reference/generated/numpy.iterable.html#numpy.iterable
https://numpy.org/doc/stable/reference/generated/numpy.iterable.html#numpy.iterable
https://numpy.org/doc/stable/reference/generated/numpy.ix_.html#numpy.ix_
https://numpy.org/doc/stable/reference/generated/numpy.kaiser.html#numpy.kaiser
https://numpy.org/doc/stable/reference/generated/numpy.kron.html#numpy.kron
https://numpy.org/doc/stable/reference/generated/numpy.lcm.html#numpy.lcm
https://numpy.org/doc/stable/reference/generated/numpy.ldexp.html#numpy.ldexp
https://numpy.org/doc/stable/reference/generated/numpy.left_shift.html#numpy.left_shift
https://numpy.org/doc/stable/reference/generated/numpy.less.html#numpy.less
https://numpy.org/doc/stable/reference/generated/numpy.less_equal.html#numpy.less_equal
https://numpy.org/doc/stable/reference/generated/numpy.lexsort.html#numpy.lexsort
https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace
https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load
https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt
https://numpy.org/doc/stable/reference/generated/numpy.log.html#numpy.log
https://numpy.org/doc/stable/reference/generated/numpy.log10.html#numpy.log10
https://numpy.org/doc/stable/reference/generated/numpy.log1p.html#numpy.log1p
https://numpy.org/doc/stable/reference/generated/numpy.log2.html#numpy.log2
https://numpy.org/doc/stable/reference/generated/numpy.logaddexp.html#numpy.logaddexp
https://numpy.org/doc/stable/reference/generated/numpy.logaddexp2.html#numpy.logaddexp2
https://numpy.org/doc/stable/reference/generated/numpy.logical_and.html#numpy.logical_and
https://numpy.org/doc/stable/reference/generated/numpy.logical_not.html#numpy.logical_not
https://numpy.org/doc/stable/reference/generated/numpy.logical_or.html#numpy.logical_or
https://numpy.org/doc/stable/reference/generated/numpy.logical_xor.html#numpy.logical_xor
https://numpy.org/doc/stable/reference/generated/numpy.logspace.html#numpy.logspace
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longcomplex
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longdouble
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longfloat
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longfloat
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longlong
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.longlong
https://numpy.org/doc/stable/reference/generated/numpy.lookfor.html#numpy.lookfor
https://numpy.org/doc/stable/reference/generated/numpy.mask_indices.html#numpy.mask_indices

CuPy Documentation, Release 13.0.0

Table 5 – continued from previous page
NumPy CuPy
numpy.mat -Page 863, 1

numpy.matmul cupy.matmul
numpy.matrix -Page 863, 1

numpy.max cupy.max
numpy.maximum cupy.maximum
numpy.maximum_sctype -
numpy.may_share_memory cupy.may_share_memory
numpy.mean cupy.mean
numpy.median cupy.median
numpy.memmap -
numpy.meshgrid cupy.meshgrid
numpy.mgrid cupy.mgrid
numpy.min cupy.min
numpy.min_scalar_type cupy.min_scalar_type
numpy.minimum cupy.minimum
numpy.mintypecode cupy.mintypecode (alias of numpy.mintypecode)
numpy.mod cupy.mod
numpy.modf cupy.modf
numpy.moveaxis cupy.moveaxis
numpy.msort cupy.msort
numpy.multiply cupy.multiply
numpy.nan_to_num cupy.nan_to_num
numpy.nanargmax cupy.nanargmax
numpy.nanargmin cupy.nanargmin
numpy.nancumprod cupy.nancumprod
numpy.nancumsum cupy.nancumsum
numpy.nanmax cupy.nanmax
numpy.nanmean cupy.nanmean
numpy.nanmedian cupy.nanmedian
numpy.nanmin cupy.nanmin
numpy.nanpercentile -
numpy.nanprod cupy.nanprod
numpy.nanquantile -
numpy.nanstd cupy.nanstd
numpy.nansum cupy.nansum
numpy.nanvar cupy.nanvar
numpy.nbytes -
numpy.ndarray cupy.ndarray
numpy.ndenumerate -
numpy.ndim cupy.ndim
numpy.ndindex cupy.ndindex (alias of numpy.ndindex)
numpy.nditer -
numpy.negative cupy.negative
numpy.nested_iters -
numpy.newaxis cupy.newaxis (alias of numpy.newaxis)
numpy.nextafter cupy.nextafter
numpy.nonzero cupy.nonzero
numpy.not_equal cupy.not_equal
numpy.number cupy.number (alias of numpy.number)

continues on next page

5.10. Comparison Table 859

https://numpy.org/doc/stable/reference/generated/numpy.mat.html#numpy.mat
https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy.matmul
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://numpy.org/doc/stable/reference/generated/numpy.max.html#numpy.max
https://numpy.org/doc/stable/reference/generated/numpy.maximum.html#numpy.maximum
https://numpy.org/doc/stable/reference/generated/numpy.maximum_sctype.html#numpy.maximum_sctype
https://numpy.org/doc/stable/reference/generated/numpy.may_share_memory.html#numpy.may_share_memory
https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean
https://numpy.org/doc/stable/reference/generated/numpy.median.html#numpy.median
https://numpy.org/doc/stable/reference/generated/numpy.memmap.html#numpy.memmap
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
https://numpy.org/doc/stable/reference/generated/numpy.mgrid.html#numpy.mgrid
https://numpy.org/doc/stable/reference/generated/numpy.min.html#numpy.min
https://numpy.org/doc/stable/reference/generated/numpy.min_scalar_type.html#numpy.min_scalar_type
https://numpy.org/doc/stable/reference/generated/numpy.minimum.html#numpy.minimum
https://numpy.org/doc/stable/reference/generated/numpy.mintypecode.html#numpy.mintypecode
https://numpy.org/doc/stable/reference/generated/numpy.mintypecode.html#numpy.mintypecode
https://numpy.org/doc/stable/reference/generated/numpy.mod.html#numpy.mod
https://numpy.org/doc/stable/reference/generated/numpy.modf.html#numpy.modf
https://numpy.org/doc/stable/reference/generated/numpy.moveaxis.html#numpy.moveaxis
https://numpy.org/doc/stable/reference/generated/numpy.multiply.html#numpy.multiply
https://numpy.org/doc/stable/reference/generated/numpy.nan_to_num.html#numpy.nan_to_num
https://numpy.org/doc/stable/reference/generated/numpy.nanargmax.html#numpy.nanargmax
https://numpy.org/doc/stable/reference/generated/numpy.nanargmin.html#numpy.nanargmin
https://numpy.org/doc/stable/reference/generated/numpy.nancumprod.html#numpy.nancumprod
https://numpy.org/doc/stable/reference/generated/numpy.nancumsum.html#numpy.nancumsum
https://numpy.org/doc/stable/reference/generated/numpy.nanmax.html#numpy.nanmax
https://numpy.org/doc/stable/reference/generated/numpy.nanmean.html#numpy.nanmean
https://numpy.org/doc/stable/reference/generated/numpy.nanmedian.html#numpy.nanmedian
https://numpy.org/doc/stable/reference/generated/numpy.nanmin.html#numpy.nanmin
https://numpy.org/doc/stable/reference/generated/numpy.nanpercentile.html#numpy.nanpercentile
https://numpy.org/doc/stable/reference/generated/numpy.nanprod.html#numpy.nanprod
https://numpy.org/doc/stable/reference/generated/numpy.nanquantile.html#numpy.nanquantile
https://numpy.org/doc/stable/reference/generated/numpy.nanstd.html#numpy.nanstd
https://numpy.org/doc/stable/reference/generated/numpy.nansum.html#numpy.nansum
https://numpy.org/doc/stable/reference/generated/numpy.nanvar.html#numpy.nanvar
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndenumerate.html#numpy.ndenumerate
https://numpy.org/doc/stable/reference/generated/numpy.ndindex.html#numpy.ndindex
https://numpy.org/doc/stable/reference/generated/numpy.ndindex.html#numpy.ndindex
https://numpy.org/doc/stable/reference/generated/numpy.nditer.html#numpy.nditer
https://numpy.org/doc/stable/reference/generated/numpy.negative.html#numpy.negative
https://numpy.org/doc/stable/reference/generated/numpy.nested_iters.html#numpy.nested_iters
https://numpy.org/doc/stable/reference/constants.html#numpy.newaxis
https://numpy.org/doc/stable/reference/constants.html#numpy.newaxis
https://numpy.org/doc/stable/reference/generated/numpy.nextafter.html#numpy.nextafter
https://numpy.org/doc/stable/reference/generated/numpy.nonzero.html#numpy.nonzero
https://numpy.org/doc/stable/reference/generated/numpy.not_equal.html#numpy.not_equal
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.number
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.number

CuPy Documentation, Release 13.0.0

Table 5 – continued from previous page
NumPy CuPy
numpy.obj2sctype cupy.obj2sctype (alias of numpy.obj2sctype)
numpy.object_ -Page 863, 3

numpy.ogrid cupy.ogrid
numpy.ones cupy.ones
numpy.ones_like cupy.ones_like
numpy.outer cupy.outer
numpy.packbits cupy.packbits
numpy.pad cupy.pad
numpy.partition cupy.partition
numpy.percentile cupy.percentile
numpy.piecewise cupy.piecewise
numpy.place cupy.place
numpy.poly cupy.poly6

numpy.poly1d cupy.poly1d
numpy.polyadd cupy.polyadd
numpy.polyder -Page 863, 6

numpy.polydiv -Page 863, 6

numpy.polyfit cupy.polyfit
numpy.polyint -Page 863, 6

numpy.polymul cupy.polymul
numpy.polysub cupy.polysub
numpy.polyval cupy.polyval
numpy.positive cupy.positive
numpy.power cupy.power
numpy.printoptions cupy.printoptions (alias of numpy.

printoptions)
numpy.prod cupy.prod
numpy.product cupy.product
numpy.promote_types cupy.promote_types (alias of numpy.

promote_types)
numpy.ptp cupy.ptp
numpy.put cupy.put
numpy.put_along_axis -
numpy.putmask cupy.putmask
numpy.quantile cupy.quantile
numpy.r_ cupy.r_
numpy.rad2deg cupy.rad2deg
numpy.radians cupy.radians
numpy.ravel cupy.ravel
numpy.ravel_multi_index cupy.ravel_multi_index
numpy.real cupy.real
numpy.real_if_close cupy.real_if_close
numpy.recarray -Page 863, 5

numpy.recfromcsv -Page 863, 5

numpy.recfromtxt -Page 863, 5

numpy.reciprocal cupy.reciprocal
numpy.record -Page 863, 5

numpy.remainder cupy.remainder
numpy.repeat cupy.repeat

continues on next page

860 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.obj2sctype.html#numpy.obj2sctype
https://numpy.org/doc/stable/reference/generated/numpy.obj2sctype.html#numpy.obj2sctype
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.object_
https://numpy.org/doc/stable/reference/generated/numpy.ogrid.html#numpy.ogrid
https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones
https://numpy.org/doc/stable/reference/generated/numpy.ones_like.html#numpy.ones_like
https://numpy.org/doc/stable/reference/generated/numpy.outer.html#numpy.outer
https://numpy.org/doc/stable/reference/generated/numpy.packbits.html#numpy.packbits
https://numpy.org/doc/stable/reference/generated/numpy.pad.html#numpy.pad
https://numpy.org/doc/stable/reference/generated/numpy.partition.html#numpy.partition
https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile
https://numpy.org/doc/stable/reference/generated/numpy.piecewise.html#numpy.piecewise
https://numpy.org/doc/stable/reference/generated/numpy.place.html#numpy.place
https://numpy.org/doc/stable/reference/generated/numpy.poly.html#numpy.poly
https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html#numpy.poly1d
https://numpy.org/doc/stable/reference/generated/numpy.polyadd.html#numpy.polyadd
https://numpy.org/doc/stable/reference/generated/numpy.polyder.html#numpy.polyder
https://numpy.org/doc/stable/reference/generated/numpy.polydiv.html#numpy.polydiv
https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html#numpy.polyfit
https://numpy.org/doc/stable/reference/generated/numpy.polyint.html#numpy.polyint
https://numpy.org/doc/stable/reference/generated/numpy.polymul.html#numpy.polymul
https://numpy.org/doc/stable/reference/generated/numpy.polysub.html#numpy.polysub
https://numpy.org/doc/stable/reference/generated/numpy.polyval.html#numpy.polyval
https://numpy.org/doc/stable/reference/generated/numpy.positive.html#numpy.positive
https://numpy.org/doc/stable/reference/generated/numpy.power.html#numpy.power
https://numpy.org/doc/stable/reference/generated/numpy.printoptions.html#numpy.printoptions
https://numpy.org/doc/stable/reference/generated/numpy.printoptions.html#numpy.printoptions
https://numpy.org/doc/stable/reference/generated/numpy.printoptions.html#numpy.printoptions
https://numpy.org/doc/stable/reference/generated/numpy.prod.html#numpy.prod
https://numpy.org/doc/stable/reference/generated/numpy.promote_types.html#numpy.promote_types
https://numpy.org/doc/stable/reference/generated/numpy.promote_types.html#numpy.promote_types
https://numpy.org/doc/stable/reference/generated/numpy.promote_types.html#numpy.promote_types
https://numpy.org/doc/stable/reference/generated/numpy.ptp.html#numpy.ptp
https://numpy.org/doc/stable/reference/generated/numpy.put.html#numpy.put
https://numpy.org/doc/stable/reference/generated/numpy.put_along_axis.html#numpy.put_along_axis
https://numpy.org/doc/stable/reference/generated/numpy.putmask.html#numpy.putmask
https://numpy.org/doc/stable/reference/generated/numpy.quantile.html#numpy.quantile
https://numpy.org/doc/stable/reference/generated/numpy.r_.html#numpy.r_
https://numpy.org/doc/stable/reference/generated/numpy.rad2deg.html#numpy.rad2deg
https://numpy.org/doc/stable/reference/generated/numpy.radians.html#numpy.radians
https://numpy.org/doc/stable/reference/generated/numpy.ravel.html#numpy.ravel
https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html#numpy.ravel_multi_index
https://numpy.org/doc/stable/reference/generated/numpy.real.html#numpy.real
https://numpy.org/doc/stable/reference/generated/numpy.real_if_close.html#numpy.real_if_close
https://numpy.org/doc/stable/reference/generated/numpy.recarray.html#numpy.recarray
https://numpy.org/doc/stable/reference/generated/numpy.reciprocal.html#numpy.reciprocal
https://numpy.org/doc/stable/reference/generated/numpy.record.html#numpy.record
https://numpy.org/doc/stable/reference/generated/numpy.remainder.html#numpy.remainder
https://numpy.org/doc/stable/reference/generated/numpy.repeat.html#numpy.repeat

CuPy Documentation, Release 13.0.0

Table 5 – continued from previous page
NumPy CuPy
numpy.require cupy.require
numpy.reshape cupy.reshape
numpy.resize cupy.resize
numpy.result_type cupy.result_type
numpy.right_shift cupy.right_shift
numpy.rint cupy.rint
numpy.roll cupy.roll
numpy.rollaxis cupy.rollaxis
numpy.roots cupy.roots
numpy.rot90 cupy.rot90
numpy.round cupy.round
numpy.round_ cupy.round_
numpy.row_stack cupy.row_stack
numpy.s_ cupy.s_ (alias of numpy.s_)
numpy.safe_eval cupy.safe_eval (alias of numpy.safe_eval)
numpy.save cupy.save
numpy.savetxt cupy.savetxt
numpy.savez cupy.savez
numpy.savez_compressed cupy.savez_compressed
numpy.sctype2char cupy.sctype2char (alias of numpy.sctype2char)
numpy.sctypeDict -
numpy.sctypes -
numpy.searchsorted cupy.searchsorted
numpy.select cupy.select
numpy.set_numeric_ops -7

numpy.set_printoptions cupy.set_printoptions (alias of numpy.
set_printoptions)

numpy.set_string_function cupy.set_string_function (alias of numpy.
set_string_function)

numpy.setbufsize -
numpy.setdiff1d cupy.setdiff1d
numpy.seterr -Page 863, 4

numpy.seterrcall -Page 863, 4

numpy.seterrobj -Page 863, 4

numpy.setxor1d cupy.setxor1d
numpy.shape cupy.shape
numpy.shares_memory cupy.shares_memory
numpy.short cupy.short (alias of numpy.short)
numpy.show_config cupy.show_config
numpy.show_runtime -
numpy.sign cupy.sign
numpy.signbit cupy.signbit
numpy.signedinteger cupy.signedinteger (alias of numpy.

signedinteger)
numpy.sin cupy.sin
numpy.sinc cupy.sinc
numpy.single cupy.single (alias of numpy.single)
numpy.singlecomplex cupy.singlecomplex (alias of numpy.

singlecomplex)
continues on next page

5.10. Comparison Table 861

https://numpy.org/doc/stable/reference/generated/numpy.require.html#numpy.require
https://numpy.org/doc/stable/reference/generated/numpy.reshape.html#numpy.reshape
https://numpy.org/doc/stable/reference/generated/numpy.resize.html#numpy.resize
https://numpy.org/doc/stable/reference/generated/numpy.result_type.html#numpy.result_type
https://numpy.org/doc/stable/reference/generated/numpy.right_shift.html#numpy.right_shift
https://numpy.org/doc/stable/reference/generated/numpy.rint.html#numpy.rint
https://numpy.org/doc/stable/reference/generated/numpy.roll.html#numpy.roll
https://numpy.org/doc/stable/reference/generated/numpy.rollaxis.html#numpy.rollaxis
https://numpy.org/doc/stable/reference/generated/numpy.roots.html#numpy.roots
https://numpy.org/doc/stable/reference/generated/numpy.rot90.html#numpy.rot90
https://numpy.org/doc/stable/reference/generated/numpy.round.html#numpy.round
https://numpy.org/doc/stable/reference/generated/numpy.row_stack.html#numpy.row_stack
https://numpy.org/doc/stable/reference/generated/numpy.s_.html#numpy.s_
https://numpy.org/doc/stable/reference/generated/numpy.s_.html#numpy.s_
https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save
https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html#numpy.savetxt
https://numpy.org/doc/stable/reference/generated/numpy.savez.html#numpy.savez
https://numpy.org/doc/stable/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed
https://numpy.org/doc/stable/reference/generated/numpy.sctype2char.html#numpy.sctype2char
https://numpy.org/doc/stable/reference/generated/numpy.sctype2char.html#numpy.sctype2char
https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html#numpy.searchsorted
https://numpy.org/doc/stable/reference/generated/numpy.select.html#numpy.select
https://numpy.org/doc/stable/reference/generated/numpy.set_printoptions.html#numpy.set_printoptions
https://numpy.org/doc/stable/reference/generated/numpy.set_printoptions.html#numpy.set_printoptions
https://numpy.org/doc/stable/reference/generated/numpy.set_printoptions.html#numpy.set_printoptions
https://numpy.org/doc/stable/reference/generated/numpy.set_string_function.html#numpy.set_string_function
https://numpy.org/doc/stable/reference/generated/numpy.set_string_function.html#numpy.set_string_function
https://numpy.org/doc/stable/reference/generated/numpy.set_string_function.html#numpy.set_string_function
https://numpy.org/doc/stable/reference/generated/numpy.setbufsize.html#numpy.setbufsize
https://numpy.org/doc/stable/reference/generated/numpy.setdiff1d.html#numpy.setdiff1d
https://numpy.org/doc/stable/reference/generated/numpy.seterr.html#numpy.seterr
https://numpy.org/doc/stable/reference/generated/numpy.seterrcall.html#numpy.seterrcall
https://numpy.org/doc/stable/reference/generated/numpy.seterrobj.html#numpy.seterrobj
https://numpy.org/doc/stable/reference/generated/numpy.setxor1d.html#numpy.setxor1d
https://numpy.org/doc/stable/reference/generated/numpy.shape.html#numpy.shape
https://numpy.org/doc/stable/reference/generated/numpy.shares_memory.html#numpy.shares_memory
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.short
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.short
https://numpy.org/doc/stable/reference/generated/numpy.show_config.html#numpy.show_config
https://numpy.org/doc/stable/reference/generated/numpy.show_runtime.html#numpy.show_runtime
https://numpy.org/doc/stable/reference/generated/numpy.sign.html#numpy.sign
https://numpy.org/doc/stable/reference/generated/numpy.signbit.html#numpy.signbit
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.signedinteger
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.signedinteger
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.signedinteger
https://numpy.org/doc/stable/reference/generated/numpy.sin.html#numpy.sin
https://numpy.org/doc/stable/reference/generated/numpy.sinc.html#numpy.sinc
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.single
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.single
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.singlecomplex
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.singlecomplex
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.singlecomplex

CuPy Documentation, Release 13.0.0

Table 5 – continued from previous page
NumPy CuPy
numpy.sinh cupy.sinh
numpy.size cupy.size
numpy.sometrue cupy.sometrue
numpy.sort cupy.sort
numpy.sort_complex cupy.sort_complex
numpy.source -
numpy.spacing -
numpy.split cupy.split
numpy.sqrt cupy.sqrt
numpy.square cupy.square
numpy.squeeze cupy.squeeze
numpy.stack cupy.stack
numpy.std cupy.std
numpy.str_ -Page 863, 3

numpy.string_ -Page 863, 3

numpy.subtract cupy.subtract
numpy.sum cupy.sum
numpy.swapaxes cupy.swapaxes
numpy.take cupy.take
numpy.take_along_axis cupy.take_along_axis
numpy.tan cupy.tan
numpy.tanh cupy.tanh
numpy.tensordot cupy.tensordot
numpy.tile cupy.tile
numpy.timedelta64 -Page 863, 2

numpy.trace cupy.trace
numpy.transpose cupy.transpose
numpy.trapz cupy.trapz
numpy.tri cupy.tri
numpy.tril cupy.tril
numpy.tril_indices cupy.tril_indices
numpy.tril_indices_from cupy.tril_indices_from
numpy.trim_zeros cupy.trim_zeros
numpy.triu cupy.triu
numpy.triu_indices cupy.triu_indices
numpy.triu_indices_from cupy.triu_indices_from
numpy.true_divide cupy.true_divide
numpy.trunc cupy.trunc
numpy.typecodes -
numpy.typename cupy.typename (alias of numpy.typename)
numpy.ubyte cupy.ubyte (alias of numpy.ubyte)
numpy.ufunc cupy.ufunc
numpy.uint cupy.uint (alias of numpy.uint)
numpy.uint16 cupy.uint16 (alias of numpy.uint16)
numpy.uint32 cupy.uint32 (alias of numpy.uint32)
numpy.uint64 cupy.uint64 (alias of numpy.uint64)
numpy.uint8 cupy.uint8 (alias of numpy.uint8)
numpy.uintc cupy.uintc (alias of numpy.uintc)
numpy.uintp cupy.uintp (alias of numpy.uintp)

continues on next page

862 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.sinh.html#numpy.sinh
https://numpy.org/doc/stable/reference/generated/numpy.sort.html#numpy.sort
https://numpy.org/doc/stable/reference/generated/numpy.sort_complex.html#numpy.sort_complex
https://numpy.org/doc/stable/reference/generated/numpy.source.html#numpy.source
https://numpy.org/doc/stable/reference/generated/numpy.spacing.html#numpy.spacing
https://numpy.org/doc/stable/reference/generated/numpy.split.html#numpy.split
https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html#numpy.sqrt
https://numpy.org/doc/stable/reference/generated/numpy.square.html#numpy.square
https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html#numpy.squeeze
https://numpy.org/doc/stable/reference/generated/numpy.stack.html#numpy.stack
https://numpy.org/doc/stable/reference/generated/numpy.std.html#numpy.std
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.str_
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.string_
https://numpy.org/doc/stable/reference/generated/numpy.subtract.html#numpy.subtract
https://numpy.org/doc/stable/reference/generated/numpy.sum.html#numpy.sum
https://numpy.org/doc/stable/reference/generated/numpy.swapaxes.html#numpy.swapaxes
https://numpy.org/doc/stable/reference/generated/numpy.take.html#numpy.take
https://numpy.org/doc/stable/reference/generated/numpy.take_along_axis.html#numpy.take_along_axis
https://numpy.org/doc/stable/reference/generated/numpy.tan.html#numpy.tan
https://numpy.org/doc/stable/reference/generated/numpy.tanh.html#numpy.tanh
https://numpy.org/doc/stable/reference/generated/numpy.tensordot.html#numpy.tensordot
https://numpy.org/doc/stable/reference/generated/numpy.tile.html#numpy.tile
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.timedelta64
https://numpy.org/doc/stable/reference/generated/numpy.trace.html#numpy.trace
https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose
https://numpy.org/doc/stable/reference/generated/numpy.trapz.html#numpy.trapz
https://numpy.org/doc/stable/reference/generated/numpy.tri.html#numpy.tri
https://numpy.org/doc/stable/reference/generated/numpy.tril.html#numpy.tril
https://numpy.org/doc/stable/reference/generated/numpy.tril_indices.html#numpy.tril_indices
https://numpy.org/doc/stable/reference/generated/numpy.tril_indices_from.html#numpy.tril_indices_from
https://numpy.org/doc/stable/reference/generated/numpy.trim_zeros.html#numpy.trim_zeros
https://numpy.org/doc/stable/reference/generated/numpy.triu.html#numpy.triu
https://numpy.org/doc/stable/reference/generated/numpy.triu_indices.html#numpy.triu_indices
https://numpy.org/doc/stable/reference/generated/numpy.triu_indices_from.html#numpy.triu_indices_from
https://numpy.org/doc/stable/reference/generated/numpy.true_divide.html#numpy.true_divide
https://numpy.org/doc/stable/reference/generated/numpy.trunc.html#numpy.trunc
https://numpy.org/doc/stable/reference/generated/numpy.typename.html#numpy.typename
https://numpy.org/doc/stable/reference/generated/numpy.typename.html#numpy.typename
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ubyte
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ubyte
https://numpy.org/doc/stable/reference/generated/numpy.ufunc.html#numpy.ufunc
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint16
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint16
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint32
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint64
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint8
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uint8
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uintc
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uintc
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uintp
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uintp

CuPy Documentation, Release 13.0.0

Table 5 – continued from previous page
NumPy CuPy
numpy.ulonglong cupy.ulonglong (alias of numpy.ulonglong)
numpy.unicode_ -Page 863, 3

numpy.union1d cupy.union1d
numpy.unique cupy.unique
numpy.unpackbits cupy.unpackbits
numpy.unravel_index cupy.unravel_index
numpy.unsignedinteger cupy.unsignedinteger (alias of numpy.

unsignedinteger)
numpy.unwrap cupy.unwrap
numpy.ushort cupy.ushort (alias of numpy.ushort)
numpy.vander cupy.vander
numpy.var cupy.var
numpy.vdot cupy.vdot
numpy.vectorize cupy.vectorize
numpy.void -3

numpy.vsplit cupy.vsplit
numpy.vstack cupy.vstack
numpy.where cupy.where
numpy.who cupy.who
numpy.zeros cupy.zeros
numpy.zeros_like cupy.zeros_like

Multi-Dimensional Array

NumPy CuPy
numpy.ndarray.T cupy.ndarray.T
numpy.ndarray.all cupy.ndarray.all
numpy.ndarray.any cupy.ndarray.any
numpy.ndarray.argmax cupy.ndarray.argmax
numpy.ndarray.argmin cupy.ndarray.argmin
numpy.ndarray.argpartition cupy.ndarray.argpartition
numpy.ndarray.argsort cupy.ndarray.argsort
numpy.ndarray.astype cupy.ndarray.astype
numpy.ndarray.base cupy.ndarray.base
numpy.ndarray.byteswap -8

numpy.ndarray.choose cupy.ndarray.choose
numpy.ndarray.clip cupy.ndarray.clip
numpy.ndarray.compress cupy.ndarray.compress
numpy.ndarray.conj cupy.ndarray.conj
numpy.ndarray.conjugate cupy.ndarray.conjugate
numpy.ndarray.copy cupy.ndarray.copy

continues on next page

1 Use of numpy.matrix is discouraged in NumPy and thus we have no plan to add it to CuPy.
2 datetime64 and timedelta64 dtypes are currently unsupported.
3 object and string dtypes are not supported in GPU and thus left unimplemented in CuPy.
4 Floating point error handling depends on CPU-specific features which is not available in GPU.
5 Structured arrays and record arrays are currently unsupported.
6 Use of numpy.poly1d is discouraged in NumPy and thus we have stopped adding functions with the interface.
7 Not supported as it has been deprecated in NumPy.

5.10. Comparison Table 863

https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ulonglong
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ulonglong
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.unicode_
https://numpy.org/doc/stable/reference/generated/numpy.union1d.html#numpy.union1d
https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique
https://numpy.org/doc/stable/reference/generated/numpy.unpackbits.html#numpy.unpackbits
https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html#numpy.unravel_index
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.unsignedinteger
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.unsignedinteger
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.unsignedinteger
https://numpy.org/doc/stable/reference/generated/numpy.unwrap.html#numpy.unwrap
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ushort
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.ushort
https://numpy.org/doc/stable/reference/generated/numpy.vander.html#numpy.vander
https://numpy.org/doc/stable/reference/generated/numpy.var.html#numpy.var
https://numpy.org/doc/stable/reference/generated/numpy.vdot.html#numpy.vdot
https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html#numpy.vectorize
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.void
https://numpy.org/doc/stable/reference/generated/numpy.vsplit.html#numpy.vsplit
https://numpy.org/doc/stable/reference/generated/numpy.vstack.html#numpy.vstack
https://numpy.org/doc/stable/reference/generated/numpy.where.html#numpy.where
https://numpy.org/doc/stable/reference/generated/numpy.who.html#numpy.who
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros
https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html#numpy.zeros_like
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.T.html#numpy.ndarray.T
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.all.html#numpy.ndarray.all
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.any.html#numpy.ndarray.any
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmax.html#numpy.ndarray.argmax
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmin.html#numpy.ndarray.argmin
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argpartition.html#numpy.ndarray.argpartition
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argsort.html#numpy.ndarray.argsort
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.base.html#numpy.ndarray.base
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.byteswap.html#numpy.ndarray.byteswap
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.choose.html#numpy.ndarray.choose
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.clip.html#numpy.ndarray.clip
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.compress.html#numpy.ndarray.compress
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.conj.html#numpy.ndarray.conj
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.conjugate.html#numpy.ndarray.conjugate
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy
https://numpy.org/doc/stable/reference/generated/numpy.matrix.html#numpy.matrix
https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html#numpy.poly1d

CuPy Documentation, Release 13.0.0

Table 6 – continued from previous page
NumPy CuPy
numpy.ndarray.ctypes -
numpy.ndarray.cumprod cupy.ndarray.cumprod
numpy.ndarray.cumsum cupy.ndarray.cumsum
numpy.ndarray.data cupy.ndarray.data
numpy.ndarray.diagonal cupy.ndarray.diagonal
numpy.ndarray.dot cupy.ndarray.dot
numpy.ndarray.dtype cupy.ndarray.dtype
numpy.ndarray.dump cupy.ndarray.dump
numpy.ndarray.dumps cupy.ndarray.dumps
numpy.ndarray.fill cupy.ndarray.fill
numpy.ndarray.flags cupy.ndarray.flags
numpy.ndarray.flat cupy.ndarray.flat
numpy.ndarray.flatten cupy.ndarray.flatten
numpy.ndarray.getfield -
numpy.ndarray.imag cupy.ndarray.imag
numpy.ndarray.item cupy.ndarray.item
numpy.ndarray.itemset -
numpy.ndarray.itemsize cupy.ndarray.itemsize
numpy.ndarray.max cupy.ndarray.max
numpy.ndarray.mean cupy.ndarray.mean
numpy.ndarray.min cupy.ndarray.min
numpy.ndarray.nbytes cupy.ndarray.nbytes
numpy.ndarray.ndim cupy.ndarray.ndim
numpy.ndarray.newbyteorder -Page 865, 8

numpy.ndarray.nonzero cupy.ndarray.nonzero
numpy.ndarray.partition cupy.ndarray.partition
numpy.ndarray.prod cupy.ndarray.prod
numpy.ndarray.ptp cupy.ndarray.ptp
numpy.ndarray.put cupy.ndarray.put
numpy.ndarray.ravel cupy.ndarray.ravel
numpy.ndarray.real cupy.ndarray.real
numpy.ndarray.repeat cupy.ndarray.repeat
numpy.ndarray.reshape cupy.ndarray.reshape
numpy.ndarray.resize -
numpy.ndarray.round cupy.ndarray.round
numpy.ndarray.searchsorted cupy.ndarray.searchsorted
numpy.ndarray.setfield -
numpy.ndarray.setflags -
numpy.ndarray.shape cupy.ndarray.shape
numpy.ndarray.size cupy.ndarray.size
numpy.ndarray.sort cupy.ndarray.sort
numpy.ndarray.squeeze cupy.ndarray.squeeze
numpy.ndarray.std cupy.ndarray.std
numpy.ndarray.strides cupy.ndarray.strides
numpy.ndarray.sum cupy.ndarray.sum
numpy.ndarray.swapaxes cupy.ndarray.swapaxes
numpy.ndarray.take cupy.ndarray.take
numpy.ndarray.tobytes cupy.ndarray.tobytes
numpy.ndarray.tofile cupy.ndarray.tofile

continues on next page

864 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ctypes.html#numpy.ndarray.ctypes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumprod.html#numpy.ndarray.cumprod
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumsum.html#numpy.ndarray.cumsum
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.data.html#numpy.ndarray.data
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.diagonal.html#numpy.ndarray.diagonal
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dot.html#numpy.ndarray.dot
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dtype.html#numpy.ndarray.dtype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dump.html#numpy.ndarray.dump
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dumps.html#numpy.ndarray.dumps
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.fill.html#numpy.ndarray.fill
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flat.html#numpy.ndarray.flat
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.getfield.html#numpy.ndarray.getfield
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.imag.html#numpy.ndarray.imag
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.item.html#numpy.ndarray.item
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemset.html#numpy.ndarray.itemset
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemsize.html#numpy.ndarray.itemsize
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.newbyteorder.html#numpy.ndarray.newbyteorder
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.nonzero.html#numpy.ndarray.nonzero
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.partition.html#numpy.ndarray.partition
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.prod.html#numpy.ndarray.prod
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ptp.html#numpy.ndarray.ptp
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.put.html#numpy.ndarray.put
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.real.html#numpy.ndarray.real
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.repeat.html#numpy.ndarray.repeat
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.resize.html#numpy.ndarray.resize
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.round.html#numpy.ndarray.round
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.searchsorted.html#numpy.ndarray.searchsorted
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.setfield.html#numpy.ndarray.setfield
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.setflags.html#numpy.ndarray.setflags
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sort.html#numpy.ndarray.sort
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.squeeze.html#numpy.ndarray.squeeze
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.std.html#numpy.ndarray.std
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sum.html#numpy.ndarray.sum
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.swapaxes.html#numpy.ndarray.swapaxes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.take.html#numpy.ndarray.take
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tobytes.html#numpy.ndarray.tobytes
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html#numpy.ndarray.tofile

CuPy Documentation, Release 13.0.0

Table 6 – continued from previous page
NumPy CuPy
numpy.ndarray.tolist cupy.ndarray.tolist
numpy.ndarray.tostring -Page 863, 7

numpy.ndarray.trace cupy.ndarray.trace
numpy.ndarray.transpose cupy.ndarray.transpose
numpy.ndarray.var cupy.ndarray.var
numpy.ndarray.view cupy.ndarray.view

Linear Algebra

NumPy CuPy
numpy.linalg.cholesky cupy.linalg.cholesky
numpy.linalg.cond -
numpy.linalg.det cupy.linalg.det
numpy.linalg.eig -
numpy.linalg.eigh cupy.linalg.eigh
numpy.linalg.eigvals -
numpy.linalg.eigvalsh cupy.linalg.eigvalsh
numpy.linalg.inv cupy.linalg.inv
numpy.linalg.lstsq cupy.linalg.lstsq
numpy.linalg.matrix_power cupy.linalg.matrix_power
numpy.linalg.matrix_rank cupy.linalg.matrix_rank
numpy.linalg.multi_dot -
numpy.linalg.norm cupy.linalg.norm
numpy.linalg.pinv cupy.linalg.pinv
numpy.linalg.qr cupy.linalg.qr
numpy.linalg.slogdet cupy.linalg.slogdet
numpy.linalg.solve cupy.linalg.solve
numpy.linalg.svd cupy.linalg.svd
numpy.linalg.tensorinv cupy.linalg.tensorinv
numpy.linalg.tensorsolve cupy.linalg.tensorsolve

8 Not supported as GPUs only support little-endian byte-encoding.

5.10. Comparison Table 865

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tostring.html#numpy.ndarray.tostring
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.trace.html#numpy.ndarray.trace
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.transpose.html#numpy.ndarray.transpose
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.var.html#numpy.ndarray.var
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.view.html#numpy.ndarray.view
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cholesky.html#numpy.linalg.cholesky
https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html#numpy.linalg.cond
https://numpy.org/doc/stable/reference/generated/numpy.linalg.det.html#numpy.linalg.det
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html#numpy.linalg.eig
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvals.html#numpy.linalg.eigvals
https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvalsh.html#numpy.linalg.eigvalsh
https://numpy.org/doc/stable/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv
https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq
https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power
https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank
https://numpy.org/doc/stable/reference/generated/numpy.linalg.multi_dot.html#numpy.linalg.multi_dot
https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html#numpy.linalg.norm
https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html#numpy.linalg.pinv
https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr
https://numpy.org/doc/stable/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet
https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd
https://numpy.org/doc/stable/reference/generated/numpy.linalg.tensorinv.html#numpy.linalg.tensorinv
https://numpy.org/doc/stable/reference/generated/numpy.linalg.tensorsolve.html#numpy.linalg.tensorsolve

CuPy Documentation, Release 13.0.0

Discrete Fourier Transform

NumPy CuPy
numpy.fft.fft cupy.fft.fft
numpy.fft.fft2 cupy.fft.fft2
numpy.fft.fftfreq cupy.fft.fftfreq
numpy.fft.fftn cupy.fft.fftn
numpy.fft.fftshift cupy.fft.fftshift
numpy.fft.hfft cupy.fft.hfft
numpy.fft.ifft cupy.fft.ifft
numpy.fft.ifft2 cupy.fft.ifft2
numpy.fft.ifftn cupy.fft.ifftn
numpy.fft.ifftshift cupy.fft.ifftshift
numpy.fft.ihfft cupy.fft.ihfft
numpy.fft.irfft cupy.fft.irfft
numpy.fft.irfft2 cupy.fft.irfft2
numpy.fft.irfftn cupy.fft.irfftn
numpy.fft.rfft cupy.fft.rfft
numpy.fft.rfft2 cupy.fft.rfft2
numpy.fft.rfftfreq cupy.fft.rfftfreq
numpy.fft.rfftn cupy.fft.rfftn

Random Sampling

NumPy CuPy
numpy.random.BitGenerator cupy.random.BitGenerator
numpy.random.Generator -
numpy.random.MT19937 -
numpy.random.PCG64 -
numpy.random.PCG64DXSM -
numpy.random.Philox -
numpy.random.RandomState cupy.random.RandomState
numpy.random.SFC64 -
numpy.random.SeedSequence -
numpy.random.beta cupy.random.beta
numpy.random.binomial cupy.random.binomial
numpy.random.bytes cupy.random.bytes
numpy.random.chisquare cupy.random.chisquare
numpy.random.choice cupy.random.choice
numpy.random.default_rng cupy.random.default_rng
numpy.random.dirichlet cupy.random.dirichlet
numpy.random.exponential cupy.random.exponential
numpy.random.f cupy.random.f
numpy.random.gamma cupy.random.gamma
numpy.random.geometric cupy.random.geometric
numpy.random.get_bit_generator -
numpy.random.get_state -
numpy.random.gumbel cupy.random.gumbel
numpy.random.hypergeometric cupy.random.hypergeometric

continues on next page

866 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft
https://numpy.org/doc/stable/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2
https://numpy.org/doc/stable/reference/generated/numpy.fft.fftfreq.html#numpy.fft.fftfreq
https://numpy.org/doc/stable/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn
https://numpy.org/doc/stable/reference/generated/numpy.fft.fftshift.html#numpy.fft.fftshift
https://numpy.org/doc/stable/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft
https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft
https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft2.html#numpy.fft.ifft2
https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftn.html#numpy.fft.ifftn
https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftshift.html#numpy.fft.ifftshift
https://numpy.org/doc/stable/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft
https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft
https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft2.html#numpy.fft.irfft2
https://numpy.org/doc/stable/reference/generated/numpy.fft.irfftn.html#numpy.fft.irfftn
https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft
https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft2.html#numpy.fft.rfft2
https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftfreq.html#numpy.fft.rfftfreq
https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn
https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.BitGenerator.html#numpy.random.BitGenerator
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://numpy.org/doc/stable/reference/random/bit_generators/mt19937.html#numpy.random.MT19937
https://numpy.org/doc/stable/reference/random/bit_generators/pcg64.html#numpy.random.PCG64
https://numpy.org/doc/stable/reference/random/bit_generators/pcg64dxsm.html#numpy.random.PCG64DXSM
https://numpy.org/doc/stable/reference/random/bit_generators/philox.html#numpy.random.Philox
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://numpy.org/doc/stable/reference/random/bit_generators/sfc64.html#numpy.random.SFC64
https://numpy.org/doc/stable/reference/random/bit_generators/generated/numpy.random.SeedSequence.html#numpy.random.SeedSequence
https://numpy.org/doc/stable/reference/random/generated/numpy.random.beta.html#numpy.random.beta
https://numpy.org/doc/stable/reference/random/generated/numpy.random.binomial.html#numpy.random.binomial
https://numpy.org/doc/stable/reference/random/generated/numpy.random.bytes.html#numpy.random.bytes
https://numpy.org/doc/stable/reference/random/generated/numpy.random.chisquare.html#numpy.random.chisquare
https://numpy.org/doc/stable/reference/random/generated/numpy.random.choice.html#numpy.random.choice
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.default_rng
https://numpy.org/doc/stable/reference/random/generated/numpy.random.dirichlet.html#numpy.random.dirichlet
https://numpy.org/doc/stable/reference/random/generated/numpy.random.exponential.html#numpy.random.exponential
https://numpy.org/doc/stable/reference/random/generated/numpy.random.f.html#numpy.random.f
https://numpy.org/doc/stable/reference/random/generated/numpy.random.gamma.html#numpy.random.gamma
https://numpy.org/doc/stable/reference/random/generated/numpy.random.geometric.html#numpy.random.geometric
https://numpy.org/doc/stable/reference/random/generated/numpy.random.get_state.html#numpy.random.get_state
https://numpy.org/doc/stable/reference/random/generated/numpy.random.gumbel.html#numpy.random.gumbel
https://numpy.org/doc/stable/reference/random/generated/numpy.random.hypergeometric.html#numpy.random.hypergeometric

CuPy Documentation, Release 13.0.0

Table 7 – continued from previous page
NumPy CuPy
numpy.random.laplace cupy.random.laplace
numpy.random.logistic cupy.random.logistic
numpy.random.lognormal cupy.random.lognormal
numpy.random.logseries cupy.random.logseries
numpy.random.multinomial cupy.random.multinomial
numpy.random.multivariate_normal cupy.random.multivariate_normal
numpy.random.negative_binomial cupy.random.negative_binomial
numpy.random.noncentral_chisquare cupy.random.noncentral_chisquare
numpy.random.noncentral_f cupy.random.noncentral_f
numpy.random.normal cupy.random.normal
numpy.random.pareto cupy.random.pareto
numpy.random.permutation cupy.random.permutation
numpy.random.poisson cupy.random.poisson
numpy.random.power cupy.random.power
numpy.random.rand cupy.random.rand
numpy.random.randint cupy.random.randint
numpy.random.randn cupy.random.randn
numpy.random.random cupy.random.random
numpy.random.random_integers cupy.random.random_integers
numpy.random.random_sample cupy.random.random_sample
numpy.random.ranf cupy.random.ranf
numpy.random.rayleigh cupy.random.rayleigh
numpy.random.sample cupy.random.sample
numpy.random.seed cupy.random.seed
numpy.random.set_bit_generator -
numpy.random.set_state -
numpy.random.shuffle cupy.random.shuffle
numpy.random.standard_cauchy cupy.random.standard_cauchy
numpy.random.standard_exponential cupy.random.standard_exponential
numpy.random.standard_gamma cupy.random.standard_gamma
numpy.random.standard_normal cupy.random.standard_normal
numpy.random.standard_t cupy.random.standard_t
numpy.random.triangular cupy.random.triangular
numpy.random.uniform cupy.random.uniform
numpy.random.vonmises cupy.random.vonmises
numpy.random.wald cupy.random.wald
numpy.random.weibull cupy.random.weibull
numpy.random.zipf cupy.random.zipf

Polynomials

NumPy CuPy
numpy.polynomial.Chebyshev -
numpy.polynomial.Hermite -
numpy.polynomial.HermiteE -
numpy.polynomial.Laguerre -
numpy.polynomial.Legendre -
numpy.polynomial.Polynomial -
numpy.polynomial.set_default_printstyle -

5.10. Comparison Table 867

https://numpy.org/doc/stable/reference/random/generated/numpy.random.laplace.html#numpy.random.laplace
https://numpy.org/doc/stable/reference/random/generated/numpy.random.logistic.html#numpy.random.logistic
https://numpy.org/doc/stable/reference/random/generated/numpy.random.lognormal.html#numpy.random.lognormal
https://numpy.org/doc/stable/reference/random/generated/numpy.random.logseries.html#numpy.random.logseries
https://numpy.org/doc/stable/reference/random/generated/numpy.random.multinomial.html#numpy.random.multinomial
https://numpy.org/doc/stable/reference/random/generated/numpy.random.multivariate_normal.html#numpy.random.multivariate_normal
https://numpy.org/doc/stable/reference/random/generated/numpy.random.negative_binomial.html#numpy.random.negative_binomial
https://numpy.org/doc/stable/reference/random/generated/numpy.random.noncentral_chisquare.html#numpy.random.noncentral_chisquare
https://numpy.org/doc/stable/reference/random/generated/numpy.random.noncentral_f.html#numpy.random.noncentral_f
https://numpy.org/doc/stable/reference/random/generated/numpy.random.normal.html#numpy.random.normal
https://numpy.org/doc/stable/reference/random/generated/numpy.random.pareto.html#numpy.random.pareto
https://numpy.org/doc/stable/reference/random/generated/numpy.random.permutation.html#numpy.random.permutation
https://numpy.org/doc/stable/reference/random/generated/numpy.random.poisson.html#numpy.random.poisson
https://numpy.org/doc/stable/reference/random/generated/numpy.random.power.html#numpy.random.power
https://numpy.org/doc/stable/reference/random/generated/numpy.random.rand.html#numpy.random.rand
https://numpy.org/doc/stable/reference/random/generated/numpy.random.randint.html#numpy.random.randint
https://numpy.org/doc/stable/reference/random/generated/numpy.random.randn.html#numpy.random.randn
https://numpy.org/doc/stable/reference/random/generated/numpy.random.random.html#numpy.random.random
https://numpy.org/doc/stable/reference/random/generated/numpy.random.random_integers.html#numpy.random.random_integers
https://numpy.org/doc/stable/reference/random/generated/numpy.random.random_sample.html#numpy.random.random_sample
https://numpy.org/doc/stable/reference/random/generated/numpy.random.ranf.html#numpy.random.ranf
https://numpy.org/doc/stable/reference/random/generated/numpy.random.rayleigh.html#numpy.random.rayleigh
https://numpy.org/doc/stable/reference/random/generated/numpy.random.sample.html#numpy.random.sample
https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html#numpy.random.seed
https://numpy.org/doc/stable/reference/random/generated/numpy.random.set_state.html#numpy.random.set_state
https://numpy.org/doc/stable/reference/random/generated/numpy.random.shuffle.html#numpy.random.shuffle
https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_cauchy.html#numpy.random.standard_cauchy
https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_exponential.html#numpy.random.standard_exponential
https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_gamma.html#numpy.random.standard_gamma
https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_normal.html#numpy.random.standard_normal
https://numpy.org/doc/stable/reference/random/generated/numpy.random.standard_t.html#numpy.random.standard_t
https://numpy.org/doc/stable/reference/random/generated/numpy.random.triangular.html#numpy.random.triangular
https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html#numpy.random.uniform
https://numpy.org/doc/stable/reference/random/generated/numpy.random.vonmises.html#numpy.random.vonmises
https://numpy.org/doc/stable/reference/random/generated/numpy.random.wald.html#numpy.random.wald
https://numpy.org/doc/stable/reference/random/generated/numpy.random.weibull.html#numpy.random.weibull
https://numpy.org/doc/stable/reference/random/generated/numpy.random.zipf.html#numpy.random.zipf
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.set_default_printstyle.html#numpy.polynomial.set_default_printstyle

CuPy Documentation, Release 13.0.0

Power Series

NumPy CuPy
numpy.polynomial.polynomial.ABCPolyBase -
numpy.polynomial.polynomial.Polynomial -
numpy.polynomial.polynomial.normalize_axis_index -
numpy.polynomial.polynomial.polyadd -
numpy.polynomial.polynomial.polycompanion cupy.polynomial.polynomial.polycompanion
numpy.polynomial.polynomial.polyder -
numpy.polynomial.polynomial.polydiv -
numpy.polynomial.polynomial.polydomain -
numpy.polynomial.polynomial.polyfit -
numpy.polynomial.polynomial.polyfromroots -
numpy.polynomial.polynomial.polygrid2d -
numpy.polynomial.polynomial.polygrid3d -
numpy.polynomial.polynomial.polyint -
numpy.polynomial.polynomial.polyline -
numpy.polynomial.polynomial.polymul -
numpy.polynomial.polynomial.polymulx -
numpy.polynomial.polynomial.polyone -
numpy.polynomial.polynomial.polypow -
numpy.polynomial.polynomial.polyroots -
numpy.polynomial.polynomial.polysub -
numpy.polynomial.polynomial.polytrim -
numpy.polynomial.polynomial.polyval cupy.polynomial.polynomial.polyval
numpy.polynomial.polynomial.polyval2d -
numpy.polynomial.polynomial.polyval3d -
numpy.polynomial.polynomial.polyvalfromroots cupy.polynomial.polynomial.polyvalfromroots
numpy.polynomial.polynomial.polyvander cupy.polynomial.polynomial.polyvander
numpy.polynomial.polynomial.polyvander2d -
numpy.polynomial.polynomial.polyvander3d -
numpy.polynomial.polynomial.polyx -
numpy.polynomial.polynomial.polyzero -

Polyutils

NumPy CuPy
numpy.polynomial.polyutils.absolute -
numpy.polynomial.polyutils.as_series cupy.polynomial.polyutils.as_series
numpy.polynomial.polyutils.dragon4_positional -
numpy.polynomial.polyutils.dragon4_scientific -
numpy.polynomial.polyutils.format_float -
numpy.polynomial.polyutils.getdomain -
numpy.polynomial.polyutils.mapdomain -
numpy.polynomial.polyutils.mapparms -
numpy.polynomial.polyutils.trimcoef cupy.polynomial.polyutils.trimcoef
numpy.polynomial.polyutils.trimseq cupy.polynomial.polyutils.trimseq

868 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.Polynomial.html#numpy.polynomial.polynomial.Polynomial
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyadd.html#numpy.polynomial.polynomial.polyadd
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polycompanion.html#numpy.polynomial.polynomial.polycompanion
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyder.html#numpy.polynomial.polynomial.polyder
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polydiv.html#numpy.polynomial.polynomial.polydiv
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polydomain.html#numpy.polynomial.polynomial.polydomain
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyfit.html#numpy.polynomial.polynomial.polyfit
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyfromroots.html#numpy.polynomial.polynomial.polyfromroots
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polygrid2d.html#numpy.polynomial.polynomial.polygrid2d
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polygrid3d.html#numpy.polynomial.polynomial.polygrid3d
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyint.html#numpy.polynomial.polynomial.polyint
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyline.html#numpy.polynomial.polynomial.polyline
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polymul.html#numpy.polynomial.polynomial.polymul
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polymulx.html#numpy.polynomial.polynomial.polymulx
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyone.html#numpy.polynomial.polynomial.polyone
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polypow.html#numpy.polynomial.polynomial.polypow
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyroots.html#numpy.polynomial.polynomial.polyroots
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polysub.html#numpy.polynomial.polynomial.polysub
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polytrim.html#numpy.polynomial.polynomial.polytrim
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyval.html#numpy.polynomial.polynomial.polyval
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyval2d.html#numpy.polynomial.polynomial.polyval2d
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyval3d.html#numpy.polynomial.polynomial.polyval3d
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyvalfromroots.html#numpy.polynomial.polynomial.polyvalfromroots
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyvander.html#numpy.polynomial.polynomial.polyvander
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyvander2d.html#numpy.polynomial.polynomial.polyvander2d
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyvander3d.html#numpy.polynomial.polynomial.polyvander3d
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyx.html#numpy.polynomial.polynomial.polyx
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polynomial.polyzero.html#numpy.polynomial.polynomial.polyzero
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.as_series.html#numpy.polynomial.polyutils.as_series
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.getdomain.html#numpy.polynomial.polyutils.getdomain
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.mapdomain.html#numpy.polynomial.polyutils.mapdomain
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.mapparms.html#numpy.polynomial.polyutils.mapparms
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.trimcoef.html#numpy.polynomial.polyutils.trimcoef
https://numpy.org/doc/stable/reference/generated/numpy.polynomial.polyutils.trimseq.html#numpy.polynomial.polyutils.trimseq

CuPy Documentation, Release 13.0.0

5.10.2 SciPy / CuPy APIs

Discrete Fourier Transform

SciPy CuPy
scipy.fft.dct cupyx.scipy.fft.dct
scipy.fft.dctn cupyx.scipy.fft.dctn
scipy.fft.dst cupyx.scipy.fft.dst
scipy.fft.dstn cupyx.scipy.fft.dstn
scipy.fft.fft cupyx.scipy.fft.fft
scipy.fft.fft2 cupyx.scipy.fft.fft2
scipy.fft.fftfreq cupyx.scipy.fft.fftfreq
scipy.fft.fftn cupyx.scipy.fft.fftn
scipy.fft.fftshift cupyx.scipy.fft.fftshift
scipy.fft.fht cupyx.scipy.fft.fht
scipy.fft.fhtoffset -
scipy.fft.get_workers -
scipy.fft.hfft cupyx.scipy.fft.hfft
scipy.fft.hfft2 cupyx.scipy.fft.hfft2
scipy.fft.hfftn cupyx.scipy.fft.hfftn
scipy.fft.idct cupyx.scipy.fft.idct
scipy.fft.idctn cupyx.scipy.fft.idctn
scipy.fft.idst cupyx.scipy.fft.idst
scipy.fft.idstn cupyx.scipy.fft.idstn
scipy.fft.ifft cupyx.scipy.fft.ifft
scipy.fft.ifft2 cupyx.scipy.fft.ifft2
scipy.fft.ifftn cupyx.scipy.fft.ifftn
scipy.fft.ifftshift cupyx.scipy.fft.ifftshift
scipy.fft.ifht cupyx.scipy.fft.ifht
scipy.fft.ihfft cupyx.scipy.fft.ihfft
scipy.fft.ihfft2 cupyx.scipy.fft.ihfft2
scipy.fft.ihfftn cupyx.scipy.fft.ihfftn
scipy.fft.irfft cupyx.scipy.fft.irfft
scipy.fft.irfft2 cupyx.scipy.fft.irfft2
scipy.fft.irfftn cupyx.scipy.fft.irfftn
scipy.fft.next_fast_len cupyx.scipy.fft.next_fast_len
scipy.fft.register_backend -
scipy.fft.rfft cupyx.scipy.fft.rfft
scipy.fft.rfft2 cupyx.scipy.fft.rfft2
scipy.fft.rfftfreq cupyx.scipy.fft.rfftfreq
scipy.fft.rfftn cupyx.scipy.fft.rfftn
scipy.fft.set_backend -
scipy.fft.set_global_backend -
scipy.fft.set_workers -
scipy.fft.skip_backend -

5.10. Comparison Table 869

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dct.html#scipy.fft.dct
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dctn.html#scipy.fft.dctn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dst.html#scipy.fft.dst
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.dstn.html#scipy.fft.dstn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft.html#scipy.fft.fft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft2.html#scipy.fft.fft2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftfreq.html#scipy.fft.fftfreq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftn.html#scipy.fft.fftn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fftshift.html#scipy.fft.fftshift
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fht.html#scipy.fft.fht
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fhtoffset.html#scipy.fft.fhtoffset
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.get_workers.html#scipy.fft.get_workers
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfft.html#scipy.fft.hfft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfft2.html#scipy.fft.hfft2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.hfftn.html#scipy.fft.hfftn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idct.html#scipy.fft.idct
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idctn.html#scipy.fft.idctn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idst.html#scipy.fft.idst
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.idstn.html#scipy.fft.idstn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft.html#scipy.fft.ifft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifft2.html#scipy.fft.ifft2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifftn.html#scipy.fft.ifftn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifftshift.html#scipy.fft.ifftshift
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ifht.html#scipy.fft.ifht
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfft.html#scipy.fft.ihfft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfft2.html#scipy.fft.ihfft2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.ihfftn.html#scipy.fft.ihfftn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft.html#scipy.fft.irfft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfft2.html#scipy.fft.irfft2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.irfftn.html#scipy.fft.irfftn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.next_fast_len.html#scipy.fft.next_fast_len
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.register_backend.html#scipy.fft.register_backend
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft.html#scipy.fft.rfft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfft2.html#scipy.fft.rfft2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfftfreq.html#scipy.fft.rfftfreq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.rfftn.html#scipy.fft.rfftn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_backend.html#scipy.fft.set_backend
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_global_backend.html#scipy.fft.set_global_backend
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.set_workers.html#scipy.fft.set_workers
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.skip_backend.html#scipy.fft.skip_backend

CuPy Documentation, Release 13.0.0

Legacy Discrete Fourier Transform

SciPy CuPy
scipy.fftpack.cc_diff -
scipy.fftpack.cs_diff -
scipy.fftpack.dct -
scipy.fftpack.dctn -
scipy.fftpack.diff -
scipy.fftpack.dst -
scipy.fftpack.dstn -
scipy.fftpack.fft cupyx.scipy.fftpack.fft
scipy.fftpack.fft2 cupyx.scipy.fftpack.fft2
scipy.fftpack.fftfreq -
scipy.fftpack.fftn cupyx.scipy.fftpack.fftn
scipy.fftpack.fftshift -
scipy.fftpack.hilbert -
scipy.fftpack.idct -
scipy.fftpack.idctn -
scipy.fftpack.idst -
scipy.fftpack.idstn -
scipy.fftpack.ifft cupyx.scipy.fftpack.ifft
scipy.fftpack.ifft2 cupyx.scipy.fftpack.ifft2
scipy.fftpack.ifftn cupyx.scipy.fftpack.ifftn
scipy.fftpack.ifftshift -
scipy.fftpack.ihilbert -
scipy.fftpack.irfft cupyx.scipy.fftpack.irfft
scipy.fftpack.itilbert -
scipy.fftpack.next_fast_len -
scipy.fftpack.rfft cupyx.scipy.fftpack.rfft
scipy.fftpack.rfftfreq -
scipy.fftpack.sc_diff -
scipy.fftpack.shift -
scipy.fftpack.ss_diff -
scipy.fftpack.tilbert -

Interpolation

SciPy CuPy
scipy.interpolate.Akima1DInterpolator cupyx.scipy.interpolate.Akima1DInterpolator
scipy.interpolate.BPoly cupyx.scipy.interpolate.BPoly
scipy.interpolate.BSpline cupyx.scipy.interpolate.BSpline
scipy.interpolate.BarycentricInterpolator cupyx.scipy.interpolate.BarycentricInterpolator
scipy.interpolate.BivariateSpline -
scipy.interpolate.CloughTocher2DInterpolator -
scipy.interpolate.CubicHermiteSpline cupyx.scipy.interpolate.CubicHermiteSpline
scipy.interpolate.CubicSpline -
scipy.interpolate.InterpolatedUnivariateSpline -
scipy.interpolate.KroghInterpolator cupyx.scipy.interpolate.KroghInterpolator
scipy.interpolate.LSQBivariateSpline -

continues on next page

870 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.cc_diff.html#scipy.fftpack.cc_diff
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.cs_diff.html#scipy.fftpack.cs_diff
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dct.html#scipy.fftpack.dct
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dctn.html#scipy.fftpack.dctn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.diff.html#scipy.fftpack.diff
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dst.html#scipy.fftpack.dst
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dstn.html#scipy.fftpack.dstn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft.html#scipy.fftpack.fft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fft2.html#scipy.fftpack.fft2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftfreq.html#scipy.fftpack.fftfreq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftn.html#scipy.fftpack.fftn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.fftshift.html#scipy.fftpack.fftshift
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.hilbert.html#scipy.fftpack.hilbert
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idct.html#scipy.fftpack.idct
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idctn.html#scipy.fftpack.idctn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idst.html#scipy.fftpack.idst
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.idstn.html#scipy.fftpack.idstn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft.html#scipy.fftpack.ifft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifft2.html#scipy.fftpack.ifft2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifftn.html#scipy.fftpack.ifftn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ifftshift.html#scipy.fftpack.ifftshift
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ihilbert.html#scipy.fftpack.ihilbert
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.irfft.html#scipy.fftpack.irfft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.itilbert.html#scipy.fftpack.itilbert
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.next_fast_len.html#scipy.fftpack.next_fast_len
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfft.html#scipy.fftpack.rfft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfftfreq.html#scipy.fftpack.rfftfreq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.sc_diff.html#scipy.fftpack.sc_diff
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.shift.html#scipy.fftpack.shift
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.ss_diff.html#scipy.fftpack.ss_diff
https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.tilbert.html#scipy.fftpack.tilbert
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.html#scipy.interpolate.Akima1DInterpolator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BPoly.html#scipy.interpolate.BPoly
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html#scipy.interpolate.BSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BarycentricInterpolator.html#scipy.interpolate.BarycentricInterpolator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BivariateSpline.html#scipy.interpolate.BivariateSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CloughTocher2DInterpolator.html#scipy.interpolate.CloughTocher2DInterpolator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicHermiteSpline.html#scipy.interpolate.CubicHermiteSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html#scipy.interpolate.CubicSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.InterpolatedUnivariateSpline.html#scipy.interpolate.InterpolatedUnivariateSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.KroghInterpolator.html#scipy.interpolate.KroghInterpolator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQBivariateSpline.html#scipy.interpolate.LSQBivariateSpline

CuPy Documentation, Release 13.0.0

Table 11 – continued from previous page
SciPy CuPy
scipy.interpolate.LSQSphereBivariateSpline -
scipy.interpolate.LSQUnivariateSpline -
scipy.interpolate.LinearNDInterpolator -
scipy.interpolate.NdPPoly cupyx.scipy.interpolate.NdPPoly
scipy.interpolate.NearestNDInterpolator -
scipy.interpolate.PPoly cupyx.scipy.interpolate.PPoly
scipy.interpolate.PchipInterpolator cupyx.scipy.interpolate.PchipInterpolator
scipy.interpolate.RBFInterpolator cupyx.scipy.interpolate.RBFInterpolator
scipy.interpolate.Rbf -
scipy.interpolate.RectBivariateSpline -
scipy.interpolate.RectSphereBivariateSpline -
scipy.interpolate.RegularGridInterpolator cupyx.scipy.interpolate.RegularGridInterpolator
scipy.interpolate.SmoothBivariateSpline -
scipy.interpolate.SmoothSphereBivariateSpline -
scipy.interpolate.UnivariateSpline -
scipy.interpolate.approximate_taylor_polynomial -
scipy.interpolate.barycentric_interpolate cupyx.scipy.interpolate.barycentric_interpolate
scipy.interpolate.bisplev -
scipy.interpolate.bisplrep -
scipy.interpolate.griddata -
scipy.interpolate.insert -
scipy.interpolate.interp1d -
scipy.interpolate.interp2d -
scipy.interpolate.interpn cupyx.scipy.interpolate.interpn
scipy.interpolate.krogh_interpolate cupyx.scipy.interpolate.krogh_interpolate
scipy.interpolate.lagrange -
scipy.interpolate.make_interp_spline cupyx.scipy.interpolate.make_interp_spline
scipy.interpolate.make_lsq_spline -
scipy.interpolate.make_smoothing_spline -
scipy.interpolate.pade -
scipy.interpolate.pchip cupyx.scipy.interpolate.pchip
scipy.interpolate.pchip_interpolate cupyx.scipy.interpolate.pchip_interpolate
scipy.interpolate.spalde -
scipy.interpolate.splantider cupyx.scipy.interpolate.splantider
scipy.interpolate.splder cupyx.scipy.interpolate.splder
scipy.interpolate.splev -
scipy.interpolate.splint -
scipy.interpolate.splprep -
scipy.interpolate.splrep -
scipy.interpolate.sproot -

5.10. Comparison Table 871

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQSphereBivariateSpline.html#scipy.interpolate.LSQSphereBivariateSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LSQUnivariateSpline.html#scipy.interpolate.LSQUnivariateSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LinearNDInterpolator.html#scipy.interpolate.LinearNDInterpolator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NdPPoly.html#scipy.interpolate.NdPPoly
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.NearestNDInterpolator.html#scipy.interpolate.NearestNDInterpolator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.html#scipy.interpolate.PPoly
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html#scipy.interpolate.PchipInterpolator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RBFInterpolator.html#scipy.interpolate.RBFInterpolator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Rbf.html#scipy.interpolate.Rbf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.html#scipy.interpolate.RectBivariateSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectSphereBivariateSpline.html#scipy.interpolate.RectSphereBivariateSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothBivariateSpline.html#scipy.interpolate.SmoothBivariateSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.SmoothSphereBivariateSpline.html#scipy.interpolate.SmoothSphereBivariateSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.approximate_taylor_polynomial.html#scipy.interpolate.approximate_taylor_polynomial
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.barycentric_interpolate.html#scipy.interpolate.barycentric_interpolate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.bisplev.html#scipy.interpolate.bisplev
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.bisplrep.html#scipy.interpolate.bisplrep
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html#scipy.interpolate.griddata
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.insert.html#scipy.interpolate.insert
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp2d.html#scipy.interpolate.interp2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interpn.html#scipy.interpolate.interpn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.krogh_interpolate.html#scipy.interpolate.krogh_interpolate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.lagrange.html#scipy.interpolate.lagrange
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_interp_spline.html#scipy.interpolate.make_interp_spline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_lsq_spline.html#scipy.interpolate.make_lsq_spline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.make_smoothing_spline.html#scipy.interpolate.make_smoothing_spline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pade.html#scipy.interpolate.pade
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html#scipy.interpolate.pchip_interpolate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.spalde.html#scipy.interpolate.spalde
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splantider.html#scipy.interpolate.splantider
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splder.html#scipy.interpolate.splder
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html#scipy.interpolate.splev
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splint.html#scipy.interpolate.splint
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splprep.html#scipy.interpolate.splprep
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splrep.html#scipy.interpolate.splrep
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.sproot.html#scipy.interpolate.sproot

CuPy Documentation, Release 13.0.0

Advanced Linear Algebra

SciPy CuPy
scipy.linalg.bandwidth cupyx.scipy.linalg.bandwidth
scipy.linalg.block_diag cupyx.scipy.linalg.block_diag
scipy.linalg.cdf2rdf -
scipy.linalg.cho_factor -
scipy.linalg.cho_solve -
scipy.linalg.cho_solve_banded -
scipy.linalg.cholesky_banded -
scipy.linalg.circulant cupyx.scipy.linalg.circulant
scipy.linalg.clarkson_woodruff_transform -
scipy.linalg.companion cupyx.scipy.linalg.companion
scipy.linalg.convolution_matrix cupyx.scipy.linalg.convolution_matrix
scipy.linalg.coshm -
scipy.linalg.cosm -
scipy.linalg.cossin -
scipy.linalg.dft cupyx.scipy.linalg.dft
scipy.linalg.diagsvd -
scipy.linalg.eig_banded -
scipy.linalg.eigh_tridiagonal -
scipy.linalg.eigvals_banded -
scipy.linalg.eigvalsh_tridiagonal -
scipy.linalg.expm cupyx.scipy.linalg.expm
scipy.linalg.expm_cond -
scipy.linalg.expm_frechet -
scipy.linalg.fiedler cupyx.scipy.linalg.fiedler
scipy.linalg.fiedler_companion cupyx.scipy.linalg.fiedler_companion
scipy.linalg.find_best_blas_type -
scipy.linalg.fractional_matrix_power -
scipy.linalg.funm -
scipy.linalg.get_blas_funcs -
scipy.linalg.get_lapack_funcs -
scipy.linalg.hadamard cupyx.scipy.linalg.hadamard
scipy.linalg.hankel cupyx.scipy.linalg.hankel
scipy.linalg.helmert cupyx.scipy.linalg.helmert
scipy.linalg.hessenberg -
scipy.linalg.hilbert cupyx.scipy.linalg.hilbert
scipy.linalg.invhilbert -
scipy.linalg.invpascal -
scipy.linalg.ishermitian -
scipy.linalg.issymmetric -
scipy.linalg.khatri_rao cupyx.scipy.linalg.khatri_rao
scipy.linalg.kron cupyx.scipy.linalg.kron
scipy.linalg.ldl -
scipy.linalg.leslie cupyx.scipy.linalg.leslie
scipy.linalg.logm -
scipy.linalg.lu cupyx.scipy.linalg.lu
scipy.linalg.lu_factor cupyx.scipy.linalg.lu_factor
scipy.linalg.lu_solve cupyx.scipy.linalg.lu_solve

continues on next page

872 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.bandwidth.html#scipy.linalg.bandwidth
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.block_diag.html#scipy.linalg.block_diag
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cdf2rdf.html#scipy.linalg.cdf2rdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_factor.html#scipy.linalg.cho_factor
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve.html#scipy.linalg.cho_solve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cho_solve_banded.html#scipy.linalg.cho_solve_banded
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cholesky_banded.html#scipy.linalg.cholesky_banded
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.circulant.html#scipy.linalg.circulant
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.clarkson_woodruff_transform.html#scipy.linalg.clarkson_woodruff_transform
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.companion.html#scipy.linalg.companion
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.convolution_matrix.html#scipy.linalg.convolution_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.coshm.html#scipy.linalg.coshm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cosm.html#scipy.linalg.cosm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cossin.html#scipy.linalg.cossin
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.dft.html#scipy.linalg.dft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.diagsvd.html#scipy.linalg.diagsvd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig_banded.html#scipy.linalg.eig_banded
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh_tridiagonal.html#scipy.linalg.eigh_tridiagonal
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvals_banded.html#scipy.linalg.eigvals_banded
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigvalsh_tridiagonal.html#scipy.linalg.eigvalsh_tridiagonal
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm.html#scipy.linalg.expm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm_cond.html#scipy.linalg.expm_cond
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm_frechet.html#scipy.linalg.expm_frechet
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fiedler.html#scipy.linalg.fiedler
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fiedler_companion.html#scipy.linalg.fiedler_companion
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.find_best_blas_type.html#scipy.linalg.find_best_blas_type
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.fractional_matrix_power.html#scipy.linalg.fractional_matrix_power
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.funm.html#scipy.linalg.funm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.get_blas_funcs.html#scipy.linalg.get_blas_funcs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.get_lapack_funcs.html#scipy.linalg.get_lapack_funcs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hadamard.html#scipy.linalg.hadamard
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hankel.html#scipy.linalg.hankel
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.helmert.html#scipy.linalg.helmert
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hessenberg.html#scipy.linalg.hessenberg
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.hilbert.html#scipy.linalg.hilbert
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.invhilbert.html#scipy.linalg.invhilbert
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.invpascal.html#scipy.linalg.invpascal
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.ishermitian.html#scipy.linalg.ishermitian
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.issymmetric.html#scipy.linalg.issymmetric
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.khatri_rao.html#scipy.linalg.khatri_rao
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.kron.html#scipy.linalg.kron
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.ldl.html#scipy.linalg.ldl
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.leslie.html#scipy.linalg.leslie
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.logm.html#scipy.linalg.logm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu.html#scipy.linalg.lu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu_factor.html#scipy.linalg.lu_factor
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lu_solve.html#scipy.linalg.lu_solve

CuPy Documentation, Release 13.0.0

Table 12 – continued from previous page
SciPy CuPy
scipy.linalg.matmul_toeplitz -
scipy.linalg.matrix_balance -
scipy.linalg.null_space -
scipy.linalg.ordqz -
scipy.linalg.orth -
scipy.linalg.orthogonal_procrustes -
scipy.linalg.pascal -
scipy.linalg.pinvh -
scipy.linalg.polar -
scipy.linalg.qr_delete -
scipy.linalg.qr_insert -
scipy.linalg.qr_multiply -
scipy.linalg.qr_update -
scipy.linalg.qz -
scipy.linalg.rq -
scipy.linalg.rsf2csf -
scipy.linalg.schur -
scipy.linalg.signm -
scipy.linalg.sinhm -
scipy.linalg.sinm -
scipy.linalg.solve_banded -
scipy.linalg.solve_circulant -
scipy.linalg.solve_continuous_are -
scipy.linalg.solve_continuous_lyapunov -
scipy.linalg.solve_discrete_are -
scipy.linalg.solve_discrete_lyapunov -
scipy.linalg.solve_lyapunov -
scipy.linalg.solve_sylvester -
scipy.linalg.solve_toeplitz -
scipy.linalg.solve_triangular cupyx.scipy.linalg.solve_triangular
scipy.linalg.solveh_banded -
scipy.linalg.sqrtm -
scipy.linalg.subspace_angles -
scipy.linalg.svdvals -
scipy.linalg.tanhm -
scipy.linalg.tanm -
scipy.linalg.toeplitz cupyx.scipy.linalg.toeplitz
scipy.linalg.tri cupyx.scipy.linalg.tri
scipy.linalg.tril cupyx.scipy.linalg.tril
scipy.linalg.triu cupyx.scipy.linalg.triu

5.10. Comparison Table 873

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.matmul_toeplitz.html#scipy.linalg.matmul_toeplitz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.matrix_balance.html#scipy.linalg.matrix_balance
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.null_space.html#scipy.linalg.null_space
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.ordqz.html#scipy.linalg.ordqz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.orth.html#scipy.linalg.orth
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.orthogonal_procrustes.html#scipy.linalg.orthogonal_procrustes
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pascal.html#scipy.linalg.pascal
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.pinvh.html#scipy.linalg.pinvh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.polar.html#scipy.linalg.polar
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_delete.html#scipy.linalg.qr_delete
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_insert.html#scipy.linalg.qr_insert
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_multiply.html#scipy.linalg.qr_multiply
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_update.html#scipy.linalg.qr_update
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qz.html#scipy.linalg.qz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.rq.html#scipy.linalg.rq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.rsf2csf.html#scipy.linalg.rsf2csf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.schur.html#scipy.linalg.schur
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.signm.html#scipy.linalg.signm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.sinhm.html#scipy.linalg.sinhm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.sinm.html#scipy.linalg.sinm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_banded.html#scipy.linalg.solve_banded
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_circulant.html#scipy.linalg.solve_circulant
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_continuous_are.html#scipy.linalg.solve_continuous_are
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_continuous_lyapunov.html#scipy.linalg.solve_continuous_lyapunov
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_discrete_are.html#scipy.linalg.solve_discrete_are
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_discrete_lyapunov.html#scipy.linalg.solve_discrete_lyapunov
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_sylvester.html#scipy.linalg.solve_sylvester
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_toeplitz.html#scipy.linalg.solve_toeplitz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve_triangular.html#scipy.linalg.solve_triangular
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solveh_banded.html#scipy.linalg.solveh_banded
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.sqrtm.html#scipy.linalg.sqrtm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.subspace_angles.html#scipy.linalg.subspace_angles
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svdvals.html#scipy.linalg.svdvals
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tanhm.html#scipy.linalg.tanhm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tanm.html#scipy.linalg.tanm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.toeplitz.html#scipy.linalg.toeplitz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tri.html#scipy.linalg.tri
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.tril.html#scipy.linalg.tril
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.triu.html#scipy.linalg.triu

CuPy Documentation, Release 13.0.0

Multidimensional Image Processing

SciPy CuPy
scipy.ndimage.affine_transform cupyx.scipy.ndimage.affine_transform
scipy.ndimage.binary_closing cupyx.scipy.ndimage.binary_closing
scipy.ndimage.binary_dilation cupyx.scipy.ndimage.binary_dilation
scipy.ndimage.binary_erosion cupyx.scipy.ndimage.binary_erosion
scipy.ndimage.binary_fill_holes cupyx.scipy.ndimage.binary_fill_holes
scipy.ndimage.binary_hit_or_miss cupyx.scipy.ndimage.binary_hit_or_miss
scipy.ndimage.binary_opening cupyx.scipy.ndimage.binary_opening
scipy.ndimage.binary_propagation cupyx.scipy.ndimage.binary_propagation
scipy.ndimage.black_tophat cupyx.scipy.ndimage.black_tophat
scipy.ndimage.center_of_mass cupyx.scipy.ndimage.center_of_mass
scipy.ndimage.convolve cupyx.scipy.ndimage.convolve
scipy.ndimage.convolve1d cupyx.scipy.ndimage.convolve1d
scipy.ndimage.correlate cupyx.scipy.ndimage.correlate
scipy.ndimage.correlate1d cupyx.scipy.ndimage.correlate1d
scipy.ndimage.distance_transform_bf -
scipy.ndimage.distance_transform_cdt -
scipy.ndimage.distance_transform_edt cupyx.scipy.ndimage.distance_transform_edt
scipy.ndimage.extrema cupyx.scipy.ndimage.extrema
scipy.ndimage.find_objects -
scipy.ndimage.fourier_ellipsoid cupyx.scipy.ndimage.fourier_ellipsoid
scipy.ndimage.fourier_gaussian cupyx.scipy.ndimage.fourier_gaussian
scipy.ndimage.fourier_shift cupyx.scipy.ndimage.fourier_shift
scipy.ndimage.fourier_uniform cupyx.scipy.ndimage.fourier_uniform
scipy.ndimage.gaussian_filter cupyx.scipy.ndimage.gaussian_filter
scipy.ndimage.gaussian_filter1d cupyx.scipy.ndimage.gaussian_filter1d
scipy.ndimage.gaussian_gradient_magnitude cupyx.scipy.ndimage.gaussian_gradient_magnitude
scipy.ndimage.gaussian_laplace cupyx.scipy.ndimage.gaussian_laplace
scipy.ndimage.generate_binary_structure cupyx.scipy.ndimage.generate_binary_structure
scipy.ndimage.generic_filter cupyx.scipy.ndimage.generic_filter
scipy.ndimage.generic_filter1d cupyx.scipy.ndimage.generic_filter1d
scipy.ndimage.generic_gradient_magnitude cupyx.scipy.ndimage.generic_gradient_magnitude
scipy.ndimage.generic_laplace cupyx.scipy.ndimage.generic_laplace
scipy.ndimage.geometric_transform -
scipy.ndimage.grey_closing cupyx.scipy.ndimage.grey_closing
scipy.ndimage.grey_dilation cupyx.scipy.ndimage.grey_dilation
scipy.ndimage.grey_erosion cupyx.scipy.ndimage.grey_erosion
scipy.ndimage.grey_opening cupyx.scipy.ndimage.grey_opening
scipy.ndimage.histogram cupyx.scipy.ndimage.histogram
scipy.ndimage.iterate_structure cupyx.scipy.ndimage.iterate_structure
scipy.ndimage.label cupyx.scipy.ndimage.label
scipy.ndimage.labeled_comprehension cupyx.scipy.ndimage.labeled_comprehension
scipy.ndimage.laplace cupyx.scipy.ndimage.laplace
scipy.ndimage.map_coordinates cupyx.scipy.ndimage.map_coordinates
scipy.ndimage.maximum cupyx.scipy.ndimage.maximum
scipy.ndimage.maximum_filter cupyx.scipy.ndimage.maximum_filter
scipy.ndimage.maximum_filter1d cupyx.scipy.ndimage.maximum_filter1d
scipy.ndimage.maximum_position cupyx.scipy.ndimage.maximum_position

continues on next page

874 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.affine_transform.html#scipy.ndimage.affine_transform
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_closing.html#scipy.ndimage.binary_closing
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_dilation.html#scipy.ndimage.binary_dilation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_erosion.html#scipy.ndimage.binary_erosion
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_fill_holes.html#scipy.ndimage.binary_fill_holes
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_hit_or_miss.html#scipy.ndimage.binary_hit_or_miss
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_opening.html#scipy.ndimage.binary_opening
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_propagation.html#scipy.ndimage.binary_propagation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.black_tophat.html#scipy.ndimage.black_tophat
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.center_of_mass.html#scipy.ndimage.center_of_mass
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html#scipy.ndimage.convolve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve1d.html#scipy.ndimage.convolve1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.correlate.html#scipy.ndimage.correlate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.correlate1d.html#scipy.ndimage.correlate1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_bf.html#scipy.ndimage.distance_transform_bf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_cdt.html#scipy.ndimage.distance_transform_cdt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.distance_transform_edt.html#scipy.ndimage.distance_transform_edt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.extrema.html#scipy.ndimage.extrema
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.find_objects.html#scipy.ndimage.find_objects
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_ellipsoid.html#scipy.ndimage.fourier_ellipsoid
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_gaussian.html#scipy.ndimage.fourier_gaussian
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_shift.html#scipy.ndimage.fourier_shift
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_uniform.html#scipy.ndimage.fourier_uniform
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter1d.html#scipy.ndimage.gaussian_filter1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_gradient_magnitude.html#scipy.ndimage.gaussian_gradient_magnitude
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_laplace.html#scipy.ndimage.gaussian_laplace
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generate_binary_structure.html#scipy.ndimage.generate_binary_structure
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter.html#scipy.ndimage.generic_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_filter1d.html#scipy.ndimage.generic_filter1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_gradient_magnitude.html#scipy.ndimage.generic_gradient_magnitude
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.generic_laplace.html#scipy.ndimage.generic_laplace
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.geometric_transform.html#scipy.ndimage.geometric_transform
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_closing.html#scipy.ndimage.grey_closing
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_dilation.html#scipy.ndimage.grey_dilation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_erosion.html#scipy.ndimage.grey_erosion
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.grey_opening.html#scipy.ndimage.grey_opening
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.histogram.html#scipy.ndimage.histogram
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.iterate_structure.html#scipy.ndimage.iterate_structure
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.label.html#scipy.ndimage.label
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.labeled_comprehension.html#scipy.ndimage.labeled_comprehension
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.laplace.html#scipy.ndimage.laplace
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum.html#scipy.ndimage.maximum
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_filter.html#scipy.ndimage.maximum_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_filter1d.html#scipy.ndimage.maximum_filter1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.maximum_position.html#scipy.ndimage.maximum_position

CuPy Documentation, Release 13.0.0

Table 13 – continued from previous page
SciPy CuPy
scipy.ndimage.mean cupyx.scipy.ndimage.mean
scipy.ndimage.median cupyx.scipy.ndimage.median
scipy.ndimage.median_filter cupyx.scipy.ndimage.median_filter
scipy.ndimage.minimum cupyx.scipy.ndimage.minimum
scipy.ndimage.minimum_filter cupyx.scipy.ndimage.minimum_filter
scipy.ndimage.minimum_filter1d cupyx.scipy.ndimage.minimum_filter1d
scipy.ndimage.minimum_position cupyx.scipy.ndimage.minimum_position
scipy.ndimage.morphological_gradient cupyx.scipy.ndimage.morphological_gradient
scipy.ndimage.morphological_laplace cupyx.scipy.ndimage.morphological_laplace
scipy.ndimage.percentile_filter cupyx.scipy.ndimage.percentile_filter
scipy.ndimage.prewitt cupyx.scipy.ndimage.prewitt
scipy.ndimage.rank_filter cupyx.scipy.ndimage.rank_filter
scipy.ndimage.rotate cupyx.scipy.ndimage.rotate
scipy.ndimage.shift cupyx.scipy.ndimage.shift
scipy.ndimage.sobel cupyx.scipy.ndimage.sobel
scipy.ndimage.spline_filter cupyx.scipy.ndimage.spline_filter
scipy.ndimage.spline_filter1d cupyx.scipy.ndimage.spline_filter1d
scipy.ndimage.standard_deviation cupyx.scipy.ndimage.standard_deviation
scipy.ndimage.sum cupyx.scipy.ndimage.sum
scipy.ndimage.sum_labels cupyx.scipy.ndimage.sum_labels
scipy.ndimage.uniform_filter cupyx.scipy.ndimage.uniform_filter
scipy.ndimage.uniform_filter1d cupyx.scipy.ndimage.uniform_filter1d
scipy.ndimage.value_indices cupyx.scipy.ndimage.value_indices
scipy.ndimage.variance cupyx.scipy.ndimage.variance
scipy.ndimage.watershed_ift -
scipy.ndimage.white_tophat cupyx.scipy.ndimage.white_tophat
scipy.ndimage.zoom cupyx.scipy.ndimage.zoom

Signal processing

SciPy CuPy
scipy.signal.CZT cupyx.scipy.signal.CZT
scipy.signal.StateSpace cupyx.scipy.signal.StateSpace
scipy.signal.TransferFunction cupyx.scipy.signal.TransferFunction
scipy.signal.ZerosPolesGain cupyx.scipy.signal.ZerosPolesGain
scipy.signal.ZoomFFT cupyx.scipy.signal.ZoomFFT
scipy.signal.abcd_normalize cupyx.scipy.signal.abcd_normalize
scipy.signal.argrelextrema cupyx.scipy.signal.argrelextrema
scipy.signal.argrelmax cupyx.scipy.signal.argrelmax
scipy.signal.argrelmin cupyx.scipy.signal.argrelmin
scipy.signal.band_stop_obj cupyx.scipy.signal.band_stop_obj
scipy.signal.barthann -
scipy.signal.bartlett -
scipy.signal.bessel -
scipy.signal.besselap -
scipy.signal.bilinear cupyx.scipy.signal.bilinear
scipy.signal.bilinear_zpk cupyx.scipy.signal.bilinear_zpk
scipy.signal.blackman -

continues on next page

5.10. Comparison Table 875

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.mean.html#scipy.ndimage.mean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median.html#scipy.ndimage.median
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.median_filter.html#scipy.ndimage.median_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum.html#scipy.ndimage.minimum
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_filter.html#scipy.ndimage.minimum_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_filter1d.html#scipy.ndimage.minimum_filter1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.minimum_position.html#scipy.ndimage.minimum_position
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphological_gradient.html#scipy.ndimage.morphological_gradient
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphological_laplace.html#scipy.ndimage.morphological_laplace
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.percentile_filter.html#scipy.ndimage.percentile_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.prewitt.html#scipy.ndimage.prewitt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.rank_filter.html#scipy.ndimage.rank_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.rotate.html#scipy.ndimage.rotate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.shift.html#scipy.ndimage.shift
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.sobel.html#scipy.ndimage.sobel
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.spline_filter.html#scipy.ndimage.spline_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.spline_filter1d.html#scipy.ndimage.spline_filter1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.standard_deviation.html#scipy.ndimage.standard_deviation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.sum_labels.html#scipy.ndimage.sum_labels
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter.html#scipy.ndimage.uniform_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.uniform_filter1d.html#scipy.ndimage.uniform_filter1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.value_indices.html#scipy.ndimage.value_indices
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.variance.html#scipy.ndimage.variance
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.watershed_ift.html#scipy.ndimage.watershed_ift
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.white_tophat.html#scipy.ndimage.white_tophat
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.zoom.html#scipy.ndimage.zoom
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.CZT.html#scipy.signal.CZT
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.StateSpace.html#scipy.signal.StateSpace
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.TransferFunction.html#scipy.signal.TransferFunction
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZerosPolesGain.html#scipy.signal.ZerosPolesGain
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ZoomFFT.html#scipy.signal.ZoomFFT
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.abcd_normalize.html#scipy.signal.abcd_normalize
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelextrema.html#scipy.signal.argrelextrema
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmax.html#scipy.signal.argrelmax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmin.html#scipy.signal.argrelmin
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.band_stop_obj.html#scipy.signal.band_stop_obj
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bessel.html#scipy.signal.bessel
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.besselap.html#scipy.signal.besselap
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bilinear.html#scipy.signal.bilinear
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bilinear_zpk.html#scipy.signal.bilinear_zpk

CuPy Documentation, Release 13.0.0

Table 14 – continued from previous page
SciPy CuPy
scipy.signal.blackmanharris -
scipy.signal.bode cupyx.scipy.signal.bode
scipy.signal.bohman -
scipy.signal.boxcar -
scipy.signal.bspline -
scipy.signal.buttap cupyx.scipy.signal.buttap
scipy.signal.butter cupyx.scipy.signal.butter
scipy.signal.buttord cupyx.scipy.signal.buttord
scipy.signal.cascade -
scipy.signal.cheb1ap cupyx.scipy.signal.cheb1ap
scipy.signal.cheb1ord cupyx.scipy.signal.cheb1ord
scipy.signal.cheb2ap cupyx.scipy.signal.cheb2ap
scipy.signal.cheb2ord cupyx.scipy.signal.cheb2ord
scipy.signal.chebwin -
scipy.signal.cheby1 cupyx.scipy.signal.cheby1
scipy.signal.cheby2 cupyx.scipy.signal.cheby2
scipy.signal.check_COLA cupyx.scipy.signal.check_COLA
scipy.signal.check_NOLA cupyx.scipy.signal.check_NOLA
scipy.signal.chirp cupyx.scipy.signal.chirp
scipy.signal.choose_conv_method cupyx.scipy.signal.choose_conv_method
scipy.signal.cmplx_sort -
scipy.signal.coherence cupyx.scipy.signal.coherence
scipy.signal.cont2discrete cupyx.scipy.signal.cont2discrete
scipy.signal.convolve cupyx.scipy.signal.convolve
scipy.signal.convolve2d cupyx.scipy.signal.convolve2d
scipy.signal.correlate cupyx.scipy.signal.correlate
scipy.signal.correlate2d cupyx.scipy.signal.correlate2d
scipy.signal.correlation_lags cupyx.scipy.signal.correlation_lags
scipy.signal.cosine -
scipy.signal.csd cupyx.scipy.signal.csd
scipy.signal.cspline1d cupyx.scipy.signal.cspline1d
scipy.signal.cspline1d_eval cupyx.scipy.signal.cspline1d_eval
scipy.signal.cspline2d cupyx.scipy.signal.cspline2d
scipy.signal.cubic -
scipy.signal.cwt cupyx.scipy.signal.cwt
scipy.signal.czt cupyx.scipy.signal.czt
scipy.signal.czt_points cupyx.scipy.signal.czt_points
scipy.signal.daub -
scipy.signal.dbode cupyx.scipy.signal.dbode
scipy.signal.decimate cupyx.scipy.signal.decimate
scipy.signal.deconvolve cupyx.scipy.signal.deconvolve
scipy.signal.detrend cupyx.scipy.signal.detrend
scipy.signal.dfreqresp cupyx.scipy.signal.dfreqresp
scipy.signal.dimpulse cupyx.scipy.signal.dimpulse
scipy.signal.dlsim cupyx.scipy.signal.dlsim
scipy.signal.dlti cupyx.scipy.signal.dlti
scipy.signal.dstep cupyx.scipy.signal.dstep
scipy.signal.ellip cupyx.scipy.signal.ellip
scipy.signal.ellipap cupyx.scipy.signal.ellipap

continues on next page

876 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bode.html#scipy.signal.bode
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.bspline.html#scipy.signal.bspline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.buttap.html#scipy.signal.buttap
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html#scipy.signal.butter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.buttord.html#scipy.signal.buttord
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cascade.html#scipy.signal.cascade
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb1ap.html#scipy.signal.cheb1ap
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb1ord.html#scipy.signal.cheb1ord
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb2ap.html#scipy.signal.cheb2ap
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheb2ord.html#scipy.signal.cheb2ord
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheby1.html#scipy.signal.cheby1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cheby2.html#scipy.signal.cheby2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_COLA.html#scipy.signal.check_COLA
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.check_NOLA.html#scipy.signal.check_NOLA
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.chirp.html#scipy.signal.chirp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.choose_conv_method.html#scipy.signal.choose_conv_method
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cmplx_sort.html#scipy.signal.cmplx_sort
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.coherence.html#scipy.signal.coherence
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cont2discrete.html#scipy.signal.cont2discrete
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve.html#scipy.signal.convolve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html#scipy.signal.convolve2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate.html#scipy.signal.correlate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlate2d.html#scipy.signal.correlate2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlation_lags.html#scipy.signal.correlation_lags
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.csd.html#scipy.signal.csd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cspline1d.html#scipy.signal.cspline1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cspline1d_eval.html#scipy.signal.cspline1d_eval
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cspline2d.html#scipy.signal.cspline2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cubic.html#scipy.signal.cubic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.cwt.html#scipy.signal.cwt
https://docs.scipy.org/doc/scipy/reference/generated/czt-function.html#scipy.signal.czt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.czt_points.html#scipy.signal.czt_points
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.daub.html#scipy.signal.daub
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dbode.html#scipy.signal.dbode
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.decimate.html#scipy.signal.decimate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.deconvolve.html#scipy.signal.deconvolve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.detrend.html#scipy.signal.detrend
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dfreqresp.html#scipy.signal.dfreqresp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dimpulse.html#scipy.signal.dimpulse
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlsim.html#scipy.signal.dlsim
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dlti.html#scipy.signal.dlti
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.dstep.html#scipy.signal.dstep
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellip.html#scipy.signal.ellip
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellipap.html#scipy.signal.ellipap

CuPy Documentation, Release 13.0.0

Table 14 – continued from previous page
SciPy CuPy
scipy.signal.ellipord cupyx.scipy.signal.ellipord
scipy.signal.exponential -
scipy.signal.fftconvolve cupyx.scipy.signal.fftconvolve
scipy.signal.filtfilt cupyx.scipy.signal.filtfilt
scipy.signal.find_peaks cupyx.scipy.signal.find_peaks
scipy.signal.find_peaks_cwt -
scipy.signal.findfreqs cupyx.scipy.signal.findfreqs
scipy.signal.firls cupyx.scipy.signal.firls
scipy.signal.firwin cupyx.scipy.signal.firwin
scipy.signal.firwin2 cupyx.scipy.signal.firwin2
scipy.signal.flattop -
scipy.signal.freqresp cupyx.scipy.signal.freqresp
scipy.signal.freqs cupyx.scipy.signal.freqs
scipy.signal.freqs_zpk cupyx.scipy.signal.freqs_zpk
scipy.signal.freqz cupyx.scipy.signal.freqz
scipy.signal.freqz_zpk cupyx.scipy.signal.freqz_zpk
scipy.signal.gammatone cupyx.scipy.signal.gammatone
scipy.signal.gauss_spline cupyx.scipy.signal.gauss_spline
scipy.signal.gaussian -
scipy.signal.gausspulse cupyx.scipy.signal.gausspulse
scipy.signal.general_gaussian -
scipy.signal.get_window cupyx.scipy.signal.get_window
scipy.signal.group_delay cupyx.scipy.signal.group_delay
scipy.signal.hamming -
scipy.signal.hann -
scipy.signal.hilbert cupyx.scipy.signal.hilbert
scipy.signal.hilbert2 cupyx.scipy.signal.hilbert2
scipy.signal.iircomb cupyx.scipy.signal.iircomb
scipy.signal.iirdesign cupyx.scipy.signal.iirdesign
scipy.signal.iirfilter cupyx.scipy.signal.iirfilter
scipy.signal.iirnotch cupyx.scipy.signal.iirnotch
scipy.signal.iirpeak cupyx.scipy.signal.iirpeak
scipy.signal.impulse cupyx.scipy.signal.impulse
scipy.signal.impulse2 -
scipy.signal.invres cupyx.scipy.signal.invres
scipy.signal.invresz cupyx.scipy.signal.invresz
scipy.signal.istft cupyx.scipy.signal.istft
scipy.signal.kaiser -
scipy.signal.kaiser_atten cupyx.scipy.signal.kaiser_atten
scipy.signal.kaiser_beta cupyx.scipy.signal.kaiser_beta
scipy.signal.kaiserord cupyx.scipy.signal.kaiserord
scipy.signal.lfilter cupyx.scipy.signal.lfilter
scipy.signal.lfilter_zi cupyx.scipy.signal.lfilter_zi
scipy.signal.lfiltic cupyx.scipy.signal.lfiltic
scipy.signal.lombscargle cupyx.scipy.signal.lombscargle
scipy.signal.lp2bp cupyx.scipy.signal.lp2bp
scipy.signal.lp2bp_zpk cupyx.scipy.signal.lp2bp_zpk
scipy.signal.lp2bs cupyx.scipy.signal.lp2bs
scipy.signal.lp2bs_zpk cupyx.scipy.signal.lp2bs_zpk

continues on next page

5.10. Comparison Table 877

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ellipord.html#scipy.signal.ellipord
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html#scipy.signal.fftconvolve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html#scipy.signal.filtfilt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html#scipy.signal.find_peaks
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks_cwt.html#scipy.signal.find_peaks_cwt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.findfreqs.html#scipy.signal.findfreqs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firls.html#scipy.signal.firls
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin.html#scipy.signal.firwin
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin2.html#scipy.signal.firwin2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqresp.html#scipy.signal.freqresp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqs.html#scipy.signal.freqs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqs_zpk.html#scipy.signal.freqs_zpk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz.html#scipy.signal.freqz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.freqz_zpk.html#scipy.signal.freqz_zpk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.gammatone.html#scipy.signal.gammatone
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.gauss_spline.html#scipy.signal.gauss_spline
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.gausspulse.html#scipy.signal.gausspulse
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html#scipy.signal.get_window
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.group_delay.html#scipy.signal.group_delay
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert.html#scipy.signal.hilbert
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.hilbert2.html#scipy.signal.hilbert2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iircomb.html#scipy.signal.iircomb
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html#scipy.signal.iirdesign
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirfilter.html#scipy.signal.iirfilter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirnotch.html#scipy.signal.iirnotch
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirpeak.html#scipy.signal.iirpeak
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.impulse.html#scipy.signal.impulse
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.impulse2.html#scipy.signal.impulse2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.invres.html#scipy.signal.invres
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.invresz.html#scipy.signal.invresz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.istft.html#scipy.signal.istft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiser_atten.html#scipy.signal.kaiser_atten
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiser_beta.html#scipy.signal.kaiser_beta
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.kaiserord.html#scipy.signal.kaiserord
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter.html#scipy.signal.lfilter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfilter_zi.html#scipy.signal.lfilter_zi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lfiltic.html#scipy.signal.lfiltic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lombscargle.html#scipy.signal.lombscargle
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bp.html#scipy.signal.lp2bp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bp_zpk.html#scipy.signal.lp2bp_zpk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bs.html#scipy.signal.lp2bs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2bs_zpk.html#scipy.signal.lp2bs_zpk

CuPy Documentation, Release 13.0.0

Table 14 – continued from previous page
SciPy CuPy
scipy.signal.lp2hp cupyx.scipy.signal.lp2hp
scipy.signal.lp2hp_zpk cupyx.scipy.signal.lp2hp_zpk
scipy.signal.lp2lp cupyx.scipy.signal.lp2lp
scipy.signal.lp2lp_zpk cupyx.scipy.signal.lp2lp_zpk
scipy.signal.lsim cupyx.scipy.signal.lsim
scipy.signal.lsim2 -
scipy.signal.lti cupyx.scipy.signal.lti
scipy.signal.max_len_seq cupyx.scipy.signal.max_len_seq
scipy.signal.medfilt cupyx.scipy.signal.medfilt
scipy.signal.medfilt2d cupyx.scipy.signal.medfilt2d
scipy.signal.minimum_phase cupyx.scipy.signal.minimum_phase
scipy.signal.morlet cupyx.scipy.signal.morlet
scipy.signal.morlet2 cupyx.scipy.signal.morlet2
scipy.signal.normalize cupyx.scipy.signal.normalize
scipy.signal.nuttall -
scipy.signal.oaconvolve cupyx.scipy.signal.oaconvolve
scipy.signal.order_filter cupyx.scipy.signal.order_filter
scipy.signal.parzen -
scipy.signal.peak_prominences cupyx.scipy.signal.peak_prominences
scipy.signal.peak_widths cupyx.scipy.signal.peak_widths
scipy.signal.periodogram cupyx.scipy.signal.periodogram
scipy.signal.place_poles cupyx.scipy.signal.place_poles
scipy.signal.qmf cupyx.scipy.signal.qmf
scipy.signal.qspline1d cupyx.scipy.signal.qspline1d
scipy.signal.qspline1d_eval cupyx.scipy.signal.qspline1d_eval
scipy.signal.qspline2d cupyx.scipy.signal.qspline2d
scipy.signal.quadratic -
scipy.signal.remez -
scipy.signal.resample cupyx.scipy.signal.resample
scipy.signal.resample_poly cupyx.scipy.signal.resample_poly
scipy.signal.residue cupyx.scipy.signal.residue
scipy.signal.residuez cupyx.scipy.signal.residuez
scipy.signal.ricker cupyx.scipy.signal.ricker
scipy.signal.savgol_coeffs cupyx.scipy.signal.savgol_coeffs
scipy.signal.savgol_filter cupyx.scipy.signal.savgol_filter
scipy.signal.sawtooth cupyx.scipy.signal.sawtooth
scipy.signal.sepfir2d cupyx.scipy.signal.sepfir2d
scipy.signal.sos2tf cupyx.scipy.signal.sos2tf
scipy.signal.sos2zpk cupyx.scipy.signal.sos2zpk
scipy.signal.sosfilt cupyx.scipy.signal.sosfilt
scipy.signal.sosfilt_zi cupyx.scipy.signal.sosfilt_zi
scipy.signal.sosfiltfilt cupyx.scipy.signal.sosfiltfilt
scipy.signal.sosfreqz cupyx.scipy.signal.sosfreqz
scipy.signal.spectrogram cupyx.scipy.signal.spectrogram
scipy.signal.spline_filter cupyx.scipy.signal.spline_filter
scipy.signal.square cupyx.scipy.signal.square
scipy.signal.ss2tf cupyx.scipy.signal.ss2tf
scipy.signal.ss2zpk cupyx.scipy.signal.ss2zpk
scipy.signal.step cupyx.scipy.signal.step

continues on next page

878 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2hp.html#scipy.signal.lp2hp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2hp_zpk.html#scipy.signal.lp2hp_zpk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2lp.html#scipy.signal.lp2lp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lp2lp_zpk.html#scipy.signal.lp2lp_zpk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lsim.html#scipy.signal.lsim
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lsim2.html#scipy.signal.lsim2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lti.html#scipy.signal.lti
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.max_len_seq.html#scipy.signal.max_len_seq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt.html#scipy.signal.medfilt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt2d.html#scipy.signal.medfilt2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.minimum_phase.html#scipy.signal.minimum_phase
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.morlet.html#scipy.signal.morlet
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.morlet2.html#scipy.signal.morlet2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.normalize.html#scipy.signal.normalize
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.oaconvolve.html#scipy.signal.oaconvolve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.order_filter.html#scipy.signal.order_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_prominences.html#scipy.signal.peak_prominences
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.peak_widths.html#scipy.signal.peak_widths
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.periodogram.html#scipy.signal.periodogram
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.place_poles.html#scipy.signal.place_poles
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qmf.html#scipy.signal.qmf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qspline1d.html#scipy.signal.qspline1d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qspline1d_eval.html#scipy.signal.qspline1d_eval
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.qspline2d.html#scipy.signal.qspline2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.quadratic.html#scipy.signal.quadratic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.remez.html#scipy.signal.remez
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html#scipy.signal.resample
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html#scipy.signal.resample_poly
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.residue.html#scipy.signal.residue
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.residuez.html#scipy.signal.residuez
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ricker.html#scipy.signal.ricker
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_coeffs.html#scipy.signal.savgol_coeffs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html#scipy.signal.savgol_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sawtooth.html#scipy.signal.sawtooth
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sepfir2d.html#scipy.signal.sepfir2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sos2tf.html#scipy.signal.sos2tf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sos2zpk.html#scipy.signal.sos2zpk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt.html#scipy.signal.sosfilt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfilt_zi.html#scipy.signal.sosfilt_zi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfiltfilt.html#scipy.signal.sosfiltfilt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sosfreqz.html#scipy.signal.sosfreqz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html#scipy.signal.spectrogram
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spline_filter.html#scipy.signal.spline_filter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.square.html#scipy.signal.square
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2tf.html#scipy.signal.ss2tf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2zpk.html#scipy.signal.ss2zpk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.step.html#scipy.signal.step

CuPy Documentation, Release 13.0.0

Table 14 – continued from previous page
SciPy CuPy
scipy.signal.step2 -
scipy.signal.stft cupyx.scipy.signal.stft
scipy.signal.sweep_poly -
scipy.signal.symiirorder1 cupyx.scipy.signal.symiirorder1
scipy.signal.symiirorder2 cupyx.scipy.signal.symiirorder2
scipy.signal.tf2sos cupyx.scipy.signal.tf2sos
scipy.signal.tf2ss cupyx.scipy.signal.tf2ss
scipy.signal.tf2zpk cupyx.scipy.signal.tf2zpk
scipy.signal.triang -
scipy.signal.tukey -
scipy.signal.unique_roots cupyx.scipy.signal.unique_roots
scipy.signal.unit_impulse cupyx.scipy.signal.unit_impulse
scipy.signal.upfirdn cupyx.scipy.signal.upfirdn
scipy.signal.vectorstrength cupyx.scipy.signal.vectorstrength
scipy.signal.welch cupyx.scipy.signal.welch
scipy.signal.wiener cupyx.scipy.signal.wiener
scipy.signal.zoom_fft cupyx.scipy.signal.zoom_fft
scipy.signal.zpk2sos cupyx.scipy.signal.zpk2sos
scipy.signal.zpk2ss cupyx.scipy.signal.zpk2ss
scipy.signal.zpk2tf cupyx.scipy.signal.zpk2tf

Sparse Matrices

SciPy CuPy
scipy.sparse.block_diag -
scipy.sparse.bmat cupyx.scipy.sparse.bmat
scipy.sparse.bsr_array -
scipy.sparse.bsr_matrix -
scipy.sparse.coo_array -
scipy.sparse.coo_matrix cupyx.scipy.sparse.coo_matrix
scipy.sparse.csc_array -
scipy.sparse.csc_matrix cupyx.scipy.sparse.csc_matrix
scipy.sparse.csr_array -
scipy.sparse.csr_matrix cupyx.scipy.sparse.csr_matrix
scipy.sparse.dia_array -
scipy.sparse.dia_matrix cupyx.scipy.sparse.dia_matrix
scipy.sparse.diags cupyx.scipy.sparse.diags
scipy.sparse.dok_array -
scipy.sparse.dok_matrix -
scipy.sparse.eye cupyx.scipy.sparse.eye
scipy.sparse.find cupyx.scipy.sparse.find
scipy.sparse.hstack cupyx.scipy.sparse.hstack
scipy.sparse.identity cupyx.scipy.sparse.identity
scipy.sparse.issparse cupyx.scipy.sparse.issparse
scipy.sparse.isspmatrix cupyx.scipy.sparse.isspmatrix
scipy.sparse.isspmatrix_bsr -
scipy.sparse.isspmatrix_coo cupyx.scipy.sparse.isspmatrix_coo
scipy.sparse.isspmatrix_csc cupyx.scipy.sparse.isspmatrix_csc

continues on next page

5.10. Comparison Table 879

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.step2.html#scipy.signal.step2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.stft.html#scipy.signal.stft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.sweep_poly.html#scipy.signal.sweep_poly
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.symiirorder1.html#scipy.signal.symiirorder1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.symiirorder2.html#scipy.signal.symiirorder2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2sos.html#scipy.signal.tf2sos
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2ss.html#scipy.signal.tf2ss
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.tf2zpk.html#scipy.signal.tf2zpk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.unique_roots.html#scipy.signal.unique_roots
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.unit_impulse.html#scipy.signal.unit_impulse
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html#scipy.signal.upfirdn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.vectorstrength.html#scipy.signal.vectorstrength
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html#scipy.signal.welch
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.wiener.html#scipy.signal.wiener
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zoom_fft.html#scipy.signal.zoom_fft
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2sos.html#scipy.signal.zpk2sos
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2ss.html#scipy.signal.zpk2ss
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.zpk2tf.html#scipy.signal.zpk2tf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.block_diag.html#scipy.sparse.block_diag
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bmat.html#scipy.sparse.bmat
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_array.html#scipy.sparse.bsr_array
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.bsr_matrix.html#scipy.sparse.bsr_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_array.html#scipy.sparse.coo_array
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_array.html#scipy.sparse.csc_array
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_array.html#scipy.sparse.csr_array
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_array.html#scipy.sparse.dia_array
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dia_matrix.html#scipy.sparse.dia_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.diags.html#scipy.sparse.diags
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_array.html#scipy.sparse.dok_array
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.html#scipy.sparse.dok_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.eye.html#scipy.sparse.eye
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.find.html#scipy.sparse.find
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.hstack.html#scipy.sparse.hstack
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.identity.html#scipy.sparse.identity
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.issparse.html#scipy.sparse.issparse
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix.html#scipy.sparse.isspmatrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_bsr.html#scipy.sparse.isspmatrix_bsr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_coo.html#scipy.sparse.isspmatrix_coo
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_csc.html#scipy.sparse.isspmatrix_csc

CuPy Documentation, Release 13.0.0

Table 15 – continued from previous page
SciPy CuPy
scipy.sparse.isspmatrix_csr cupyx.scipy.sparse.isspmatrix_csr
scipy.sparse.isspmatrix_dia cupyx.scipy.sparse.isspmatrix_dia
scipy.sparse.isspmatrix_dok -
scipy.sparse.isspmatrix_lil -
scipy.sparse.kron cupyx.scipy.sparse.kron
scipy.sparse.kronsum cupyx.scipy.sparse.kronsum
scipy.sparse.lil_array -
scipy.sparse.lil_matrix -
scipy.sparse.load_npz -
scipy.sparse.rand cupyx.scipy.sparse.rand
scipy.sparse.random cupyx.scipy.sparse.random
scipy.sparse.save_npz -
scipy.sparse.sparray -
scipy.sparse.spdiags cupyx.scipy.sparse.spdiags
scipy.sparse.spmatrix cupyx.scipy.sparse.spmatrix
scipy.sparse.tril cupyx.scipy.sparse.tril
scipy.sparse.triu cupyx.scipy.sparse.triu
scipy.sparse.vstack cupyx.scipy.sparse.vstack

Sparse Linear Algebra

SciPy CuPy
scipy.sparse.linalg.LinearOperator cupyx.scipy.sparse.linalg.LinearOperator
scipy.sparse.linalg.SuperLU cupyx.scipy.sparse.linalg.SuperLU
scipy.sparse.linalg.aslinearoperator cupyx.scipy.sparse.linalg.aslinearoperator
scipy.sparse.linalg.bicg -
scipy.sparse.linalg.bicgstab -
scipy.sparse.linalg.cg cupyx.scipy.sparse.linalg.cg
scipy.sparse.linalg.cgs cupyx.scipy.sparse.linalg.cgs
scipy.sparse.linalg.eigs -
scipy.sparse.linalg.eigsh cupyx.scipy.sparse.linalg.eigsh
scipy.sparse.linalg.expm -
scipy.sparse.linalg.expm_multiply -
scipy.sparse.linalg.factorized cupyx.scipy.sparse.linalg.factorized
scipy.sparse.linalg.gcrotmk -
scipy.sparse.linalg.gmres cupyx.scipy.sparse.linalg.gmres
scipy.sparse.linalg.inv -
scipy.sparse.linalg.lgmres -
scipy.sparse.linalg.lobpcg cupyx.scipy.sparse.linalg.lobpcg
scipy.sparse.linalg.lsmr cupyx.scipy.sparse.linalg.lsmr
scipy.sparse.linalg.lsqr cupyx.scipy.sparse.linalg.lsqr
scipy.sparse.linalg.minres cupyx.scipy.sparse.linalg.minres
scipy.sparse.linalg.norm cupyx.scipy.sparse.linalg.norm
scipy.sparse.linalg.onenormest -
scipy.sparse.linalg.qmr -
scipy.sparse.linalg.spilu cupyx.scipy.sparse.linalg.spilu
scipy.sparse.linalg.splu cupyx.scipy.sparse.linalg.splu
scipy.sparse.linalg.spsolve cupyx.scipy.sparse.linalg.spsolve

continues on next page

880 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_csr.html#scipy.sparse.isspmatrix_csr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_dia.html#scipy.sparse.isspmatrix_dia
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_dok.html#scipy.sparse.isspmatrix_dok
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.isspmatrix_lil.html#scipy.sparse.isspmatrix_lil
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.kron.html#scipy.sparse.kron
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.kronsum.html#scipy.sparse.kronsum
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_array.html#scipy.sparse.lil_array
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html#scipy.sparse.lil_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.load_npz.html#scipy.sparse.load_npz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.rand.html#scipy.sparse.rand
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.random.html#scipy.sparse.random
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.save_npz.html#scipy.sparse.save_npz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.sparray.html#scipy.sparse.sparray
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spdiags.html#scipy.sparse.spdiags
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.spmatrix.html#scipy.sparse.spmatrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.tril.html#scipy.sparse.tril
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.triu.html#scipy.sparse.triu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.vstack.html#scipy.sparse.vstack
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.SuperLU.html#scipy.sparse.linalg.SuperLU
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.aslinearoperator.html#scipy.sparse.linalg.aslinearoperator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.bicg.html#scipy.sparse.linalg.bicg
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.bicgstab.html#scipy.sparse.linalg.bicgstab
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cg.html#scipy.sparse.linalg.cg
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.cgs.html#scipy.sparse.linalg.cgs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigs.html#scipy.sparse.linalg.eigs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.eigsh.html#scipy.sparse.linalg.eigsh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.expm.html#scipy.sparse.linalg.expm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.expm_multiply.html#scipy.sparse.linalg.expm_multiply
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.factorized.html#scipy.sparse.linalg.factorized
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gcrotmk.html#scipy.sparse.linalg.gcrotmk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gmres.html#scipy.sparse.linalg.gmres
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.inv.html#scipy.sparse.linalg.inv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lgmres.html#scipy.sparse.linalg.lgmres
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lobpcg.html#scipy.sparse.linalg.lobpcg
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsmr.html#scipy.sparse.linalg.lsmr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.lsqr.html#scipy.sparse.linalg.lsqr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.minres.html#scipy.sparse.linalg.minres
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.norm.html#scipy.sparse.linalg.norm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.onenormest.html#scipy.sparse.linalg.onenormest
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.qmr.html#scipy.sparse.linalg.qmr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spilu.html#scipy.sparse.linalg.spilu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.splu.html#scipy.sparse.linalg.splu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spsolve.html#scipy.sparse.linalg.spsolve

CuPy Documentation, Release 13.0.0

Table 16 – continued from previous page
SciPy CuPy
scipy.sparse.linalg.spsolve_triangular cupyx.scipy.sparse.linalg.spsolve_triangular
scipy.sparse.linalg.svds cupyx.scipy.sparse.linalg.svds
scipy.sparse.linalg.tfqmr -
scipy.sparse.linalg.use_solver -

Compressed sparse graph routines

SciPy CuPy
scipy.sparse.csgraph.bellman_ford -
scipy.sparse.csgraph.breadth_first_order -
scipy.sparse.csgraph.breadth_first_tree -
scipy.sparse.csgraph.connected_components cupyx.scipy.sparse.csgraph.

connected_components
scipy.sparse.csgraph.construct_dist_matrix -
scipy.sparse.csgraph.csgraph_from_dense -
scipy.sparse.csgraph.csgraph_from_masked -
scipy.sparse.csgraph.
csgraph_masked_from_dense

-

scipy.sparse.csgraph.csgraph_to_dense -
scipy.sparse.csgraph.csgraph_to_masked -
scipy.sparse.csgraph.depth_first_order -
scipy.sparse.csgraph.depth_first_tree -
scipy.sparse.csgraph.dijkstra -
scipy.sparse.csgraph.floyd_warshall -
scipy.sparse.csgraph.johnson -
scipy.sparse.csgraph.laplacian -
scipy.sparse.csgraph.
maximum_bipartite_matching

-

scipy.sparse.csgraph.maximum_flow -
scipy.sparse.csgraph.
min_weight_full_bipartite_matching

-

scipy.sparse.csgraph.minimum_spanning_tree -
scipy.sparse.csgraph.reconstruct_path -
scipy.sparse.csgraph.reverse_cuthill_mckee -
scipy.sparse.csgraph.shortest_path -
scipy.sparse.csgraph.structural_rank -

Special Functions

SciPy CuPy
scipy.special.agm -
scipy.special.ai_zeros -
scipy.special.airy -
scipy.special.airye -
scipy.special.assoc_laguerre -
scipy.special.bdtr cupyx.scipy.special.bdtr

continues on next page

5.10. Comparison Table 881

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spsolve_triangular.html#scipy.sparse.linalg.spsolve_triangular
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html#scipy.sparse.linalg.svds
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.tfqmr.html#scipy.sparse.linalg.tfqmr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.use_solver.html#scipy.sparse.linalg.use_solver
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.bellman_ford.html#scipy.sparse.csgraph.bellman_ford
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.breadth_first_order.html#scipy.sparse.csgraph.breadth_first_order
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.breadth_first_tree.html#scipy.sparse.csgraph.breadth_first_tree
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html#scipy.sparse.csgraph.connected_components
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.construct_dist_matrix.html#scipy.sparse.csgraph.construct_dist_matrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_from_dense.html#scipy.sparse.csgraph.csgraph_from_dense
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_from_masked.html#scipy.sparse.csgraph.csgraph_from_masked
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_masked_from_dense.html#scipy.sparse.csgraph.csgraph_masked_from_dense
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_masked_from_dense.html#scipy.sparse.csgraph.csgraph_masked_from_dense
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_to_dense.html#scipy.sparse.csgraph.csgraph_to_dense
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.csgraph_to_masked.html#scipy.sparse.csgraph.csgraph_to_masked
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.depth_first_order.html#scipy.sparse.csgraph.depth_first_order
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.depth_first_tree.html#scipy.sparse.csgraph.depth_first_tree
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.dijkstra.html#scipy.sparse.csgraph.dijkstra
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.floyd_warshall.html#scipy.sparse.csgraph.floyd_warshall
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.johnson.html#scipy.sparse.csgraph.johnson
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.laplacian.html#scipy.sparse.csgraph.laplacian
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_bipartite_matching.html#scipy.sparse.csgraph.maximum_bipartite_matching
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_bipartite_matching.html#scipy.sparse.csgraph.maximum_bipartite_matching
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.maximum_flow.html#scipy.sparse.csgraph.maximum_flow
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.min_weight_full_bipartite_matching.html#scipy.sparse.csgraph.min_weight_full_bipartite_matching
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.min_weight_full_bipartite_matching.html#scipy.sparse.csgraph.min_weight_full_bipartite_matching
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.minimum_spanning_tree.html#scipy.sparse.csgraph.minimum_spanning_tree
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.reconstruct_path.html#scipy.sparse.csgraph.reconstruct_path
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.reverse_cuthill_mckee.html#scipy.sparse.csgraph.reverse_cuthill_mckee
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.shortest_path.html#scipy.sparse.csgraph.shortest_path
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.structural_rank.html#scipy.sparse.csgraph.structural_rank
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.agm.html#scipy.special.agm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ai_zeros.html#scipy.special.ai_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.airy.html#scipy.special.airy
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.airye.html#scipy.special.airye
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.assoc_laguerre.html#scipy.special.assoc_laguerre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bdtr.html#scipy.special.bdtr

CuPy Documentation, Release 13.0.0

Table 17 – continued from previous page
SciPy CuPy
scipy.special.bdtrc cupyx.scipy.special.bdtrc
scipy.special.bdtri cupyx.scipy.special.bdtri
scipy.special.bdtrik -
scipy.special.bdtrin -
scipy.special.bei -
scipy.special.bei_zeros -
scipy.special.beip -
scipy.special.beip_zeros -
scipy.special.ber -
scipy.special.ber_zeros -
scipy.special.bernoulli -
scipy.special.berp -
scipy.special.berp_zeros -
scipy.special.besselpoly -
scipy.special.beta cupyx.scipy.special.beta
scipy.special.betainc cupyx.scipy.special.betainc
scipy.special.betaincinv cupyx.scipy.special.betaincinv
scipy.special.betaln cupyx.scipy.special.betaln
scipy.special.bi_zeros -
scipy.special.binom cupyx.scipy.special.binom
scipy.special.boxcox cupyx.scipy.special.boxcox
scipy.special.boxcox1p cupyx.scipy.special.boxcox1p
scipy.special.btdtr cupyx.scipy.special.btdtr
scipy.special.btdtri cupyx.scipy.special.btdtri
scipy.special.btdtria -
scipy.special.btdtrib -
scipy.special.c_roots -
scipy.special.cbrt cupyx.scipy.special.cbrt
scipy.special.cg_roots -
scipy.special.chdtr cupyx.scipy.special.chdtr
scipy.special.chdtrc cupyx.scipy.special.chdtrc
scipy.special.chdtri cupyx.scipy.special.chdtri
scipy.special.chdtriv -
scipy.special.chebyc -
scipy.special.chebys -
scipy.special.chebyt -
scipy.special.chebyu -
scipy.special.chndtr -
scipy.special.chndtridf -
scipy.special.chndtrinc -
scipy.special.chndtrix -
scipy.special.clpmn -
scipy.special.comb -
scipy.special.cosdg cupyx.scipy.special.cosdg
scipy.special.cosm1 cupyx.scipy.special.cosm1
scipy.special.cotdg cupyx.scipy.special.cotdg
scipy.special.dawsn -
scipy.special.digamma cupyx.scipy.special.digamma
scipy.special.diric -

continues on next page

882 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bdtrc.html#scipy.special.bdtrc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bdtri.html#scipy.special.bdtri
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bdtrik.html#scipy.special.bdtrik
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bdtrin.html#scipy.special.bdtrin
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bei.html#scipy.special.bei
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bei_zeros.html#scipy.special.bei_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.beip.html#scipy.special.beip
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.beip_zeros.html#scipy.special.beip_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ber.html#scipy.special.ber
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ber_zeros.html#scipy.special.ber_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bernoulli.html#scipy.special.bernoulli
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.berp.html#scipy.special.berp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.berp_zeros.html#scipy.special.berp_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.besselpoly.html#scipy.special.besselpoly
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.beta.html#scipy.special.beta
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.betainc.html#scipy.special.betainc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.betaincinv.html#scipy.special.betaincinv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.betaln.html#scipy.special.betaln
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.bi_zeros.html#scipy.special.bi_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.binom.html#scipy.special.binom
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.boxcox.html#scipy.special.boxcox
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.boxcox1p.html#scipy.special.boxcox1p
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.btdtr.html#scipy.special.btdtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.btdtri.html#scipy.special.btdtri
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.btdtria.html#scipy.special.btdtria
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.btdtrib.html#scipy.special.btdtrib
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.cbrt.html#scipy.special.cbrt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chdtr.html#scipy.special.chdtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chdtrc.html#scipy.special.chdtrc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chdtri.html#scipy.special.chdtri
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chdtriv.html#scipy.special.chdtriv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebyc.html#scipy.special.chebyc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebys.html#scipy.special.chebys
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebyt.html#scipy.special.chebyt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chebyu.html#scipy.special.chebyu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chndtr.html#scipy.special.chndtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chndtridf.html#scipy.special.chndtridf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chndtrinc.html#scipy.special.chndtrinc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.chndtrix.html#scipy.special.chndtrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.clpmn.html#scipy.special.clpmn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.comb.html#scipy.special.comb
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.cosdg.html#scipy.special.cosdg
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.cosm1.html#scipy.special.cosm1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.cotdg.html#scipy.special.cotdg
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.dawsn.html#scipy.special.dawsn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.digamma.html#scipy.special.digamma
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.diric.html#scipy.special.diric

CuPy Documentation, Release 13.0.0

Table 17 – continued from previous page
SciPy CuPy
scipy.special.ellip_harm -
scipy.special.ellip_harm_2 -
scipy.special.ellip_normal -
scipy.special.ellipe -
scipy.special.ellipeinc -
scipy.special.ellipj cupyx.scipy.special.ellipj
scipy.special.ellipk cupyx.scipy.special.ellipk
scipy.special.ellipkinc -
scipy.special.ellipkm1 cupyx.scipy.special.ellipkm1
scipy.special.elliprc -
scipy.special.elliprd -
scipy.special.elliprf -
scipy.special.elliprg -
scipy.special.elliprj -
scipy.special.entr cupyx.scipy.special.entr
scipy.special.erf cupyx.scipy.special.erf
scipy.special.erf_zeros -
scipy.special.erfc cupyx.scipy.special.erfc
scipy.special.erfcinv cupyx.scipy.special.erfcinv
scipy.special.erfcx cupyx.scipy.special.erfcx
scipy.special.erfi -
scipy.special.erfinv cupyx.scipy.special.erfinv
scipy.special.errstate -
scipy.special.euler -
scipy.special.eval_chebyc -
scipy.special.eval_chebys -
scipy.special.eval_chebyt -
scipy.special.eval_chebyu -
scipy.special.eval_gegenbauer -
scipy.special.eval_genlaguerre -
scipy.special.eval_hermite -
scipy.special.eval_hermitenorm -
scipy.special.eval_jacobi -
scipy.special.eval_laguerre -
scipy.special.eval_legendre -
scipy.special.eval_sh_chebyt -
scipy.special.eval_sh_chebyu -
scipy.special.eval_sh_jacobi -
scipy.special.eval_sh_legendre -
scipy.special.exp1 cupyx.scipy.special.exp1
scipy.special.exp10 cupyx.scipy.special.exp10
scipy.special.exp2 cupyx.scipy.special.exp2
scipy.special.expi cupyx.scipy.special.expi
scipy.special.expit cupyx.scipy.special.expit
scipy.special.expm1 cupyx.scipy.special.expm1
scipy.special.expn cupyx.scipy.special.expn
scipy.special.exprel cupyx.scipy.special.exprel
scipy.special.factorial -
scipy.special.factorial2 -

continues on next page

5.10. Comparison Table 883

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellip_harm.html#scipy.special.ellip_harm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellip_harm_2.html#scipy.special.ellip_harm_2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellip_normal.html#scipy.special.ellip_normal
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipe.html#scipy.special.ellipe
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipeinc.html#scipy.special.ellipeinc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipj.html#scipy.special.ellipj
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipk.html#scipy.special.ellipk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipkinc.html#scipy.special.ellipkinc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ellipkm1.html#scipy.special.ellipkm1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.elliprc.html#scipy.special.elliprc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.elliprd.html#scipy.special.elliprd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.elliprf.html#scipy.special.elliprf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.elliprg.html#scipy.special.elliprg
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.elliprj.html#scipy.special.elliprj
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.entr.html#scipy.special.entr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erf.html#scipy.special.erf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erf_zeros.html#scipy.special.erf_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfc.html#scipy.special.erfc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfcinv.html#scipy.special.erfcinv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfcx.html#scipy.special.erfcx
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfi.html#scipy.special.erfi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.erfinv.html#scipy.special.erfinv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.errstate.html#scipy.special.errstate
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.euler.html#scipy.special.euler
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_chebyc.html#scipy.special.eval_chebyc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_chebys.html#scipy.special.eval_chebys
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_chebyt.html#scipy.special.eval_chebyt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_chebyu.html#scipy.special.eval_chebyu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_gegenbauer.html#scipy.special.eval_gegenbauer
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_genlaguerre.html#scipy.special.eval_genlaguerre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_hermite.html#scipy.special.eval_hermite
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_hermitenorm.html#scipy.special.eval_hermitenorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_jacobi.html#scipy.special.eval_jacobi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_laguerre.html#scipy.special.eval_laguerre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_legendre.html#scipy.special.eval_legendre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_sh_chebyt.html#scipy.special.eval_sh_chebyt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_sh_chebyu.html#scipy.special.eval_sh_chebyu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_sh_jacobi.html#scipy.special.eval_sh_jacobi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.eval_sh_legendre.html#scipy.special.eval_sh_legendre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.exp1.html#scipy.special.exp1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.exp10.html#scipy.special.exp10
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.exp2.html#scipy.special.exp2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expi.html#scipy.special.expi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expit.html#scipy.special.expit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expm1.html#scipy.special.expm1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expn.html#scipy.special.expn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.exprel.html#scipy.special.exprel
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.factorial.html#scipy.special.factorial
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.factorial2.html#scipy.special.factorial2

CuPy Documentation, Release 13.0.0

Table 17 – continued from previous page
SciPy CuPy
scipy.special.factorialk -
scipy.special.fdtr cupyx.scipy.special.fdtr
scipy.special.fdtrc cupyx.scipy.special.fdtrc
scipy.special.fdtri cupyx.scipy.special.fdtri
scipy.special.fdtridfd -
scipy.special.fresnel -
scipy.special.fresnel_zeros -
scipy.special.fresnelc_zeros -
scipy.special.fresnels_zeros -
scipy.special.gamma cupyx.scipy.special.gamma
scipy.special.gammainc cupyx.scipy.special.gammainc
scipy.special.gammaincc cupyx.scipy.special.gammaincc
scipy.special.gammainccinv cupyx.scipy.special.gammainccinv
scipy.special.gammaincinv cupyx.scipy.special.gammaincinv
scipy.special.gammaln cupyx.scipy.special.gammaln
scipy.special.gammasgn cupyx.scipy.special.gammasgn
scipy.special.gdtr cupyx.scipy.special.gdtr
scipy.special.gdtrc cupyx.scipy.special.gdtrc
scipy.special.gdtria -
scipy.special.gdtrib -
scipy.special.gdtrix -
scipy.special.gegenbauer -
scipy.special.genlaguerre -
scipy.special.geterr -
scipy.special.h1vp -
scipy.special.h2vp -
scipy.special.h_roots -
scipy.special.hankel1 -
scipy.special.hankel1e -
scipy.special.hankel2 -
scipy.special.hankel2e -
scipy.special.he_roots -
scipy.special.hermite -
scipy.special.hermitenorm -
scipy.special.huber cupyx.scipy.special.huber
scipy.special.hyp0f1 -
scipy.special.hyp1f1 -
scipy.special.hyp2f1 -
scipy.special.hyperu -
scipy.special.i0 cupyx.scipy.special.i0
scipy.special.i0e cupyx.scipy.special.i0e
scipy.special.i1 cupyx.scipy.special.i1
scipy.special.i1e cupyx.scipy.special.i1e
scipy.special.inv_boxcox cupyx.scipy.special.inv_boxcox
scipy.special.inv_boxcox1p cupyx.scipy.special.inv_boxcox1p
scipy.special.it2i0k0 -
scipy.special.it2j0y0 -
scipy.special.it2struve0 -
scipy.special.itairy -

continues on next page

884 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.factorialk.html#scipy.special.factorialk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fdtr.html#scipy.special.fdtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fdtrc.html#scipy.special.fdtrc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fdtri.html#scipy.special.fdtri
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fdtridfd.html#scipy.special.fdtridfd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fresnel.html#scipy.special.fresnel
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fresnel_zeros.html#scipy.special.fresnel_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fresnelc_zeros.html#scipy.special.fresnelc_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.fresnels_zeros.html#scipy.special.fresnels_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gamma.html#scipy.special.gamma
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammainc.html#scipy.special.gammainc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaincc.html#scipy.special.gammaincc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammainccinv.html#scipy.special.gammainccinv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaincinv.html#scipy.special.gammaincinv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammaln.html#scipy.special.gammaln
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gammasgn.html#scipy.special.gammasgn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gdtr.html#scipy.special.gdtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gdtrc.html#scipy.special.gdtrc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gdtria.html#scipy.special.gdtria
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gdtrib.html#scipy.special.gdtrib
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gdtrix.html#scipy.special.gdtrix
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gegenbauer.html#scipy.special.gegenbauer
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.genlaguerre.html#scipy.special.genlaguerre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.geterr.html#scipy.special.geterr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.h1vp.html#scipy.special.h1vp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.h2vp.html#scipy.special.h2vp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hankel1.html#scipy.special.hankel1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hankel1e.html#scipy.special.hankel1e
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hankel2.html#scipy.special.hankel2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hankel2e.html#scipy.special.hankel2e
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hermite.html#scipy.special.hermite
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hermitenorm.html#scipy.special.hermitenorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.huber.html#scipy.special.huber
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hyp0f1.html#scipy.special.hyp0f1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hyp1f1.html#scipy.special.hyp1f1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hyp2f1.html#scipy.special.hyp2f1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.hyperu.html#scipy.special.hyperu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.i0.html#scipy.special.i0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.i0e.html#scipy.special.i0e
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.i1.html#scipy.special.i1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.i1e.html#scipy.special.i1e
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.inv_boxcox.html#scipy.special.inv_boxcox
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.inv_boxcox1p.html#scipy.special.inv_boxcox1p
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.it2i0k0.html#scipy.special.it2i0k0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.it2j0y0.html#scipy.special.it2j0y0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.it2struve0.html#scipy.special.it2struve0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.itairy.html#scipy.special.itairy

CuPy Documentation, Release 13.0.0

Table 17 – continued from previous page
SciPy CuPy
scipy.special.iti0k0 -
scipy.special.itj0y0 -
scipy.special.itmodstruve0 -
scipy.special.itstruve0 -
scipy.special.iv -
scipy.special.ive -
scipy.special.ivp -
scipy.special.j0 cupyx.scipy.special.j0
scipy.special.j1 cupyx.scipy.special.j1
scipy.special.j_roots -
scipy.special.jacobi -
scipy.special.jn -
scipy.special.jn_zeros -
scipy.special.jnjnp_zeros -
scipy.special.jnp_zeros -
scipy.special.jnyn_zeros -
scipy.special.js_roots -
scipy.special.jv -
scipy.special.jve -
scipy.special.jvp -
scipy.special.k0 cupyx.scipy.special.k0
scipy.special.k0e cupyx.scipy.special.k0e
scipy.special.k1 cupyx.scipy.special.k1
scipy.special.k1e cupyx.scipy.special.k1e
scipy.special.kei -
scipy.special.kei_zeros -
scipy.special.keip -
scipy.special.keip_zeros -
scipy.special.kelvin -
scipy.special.kelvin_zeros -
scipy.special.ker -
scipy.special.ker_zeros -
scipy.special.kerp -
scipy.special.kerp_zeros -
scipy.special.kl_div cupyx.scipy.special.kl_div
scipy.special.kn -
scipy.special.kolmogi -
scipy.special.kolmogorov -
scipy.special.kv -
scipy.special.kve -
scipy.special.kvp -
scipy.special.l_roots -
scipy.special.la_roots -
scipy.special.laguerre -
scipy.special.lambertw -
scipy.special.legendre -
scipy.special.lmbda -
scipy.special.log1p cupyx.scipy.special.log1p
scipy.special.log_expit cupyx.scipy.special.log_expit

continues on next page

5.10. Comparison Table 885

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.iti0k0.html#scipy.special.iti0k0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.itj0y0.html#scipy.special.itj0y0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.itmodstruve0.html#scipy.special.itmodstruve0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.itstruve0.html#scipy.special.itstruve0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.iv.html#scipy.special.iv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ive.html#scipy.special.ive
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ivp.html#scipy.special.ivp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.j0.html#scipy.special.j0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.j1.html#scipy.special.j1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jacobi.html#scipy.special.jacobi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html#scipy.special.jn_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jnjnp_zeros.html#scipy.special.jnjnp_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jnp_zeros.html#scipy.special.jnp_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jnyn_zeros.html#scipy.special.jnyn_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jv.html#scipy.special.jv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jve.html#scipy.special.jve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jvp.html#scipy.special.jvp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.k0.html#scipy.special.k0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.k0e.html#scipy.special.k0e
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.k1.html#scipy.special.k1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.k1e.html#scipy.special.k1e
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kei.html#scipy.special.kei
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kei_zeros.html#scipy.special.kei_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.keip.html#scipy.special.keip
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.keip_zeros.html#scipy.special.keip_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kelvin.html#scipy.special.kelvin
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kelvin_zeros.html#scipy.special.kelvin_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ker.html#scipy.special.ker
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ker_zeros.html#scipy.special.ker_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kerp.html#scipy.special.kerp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kerp_zeros.html#scipy.special.kerp_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kl_div.html#scipy.special.kl_div
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kn.html#scipy.special.kn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kolmogi.html#scipy.special.kolmogi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kolmogorov.html#scipy.special.kolmogorov
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kv.html#scipy.special.kv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kve.html#scipy.special.kve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kvp.html#scipy.special.kvp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.laguerre.html#scipy.special.laguerre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lambertw.html#scipy.special.lambertw
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.legendre.html#scipy.special.legendre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lmbda.html#scipy.special.lmbda
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log1p.html#scipy.special.log1p
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_expit.html#scipy.special.log_expit

CuPy Documentation, Release 13.0.0

Table 17 – continued from previous page
SciPy CuPy
scipy.special.log_ndtr cupyx.scipy.special.log_ndtr
scipy.special.log_softmax cupyx.scipy.special.log_softmax
scipy.special.loggamma cupyx.scipy.special.loggamma
scipy.special.logit cupyx.scipy.special.logit
scipy.special.logsumexp cupyx.scipy.special.logsumexp
scipy.special.lpmn -
scipy.special.lpmv cupyx.scipy.special.lpmv
scipy.special.lpn -
scipy.special.lqmn -
scipy.special.lqn -
scipy.special.mathieu_a -
scipy.special.mathieu_b -
scipy.special.mathieu_cem -
scipy.special.mathieu_even_coef -
scipy.special.mathieu_modcem1 -
scipy.special.mathieu_modcem2 -
scipy.special.mathieu_modsem1 -
scipy.special.mathieu_modsem2 -
scipy.special.mathieu_odd_coef -
scipy.special.mathieu_sem -
scipy.special.modfresnelm -
scipy.special.modfresnelp -
scipy.special.modstruve -
scipy.special.multigammaln cupyx.scipy.special.multigammaln
scipy.special.nbdtr cupyx.scipy.special.nbdtr
scipy.special.nbdtrc cupyx.scipy.special.nbdtrc
scipy.special.nbdtri cupyx.scipy.special.nbdtri
scipy.special.nbdtrik -
scipy.special.nbdtrin -
scipy.special.ncfdtr -
scipy.special.ncfdtri -
scipy.special.ncfdtridfd -
scipy.special.ncfdtridfn -
scipy.special.ncfdtrinc -
scipy.special.nctdtr -
scipy.special.nctdtridf -
scipy.special.nctdtrinc -
scipy.special.nctdtrit -
scipy.special.ndtr cupyx.scipy.special.ndtr
scipy.special.ndtri cupyx.scipy.special.ndtri
scipy.special.ndtri_exp -
scipy.special.nrdtrimn -
scipy.special.nrdtrisd -
scipy.special.obl_ang1 -
scipy.special.obl_ang1_cv -
scipy.special.obl_cv -
scipy.special.obl_cv_seq -
scipy.special.obl_rad1 -
scipy.special.obl_rad1_cv -

continues on next page

886 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_ndtr.html#scipy.special.log_ndtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_softmax.html#scipy.special.log_softmax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.loggamma.html#scipy.special.loggamma
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logit.html#scipy.special.logit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html#scipy.special.logsumexp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lpmn.html#scipy.special.lpmn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lpmv.html#scipy.special.lpmv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lpn.html#scipy.special.lpn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lqmn.html#scipy.special.lqmn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lqn.html#scipy.special.lqn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_a.html#scipy.special.mathieu_a
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_b.html#scipy.special.mathieu_b
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_cem.html#scipy.special.mathieu_cem
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_even_coef.html#scipy.special.mathieu_even_coef
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_modcem1.html#scipy.special.mathieu_modcem1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_modcem2.html#scipy.special.mathieu_modcem2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_modsem1.html#scipy.special.mathieu_modsem1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_modsem2.html#scipy.special.mathieu_modsem2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_odd_coef.html#scipy.special.mathieu_odd_coef
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.mathieu_sem.html#scipy.special.mathieu_sem
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.modfresnelm.html#scipy.special.modfresnelm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.modfresnelp.html#scipy.special.modfresnelp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.modstruve.html#scipy.special.modstruve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.multigammaln.html#scipy.special.multigammaln
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nbdtr.html#scipy.special.nbdtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nbdtrc.html#scipy.special.nbdtrc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nbdtri.html#scipy.special.nbdtri
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nbdtrik.html#scipy.special.nbdtrik
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nbdtrin.html#scipy.special.nbdtrin
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ncfdtr.html#scipy.special.ncfdtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ncfdtri.html#scipy.special.ncfdtri
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ncfdtridfd.html#scipy.special.ncfdtridfd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ncfdtridfn.html#scipy.special.ncfdtridfn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ncfdtrinc.html#scipy.special.ncfdtrinc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nctdtr.html#scipy.special.nctdtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nctdtridf.html#scipy.special.nctdtridf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nctdtrinc.html#scipy.special.nctdtrinc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nctdtrit.html#scipy.special.nctdtrit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ndtr.html#scipy.special.ndtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ndtri.html#scipy.special.ndtri
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ndtri_exp.html#scipy.special.ndtri_exp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nrdtrimn.html#scipy.special.nrdtrimn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.nrdtrisd.html#scipy.special.nrdtrisd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_ang1.html#scipy.special.obl_ang1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_ang1_cv.html#scipy.special.obl_ang1_cv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_cv.html#scipy.special.obl_cv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_cv_seq.html#scipy.special.obl_cv_seq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_rad1.html#scipy.special.obl_rad1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_rad1_cv.html#scipy.special.obl_rad1_cv

CuPy Documentation, Release 13.0.0

Table 17 – continued from previous page
SciPy CuPy
scipy.special.obl_rad2 -
scipy.special.obl_rad2_cv -
scipy.special.owens_t -
scipy.special.p_roots -
scipy.special.pbdn_seq -
scipy.special.pbdv -
scipy.special.pbdv_seq -
scipy.special.pbvv -
scipy.special.pbvv_seq -
scipy.special.pbwa -
scipy.special.pdtr cupyx.scipy.special.pdtr
scipy.special.pdtrc cupyx.scipy.special.pdtrc
scipy.special.pdtri cupyx.scipy.special.pdtri
scipy.special.pdtrik -
scipy.special.perm -
scipy.special.poch cupyx.scipy.special.poch
scipy.special.polygamma cupyx.scipy.special.polygamma
scipy.special.powm1 -
scipy.special.pro_ang1 -
scipy.special.pro_ang1_cv -
scipy.special.pro_cv -
scipy.special.pro_cv_seq -
scipy.special.pro_rad1 -
scipy.special.pro_rad1_cv -
scipy.special.pro_rad2 -
scipy.special.pro_rad2_cv -
scipy.special.ps_roots -
scipy.special.pseudo_huber cupyx.scipy.special.pseudo_huber
scipy.special.psi cupyx.scipy.special.psi
scipy.special.radian cupyx.scipy.special.radian
scipy.special.rel_entr cupyx.scipy.special.rel_entr
scipy.special.rgamma cupyx.scipy.special.rgamma
scipy.special.riccati_jn -
scipy.special.riccati_yn -
scipy.special.roots_chebyc -
scipy.special.roots_chebys -
scipy.special.roots_chebyt -
scipy.special.roots_chebyu -
scipy.special.roots_gegenbauer -
scipy.special.roots_genlaguerre -
scipy.special.roots_hermite -
scipy.special.roots_hermitenorm -
scipy.special.roots_jacobi -
scipy.special.roots_laguerre -
scipy.special.roots_legendre -
scipy.special.roots_sh_chebyt -
scipy.special.roots_sh_chebyu -
scipy.special.roots_sh_jacobi -
scipy.special.roots_sh_legendre -

continues on next page

5.10. Comparison Table 887

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_rad2.html#scipy.special.obl_rad2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.obl_rad2_cv.html#scipy.special.obl_rad2_cv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.owens_t.html#scipy.special.owens_t
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbdn_seq.html#scipy.special.pbdn_seq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbdv.html#scipy.special.pbdv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbdv_seq.html#scipy.special.pbdv_seq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbvv.html#scipy.special.pbvv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbvv_seq.html#scipy.special.pbvv_seq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pbwa.html#scipy.special.pbwa
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pdtr.html#scipy.special.pdtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pdtrc.html#scipy.special.pdtrc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pdtri.html#scipy.special.pdtri
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pdtrik.html#scipy.special.pdtrik
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.perm.html#scipy.special.perm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.poch.html#scipy.special.poch
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.polygamma.html#scipy.special.polygamma
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.powm1.html#scipy.special.powm1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_ang1.html#scipy.special.pro_ang1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_ang1_cv.html#scipy.special.pro_ang1_cv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_cv.html#scipy.special.pro_cv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_cv_seq.html#scipy.special.pro_cv_seq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_rad1.html#scipy.special.pro_rad1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_rad1_cv.html#scipy.special.pro_rad1_cv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_rad2.html#scipy.special.pro_rad2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pro_rad2_cv.html#scipy.special.pro_rad2_cv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.pseudo_huber.html#scipy.special.pseudo_huber
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.psi.html#scipy.special.psi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.radian.html#scipy.special.radian
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.rel_entr.html#scipy.special.rel_entr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.rgamma.html#scipy.special.rgamma
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.riccati_jn.html#scipy.special.riccati_jn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.riccati_yn.html#scipy.special.riccati_yn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebyc.html#scipy.special.roots_chebyc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebys.html#scipy.special.roots_chebys
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebyt.html#scipy.special.roots_chebyt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_chebyu.html#scipy.special.roots_chebyu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_gegenbauer.html#scipy.special.roots_gegenbauer
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_genlaguerre.html#scipy.special.roots_genlaguerre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_hermite.html#scipy.special.roots_hermite
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_hermitenorm.html#scipy.special.roots_hermitenorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_jacobi.html#scipy.special.roots_jacobi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_laguerre.html#scipy.special.roots_laguerre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_legendre.html#scipy.special.roots_legendre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_chebyt.html#scipy.special.roots_sh_chebyt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_chebyu.html#scipy.special.roots_sh_chebyu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_jacobi.html#scipy.special.roots_sh_jacobi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.roots_sh_legendre.html#scipy.special.roots_sh_legendre

CuPy Documentation, Release 13.0.0

Table 17 – continued from previous page
SciPy CuPy
scipy.special.round cupyx.scipy.special.round
scipy.special.s_roots -
scipy.special.seterr -
scipy.special.sh_chebyt -
scipy.special.sh_chebyu -
scipy.special.sh_jacobi -
scipy.special.sh_legendre -
scipy.special.shichi -
scipy.special.sici -
scipy.special.sinc cupyx.scipy.special.sinc
scipy.special.sindg cupyx.scipy.special.sindg
scipy.special.smirnov -
scipy.special.smirnovi -
scipy.special.softmax cupyx.scipy.special.softmax
scipy.special.spence -
scipy.special.sph_harm cupyx.scipy.special.sph_harm
scipy.special.spherical_in -
scipy.special.spherical_jn -
scipy.special.spherical_kn -
scipy.special.spherical_yn cupyx.scipy.special.spherical_yn
scipy.special.stdtr -
scipy.special.stdtridf -
scipy.special.stdtrit -
scipy.special.struve -
scipy.special.t_roots -
scipy.special.tandg cupyx.scipy.special.tandg
scipy.special.tklmbda -
scipy.special.ts_roots -
scipy.special.u_roots -
scipy.special.us_roots -
scipy.special.voigt_profile -
scipy.special.wofz -
scipy.special.wright_bessel -
scipy.special.wrightomega -
scipy.special.xlog1py cupyx.scipy.special.xlog1py
scipy.special.xlogy cupyx.scipy.special.xlogy
scipy.special.y0 cupyx.scipy.special.y0
scipy.special.y0_zeros -
scipy.special.y1 cupyx.scipy.special.y1
scipy.special.y1_zeros -
scipy.special.y1p_zeros -
scipy.special.yn cupyx.scipy.special.yn
scipy.special.yn_zeros -
scipy.special.ynp_zeros -
scipy.special.yv -
scipy.special.yve -
scipy.special.yvp -
scipy.special.zeta cupyx.scipy.special.zeta
scipy.special.zetac cupyx.scipy.special.zetac

888 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.round.html#scipy.special.round
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.seterr.html#scipy.special.seterr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_chebyt.html#scipy.special.sh_chebyt
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_chebyu.html#scipy.special.sh_chebyu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_jacobi.html#scipy.special.sh_jacobi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sh_legendre.html#scipy.special.sh_legendre
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.shichi.html#scipy.special.shichi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sici.html#scipy.special.sici
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sinc.html#scipy.special.sinc
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sindg.html#scipy.special.sindg
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.smirnov.html#scipy.special.smirnov
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.smirnovi.html#scipy.special.smirnovi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.softmax.html#scipy.special.softmax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spence.html#scipy.special.spence
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph_harm.html#scipy.special.sph_harm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_in.html#scipy.special.spherical_in
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_jn.html#scipy.special.spherical_jn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_kn.html#scipy.special.spherical_kn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_yn.html#scipy.special.spherical_yn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.stdtr.html#scipy.special.stdtr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.stdtridf.html#scipy.special.stdtridf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.stdtrit.html#scipy.special.stdtrit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.struve.html#scipy.special.struve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.tandg.html#scipy.special.tandg
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.tklmbda.html#scipy.special.tklmbda
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.voigt_profile.html#scipy.special.voigt_profile
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.wofz.html#scipy.special.wofz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.wright_bessel.html#scipy.special.wright_bessel
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.wrightomega.html#scipy.special.wrightomega
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.xlog1py.html#scipy.special.xlog1py
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.xlogy.html#scipy.special.xlogy
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y0.html#scipy.special.y0
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y0_zeros.html#scipy.special.y0_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y1.html#scipy.special.y1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y1_zeros.html#scipy.special.y1_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.y1p_zeros.html#scipy.special.y1p_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yn.html#scipy.special.yn
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yn_zeros.html#scipy.special.yn_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.ynp_zeros.html#scipy.special.ynp_zeros
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yv.html#scipy.special.yv
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yve.html#scipy.special.yve
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.yvp.html#scipy.special.yvp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.zeta.html#scipy.special.zeta
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.zetac.html#scipy.special.zetac

CuPy Documentation, Release 13.0.0

Statistical Functions

SciPy CuPy
scipy.stats.BootstrapMethod -
scipy.stats.CensoredData -
scipy.stats.Covariance -
scipy.stats.MonteCarloMethod -
scipy.stats.PermutationMethod -
scipy.stats.alexandergovern -
scipy.stats.alpha -
scipy.stats.anderson -
scipy.stats.anderson_ksamp -
scipy.stats.anglit -
scipy.stats.ansari -
scipy.stats.arcsine -
scipy.stats.argus -
scipy.stats.barnard_exact -
scipy.stats.bartlett -
scipy.stats.bayes_mvs -
scipy.stats.bernoulli -
scipy.stats.beta -
scipy.stats.betabinom -
scipy.stats.betaprime -
scipy.stats.binned_statistic -
scipy.stats.binned_statistic_2d -
scipy.stats.binned_statistic_dd -
scipy.stats.binom -
scipy.stats.binom_test -
scipy.stats.binomtest -
scipy.stats.boltzmann -
scipy.stats.bootstrap -
scipy.stats.boschloo_exact -
scipy.stats.boxcox -
scipy.stats.boxcox_llf cupyx.scipy.stats.boxcox_llf
scipy.stats.boxcox_normmax -
scipy.stats.boxcox_normplot -
scipy.stats.bradford -
scipy.stats.brunnermunzel -
scipy.stats.burr -
scipy.stats.burr12 -
scipy.stats.cauchy -
scipy.stats.chi -
scipy.stats.chi2 -
scipy.stats.chi2_contingency -
scipy.stats.chisquare -
scipy.stats.circmean -
scipy.stats.circstd -
scipy.stats.circvar -
scipy.stats.combine_pvalues -
scipy.stats.cosine -

continues on next page

5.10. Comparison Table 889

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.BootstrapMethod.html#scipy.stats.BootstrapMethod
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.CensoredData.html#scipy.stats.CensoredData
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.Covariance.html#scipy.stats.Covariance
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.MonteCarloMethod.html#scipy.stats.MonteCarloMethod
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.PermutationMethod.html#scipy.stats.PermutationMethod
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.alexandergovern.html#scipy.stats.alexandergovern
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.alpha.html#scipy.stats.alpha
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson.html#scipy.stats.anderson
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson_ksamp.html#scipy.stats.anderson_ksamp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anglit.html#scipy.stats.anglit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ansari.html#scipy.stats.ansari
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.arcsine.html#scipy.stats.arcsine
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.argus.html#scipy.stats.argus
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.barnard_exact.html#scipy.stats.barnard_exact
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bartlett.html#scipy.stats.bartlett
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bayes_mvs.html#scipy.stats.bayes_mvs
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bernoulli.html#scipy.stats.bernoulli
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.beta.html#scipy.stats.beta
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.betabinom.html#scipy.stats.betabinom
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.betaprime.html#scipy.stats.betaprime
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binned_statistic.html#scipy.stats.binned_statistic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binned_statistic_2d.html#scipy.stats.binned_statistic_2d
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binned_statistic_dd.html#scipy.stats.binned_statistic_dd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html#scipy.stats.binom
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom_test.html#scipy.stats.binom_test
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binomtest.html#scipy.stats.binomtest
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boltzmann.html#scipy.stats.boltzmann
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html#scipy.stats.bootstrap
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boschloo_exact.html#scipy.stats.boschloo_exact
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html#scipy.stats.boxcox
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox_llf.html#scipy.stats.boxcox_llf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox_normmax.html#scipy.stats.boxcox_normmax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox_normplot.html#scipy.stats.boxcox_normplot
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bradford.html#scipy.stats.bradford
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.brunnermunzel.html#scipy.stats.brunnermunzel
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.burr.html#scipy.stats.burr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.burr12.html#scipy.stats.burr12
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cauchy.html#scipy.stats.cauchy
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi.html#scipy.stats.chi
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html#scipy.stats.chi2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html#scipy.stats.chi2_contingency
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html#scipy.stats.chisquare
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.circmean.html#scipy.stats.circmean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.circstd.html#scipy.stats.circstd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.circvar.html#scipy.stats.circvar
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.combine_pvalues.html#scipy.stats.combine_pvalues
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cosine.html#scipy.stats.cosine

CuPy Documentation, Release 13.0.0

Table 18 – continued from previous page
SciPy CuPy
scipy.stats.cramervonmises -
scipy.stats.cramervonmises_2samp -
scipy.stats.crystalball -
scipy.stats.cumfreq -
scipy.stats.describe -
scipy.stats.dgamma -
scipy.stats.differential_entropy -
scipy.stats.directional_stats -
scipy.stats.dirichlet -
scipy.stats.dirichlet_multinomial -
scipy.stats.dlaplace -
scipy.stats.dunnett -
scipy.stats.dweibull -
scipy.stats.ecdf -
scipy.stats.energy_distance -
scipy.stats.entropy cupyx.scipy.stats.entropy
scipy.stats.epps_singleton_2samp -
scipy.stats.erlang -
scipy.stats.expectile -
scipy.stats.expon -
scipy.stats.exponnorm -
scipy.stats.exponpow -
scipy.stats.exponweib -
scipy.stats.f -
scipy.stats.f_oneway -
scipy.stats.false_discovery_control -
scipy.stats.fatiguelife -
scipy.stats.find_repeats -
scipy.stats.fisher_exact -
scipy.stats.fisk -
scipy.stats.fit -
scipy.stats.fligner -
scipy.stats.foldcauchy -
scipy.stats.foldnorm -
scipy.stats.friedmanchisquare -
scipy.stats.gamma -
scipy.stats.gausshyper -
scipy.stats.gaussian_kde -
scipy.stats.genexpon -
scipy.stats.genextreme -
scipy.stats.gengamma -
scipy.stats.genhalflogistic -
scipy.stats.genhyperbolic -
scipy.stats.geninvgauss -
scipy.stats.genlogistic -
scipy.stats.gennorm -
scipy.stats.genpareto -
scipy.stats.geom -
scipy.stats.gibrat -

continues on next page

890 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cramervonmises.html#scipy.stats.cramervonmises
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cramervonmises_2samp.html#scipy.stats.cramervonmises_2samp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.crystalball.html#scipy.stats.crystalball
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.cumfreq.html#scipy.stats.cumfreq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.describe.html#scipy.stats.describe
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dgamma.html#scipy.stats.dgamma
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.differential_entropy.html#scipy.stats.differential_entropy
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.directional_stats.html#scipy.stats.directional_stats
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dirichlet.html#scipy.stats.dirichlet
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dirichlet_multinomial.html#scipy.stats.dirichlet_multinomial
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dlaplace.html#scipy.stats.dlaplace
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dunnett.html#scipy.stats.dunnett
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dweibull.html#scipy.stats.dweibull
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ecdf.html#scipy.stats.ecdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.energy_distance.html#scipy.stats.energy_distance
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html#scipy.stats.entropy
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.epps_singleton_2samp.html#scipy.stats.epps_singleton_2samp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.erlang.html#scipy.stats.erlang
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expectile.html#scipy.stats.expectile
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html#scipy.stats.expon
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.exponnorm.html#scipy.stats.exponnorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.exponpow.html#scipy.stats.exponpow
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.exponweib.html#scipy.stats.exponweib
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f.html#scipy.stats.f
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html#scipy.stats.f_oneway
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.false_discovery_control.html#scipy.stats.false_discovery_control
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fatiguelife.html#scipy.stats.fatiguelife
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.find_repeats.html#scipy.stats.find_repeats
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html#scipy.stats.fisher_exact
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisk.html#scipy.stats.fisk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fit.html#scipy.stats.fit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fligner.html#scipy.stats.fligner
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.foldcauchy.html#scipy.stats.foldcauchy
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.foldnorm.html#scipy.stats.foldnorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html#scipy.stats.friedmanchisquare
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gausshyper.html#scipy.stats.gausshyper
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html#scipy.stats.gaussian_kde
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genexpon.html#scipy.stats.genexpon
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genextreme.html#scipy.stats.genextreme
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gengamma.html#scipy.stats.gengamma
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genhalflogistic.html#scipy.stats.genhalflogistic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genhyperbolic.html#scipy.stats.genhyperbolic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.geninvgauss.html#scipy.stats.geninvgauss
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genlogistic.html#scipy.stats.genlogistic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gennorm.html#scipy.stats.gennorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.genpareto.html#scipy.stats.genpareto
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.geom.html#scipy.stats.geom
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gibrat.html#scipy.stats.gibrat

CuPy Documentation, Release 13.0.0

Table 18 – continued from previous page
SciPy CuPy
scipy.stats.gmean -
scipy.stats.gompertz -
scipy.stats.goodness_of_fit -
scipy.stats.gstd -
scipy.stats.gumbel_l -
scipy.stats.gumbel_r -
scipy.stats.gzscore -
scipy.stats.halfcauchy -
scipy.stats.halfgennorm -
scipy.stats.halflogistic -
scipy.stats.halfnorm -
scipy.stats.hmean -
scipy.stats.hypergeom -
scipy.stats.hypsecant -
scipy.stats.invgamma -
scipy.stats.invgauss -
scipy.stats.invweibull -
scipy.stats.invwishart -
scipy.stats.iqr -
scipy.stats.jarque_bera -
scipy.stats.johnsonsb -
scipy.stats.johnsonsu -
scipy.stats.kappa3 -
scipy.stats.kappa4 -
scipy.stats.kendalltau -
scipy.stats.kruskal -
scipy.stats.ks_1samp -
scipy.stats.ks_2samp -
scipy.stats.ksone -
scipy.stats.kstat -
scipy.stats.kstatvar -
scipy.stats.kstest -
scipy.stats.kstwo -
scipy.stats.kstwobign -
scipy.stats.kurtosis -
scipy.stats.kurtosistest -
scipy.stats.laplace -
scipy.stats.laplace_asymmetric -
scipy.stats.levene -
scipy.stats.levy -
scipy.stats.levy_l -
scipy.stats.levy_stable -
scipy.stats.linregress -
scipy.stats.loggamma -
scipy.stats.logistic -
scipy.stats.loglaplace -
scipy.stats.lognorm -
scipy.stats.logrank -
scipy.stats.logser -

continues on next page

5.10. Comparison Table 891

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gmean.html#scipy.stats.gmean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gompertz.html#scipy.stats.gompertz
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.goodness_of_fit.html#scipy.stats.goodness_of_fit
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gstd.html#scipy.stats.gstd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_l.html#scipy.stats.gumbel_l
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gumbel_r.html#scipy.stats.gumbel_r
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gzscore.html#scipy.stats.gzscore
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halfcauchy.html#scipy.stats.halfcauchy
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halfgennorm.html#scipy.stats.halfgennorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halflogistic.html#scipy.stats.halflogistic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.halfnorm.html#scipy.stats.halfnorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hmean.html#scipy.stats.hmean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypergeom.html#scipy.stats.hypergeom
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.hypsecant.html#scipy.stats.hypsecant
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invgamma.html#scipy.stats.invgamma
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invgauss.html#scipy.stats.invgauss
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invweibull.html#scipy.stats.invweibull
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invwishart.html#scipy.stats.invwishart
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.iqr.html#scipy.stats.iqr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.jarque_bera.html#scipy.stats.jarque_bera
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.johnsonsb.html#scipy.stats.johnsonsb
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.johnsonsu.html#scipy.stats.johnsonsu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kappa3.html#scipy.stats.kappa3
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kappa4.html#scipy.stats.kappa4
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html#scipy.stats.kendalltau
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html#scipy.stats.kruskal
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_1samp.html#scipy.stats.ks_1samp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html#scipy.stats.ks_2samp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ksone.html#scipy.stats.ksone
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstat.html#scipy.stats.kstat
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstatvar.html#scipy.stats.kstatvar
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html#scipy.stats.kstest
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstwo.html#scipy.stats.kstwo
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstwobign.html#scipy.stats.kstwobign
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html#scipy.stats.kurtosis
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosistest.html#scipy.stats.kurtosistest
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.laplace.html#scipy.stats.laplace
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.laplace_asymmetric.html#scipy.stats.laplace_asymmetric
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levene.html#scipy.stats.levene
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levy.html#scipy.stats.levy
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levy_l.html#scipy.stats.levy_l
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levy_stable.html#scipy.stats.levy_stable
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html#scipy.stats.linregress
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.loggamma.html#scipy.stats.loggamma
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logistic.html#scipy.stats.logistic
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.loglaplace.html#scipy.stats.loglaplace
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html#scipy.stats.lognorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logrank.html#scipy.stats.logrank
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.logser.html#scipy.stats.logser

CuPy Documentation, Release 13.0.0

Table 18 – continued from previous page
SciPy CuPy
scipy.stats.loguniform -
scipy.stats.lomax -
scipy.stats.mannwhitneyu -
scipy.stats.matrix_normal -
scipy.stats.maxwell -
scipy.stats.median_abs_deviation -
scipy.stats.median_test -
scipy.stats.mielke -
scipy.stats.mode -
scipy.stats.moment -
scipy.stats.monte_carlo_test -
scipy.stats.mood -
scipy.stats.moyal -
scipy.stats.multinomial -
scipy.stats.multiscale_graphcorr -
scipy.stats.multivariate_hypergeom -
scipy.stats.multivariate_normal -
scipy.stats.multivariate_t -
scipy.stats.mvsdist -
scipy.stats.nakagami -
scipy.stats.nbinom -
scipy.stats.ncf -
scipy.stats.nchypergeom_fisher -
scipy.stats.nchypergeom_wallenius -
scipy.stats.nct -
scipy.stats.ncx2 -
scipy.stats.nhypergeom -
scipy.stats.norm -
scipy.stats.normaltest -
scipy.stats.norminvgauss -
scipy.stats.obrientransform -
scipy.stats.ortho_group -
scipy.stats.page_trend_test -
scipy.stats.pareto -
scipy.stats.pearson3 -
scipy.stats.pearsonr -
scipy.stats.percentileofscore -
scipy.stats.permutation_test -
scipy.stats.planck -
scipy.stats.pmean -
scipy.stats.pointbiserialr -
scipy.stats.poisson -
scipy.stats.poisson_means_test -
scipy.stats.power_divergence -
scipy.stats.powerlaw -
scipy.stats.powerlognorm -
scipy.stats.powernorm -
scipy.stats.ppcc_max -
scipy.stats.ppcc_plot -

continues on next page

892 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.loguniform.html#scipy.stats.loguniform
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lomax.html#scipy.stats.lomax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html#scipy.stats.mannwhitneyu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.matrix_normal.html#scipy.stats.matrix_normal
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.maxwell.html#scipy.stats.maxwell
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.median_abs_deviation.html#scipy.stats.median_abs_deviation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.median_test.html#scipy.stats.median_test
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mielke.html#scipy.stats.mielke
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mode.html#scipy.stats.mode
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.moment.html#scipy.stats.moment
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.monte_carlo_test.html#scipy.stats.monte_carlo_test
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mood.html#scipy.stats.mood
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.moyal.html#scipy.stats.moyal
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multinomial.html#scipy.stats.multinomial
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multiscale_graphcorr.html#scipy.stats.multiscale_graphcorr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_hypergeom.html#scipy.stats.multivariate_hypergeom
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html#scipy.stats.multivariate_normal
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_t.html#scipy.stats.multivariate_t
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mvsdist.html#scipy.stats.mvsdist
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nakagami.html#scipy.stats.nakagami
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nbinom.html#scipy.stats.nbinom
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ncf.html#scipy.stats.ncf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nchypergeom_fisher.html#scipy.stats.nchypergeom_fisher
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nchypergeom_wallenius.html#scipy.stats.nchypergeom_wallenius
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nct.html#scipy.stats.nct
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ncx2.html#scipy.stats.ncx2
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.nhypergeom.html#scipy.stats.nhypergeom
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html#scipy.stats.normaltest
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norminvgauss.html#scipy.stats.norminvgauss
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.obrientransform.html#scipy.stats.obrientransform
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ortho_group.html#scipy.stats.ortho_group
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.page_trend_test.html#scipy.stats.page_trend_test
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pareto.html#scipy.stats.pareto
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearson3.html#scipy.stats.pearson3
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html#scipy.stats.pearsonr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.percentileofscore.html#scipy.stats.percentileofscore
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.permutation_test.html#scipy.stats.permutation_test
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.planck.html#scipy.stats.planck
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pmean.html#scipy.stats.pmean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pointbiserialr.html#scipy.stats.pointbiserialr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html#scipy.stats.poisson
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson_means_test.html#scipy.stats.poisson_means_test
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.power_divergence.html#scipy.stats.power_divergence
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powerlaw.html#scipy.stats.powerlaw
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powerlognorm.html#scipy.stats.powerlognorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powernorm.html#scipy.stats.powernorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ppcc_max.html#scipy.stats.ppcc_max
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ppcc_plot.html#scipy.stats.ppcc_plot

CuPy Documentation, Release 13.0.0

Table 18 – continued from previous page
SciPy CuPy
scipy.stats.probplot -
scipy.stats.randint -
scipy.stats.random_correlation -
scipy.stats.random_table -
scipy.stats.rankdata -
scipy.stats.ranksums -
scipy.stats.rayleigh -
scipy.stats.rdist -
scipy.stats.recipinvgauss -
scipy.stats.reciprocal -
scipy.stats.rel_breitwigner -
scipy.stats.relfreq -
scipy.stats.rice -
scipy.stats.rv_continuous -
scipy.stats.rv_discrete -
scipy.stats.rv_histogram -
scipy.stats.rvs_ratio_uniforms -
scipy.stats.scoreatpercentile -
scipy.stats.sem -
scipy.stats.semicircular -
scipy.stats.shapiro -
scipy.stats.siegelslopes -
scipy.stats.sigmaclip -
scipy.stats.skellam -
scipy.stats.skew -
scipy.stats.skewcauchy -
scipy.stats.skewnorm -
scipy.stats.skewtest -
scipy.stats.sobol_indices -
scipy.stats.somersd -
scipy.stats.spearmanr -
scipy.stats.special_ortho_group -
scipy.stats.studentized_range -
scipy.stats.t -
scipy.stats.theilslopes -
scipy.stats.tiecorrect -
scipy.stats.tmax -
scipy.stats.tmean -
scipy.stats.tmin -
scipy.stats.trapezoid -
scipy.stats.trapz -
scipy.stats.triang -
scipy.stats.trim1 -
scipy.stats.trim_mean cupyx.scipy.stats.trim_mean
scipy.stats.trimboth -
scipy.stats.truncexpon -
scipy.stats.truncnorm -
scipy.stats.truncpareto -
scipy.stats.truncweibull_min -

continues on next page

5.10. Comparison Table 893

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html#scipy.stats.probplot
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.randint.html#scipy.stats.randint
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.random_correlation.html#scipy.stats.random_correlation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.random_table.html#scipy.stats.random_table
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rankdata.html#scipy.stats.rankdata
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ranksums.html#scipy.stats.ranksums
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rayleigh.html#scipy.stats.rayleigh
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rdist.html#scipy.stats.rdist
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.recipinvgauss.html#scipy.stats.recipinvgauss
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rel_breitwigner.html#scipy.stats.rel_breitwigner
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.relfreq.html#scipy.stats.relfreq
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rice.html#scipy.stats.rice
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.html#scipy.stats.rv_continuous
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.html#scipy.stats.rv_discrete
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.html#scipy.stats.rv_histogram
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rvs_ratio_uniforms.html#scipy.stats.rvs_ratio_uniforms
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.scoreatpercentile.html#scipy.stats.scoreatpercentile
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sem.html#scipy.stats.sem
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.semicircular.html#scipy.stats.semicircular
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html#scipy.stats.shapiro
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.siegelslopes.html#scipy.stats.siegelslopes
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sigmaclip.html#scipy.stats.sigmaclip
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skellam.html#scipy.stats.skellam
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html#scipy.stats.skew
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewcauchy.html#scipy.stats.skewcauchy
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewnorm.html#scipy.stats.skewnorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skewtest.html#scipy.stats.skewtest
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sobol_indices.html#scipy.stats.sobol_indices
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.somersd.html#scipy.stats.somersd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html#scipy.stats.spearmanr
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.special_ortho_group.html#scipy.stats.special_ortho_group
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.studentized_range.html#scipy.stats.studentized_range
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.t.html#scipy.stats.t
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.theilslopes.html#scipy.stats.theilslopes
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tiecorrect.html#scipy.stats.tiecorrect
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmax.html#scipy.stats.tmax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmean.html#scipy.stats.tmean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmin.html#scipy.stats.tmin
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trapezoid.html#scipy.stats.trapezoid
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.triang.html#scipy.stats.triang
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trim1.html#scipy.stats.trim1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trim_mean.html#scipy.stats.trim_mean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trimboth.html#scipy.stats.trimboth
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncexpon.html#scipy.stats.truncexpon
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncnorm.html#scipy.stats.truncnorm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncpareto.html#scipy.stats.truncpareto
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncweibull_min.html#scipy.stats.truncweibull_min

CuPy Documentation, Release 13.0.0

Table 18 – continued from previous page
SciPy CuPy
scipy.stats.tsem -
scipy.stats.tstd -
scipy.stats.ttest_1samp -
scipy.stats.ttest_ind -
scipy.stats.ttest_ind_from_stats -
scipy.stats.ttest_rel -
scipy.stats.tukey_hsd -
scipy.stats.tukeylambda -
scipy.stats.tvar -
scipy.stats.uniform -
scipy.stats.uniform_direction -
scipy.stats.unitary_group -
scipy.stats.variation -
scipy.stats.vonmises -
scipy.stats.vonmises_fisher -
scipy.stats.vonmises_line -
scipy.stats.wald -
scipy.stats.wasserstein_distance -
scipy.stats.weibull_max -
scipy.stats.weibull_min -
scipy.stats.weightedtau -
scipy.stats.wilcoxon -
scipy.stats.wishart -
scipy.stats.wrapcauchy -
scipy.stats.yeojohnson -
scipy.stats.yeojohnson_llf -
scipy.stats.yeojohnson_normmax -
scipy.stats.yeojohnson_normplot -
scipy.stats.yulesimon -
scipy.stats.zipf -
scipy.stats.zipfian -
scipy.stats.zmap cupyx.scipy.stats.zmap
scipy.stats.zscore cupyx.scipy.stats.zscore

5.11 Python Array API Support

The Python array API standard aims to provide a coherent set of APIs for array and tensor libraries developed by the
community to build upon. This solves the API fragmentation issue across the community by offering concrete function
signatures, semantics and scopes of coverage, enabling writing backend-agnostic codes for better portability.

CuPy provides experimental support based on NumPy’s NEP-47, which is in turn based on the v2021 standard. All
of the functionalities can be accessed through the cupy.array_api namespace.

NumPy’s Array API Standard Compatibility is an excellent starting point to understand better the differences between
the APIs under the main namespace and the array_api namespace. Keep in mind, however, that the key difference
between NumPy and CuPy is that we are a GPU-only library, therefore CuPy users should be aware of potential device
management issues. Same as in regular CuPy codes, the GPU-to-use can be specified via the Device objects, see
Device management. GPU-related semantics (e.g. streams, asynchronicity, etc) are also respected. Finally, remember
there are already differences between NumPy and CuPy, although some of which are rectified in the standard.

894 Chapter 5. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tsem.html#scipy.stats.tsem
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tstd.html#scipy.stats.tstd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_1samp.html#scipy.stats.ttest_1samp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html#scipy.stats.ttest_ind
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind_from_stats.html#scipy.stats.ttest_ind_from_stats
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html#scipy.stats.ttest_rel
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tukey_hsd.html#scipy.stats.tukey_hsd
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tukeylambda.html#scipy.stats.tukeylambda
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tvar.html#scipy.stats.tvar
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.uniform.html#scipy.stats.uniform
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.uniform_direction.html#scipy.stats.uniform_direction
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.unitary_group.html#scipy.stats.unitary_group
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.variation.html#scipy.stats.variation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises.html#scipy.stats.vonmises
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises_fisher.html#scipy.stats.vonmises_fisher
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.vonmises_line.html#scipy.stats.vonmises_line
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wald.html#scipy.stats.wald
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html#scipy.stats.wasserstein_distance
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_max.html#scipy.stats.weibull_max
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weibull_min.html#scipy.stats.weibull_min
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.weightedtau.html#scipy.stats.weightedtau
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html#scipy.stats.wilcoxon
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wishart.html#scipy.stats.wishart
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wrapcauchy.html#scipy.stats.wrapcauchy
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson.html#scipy.stats.yeojohnson
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson_llf.html#scipy.stats.yeojohnson_llf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson_normmax.html#scipy.stats.yeojohnson_normmax
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yeojohnson_normplot.html#scipy.stats.yeojohnson_normplot
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.yulesimon.html#scipy.stats.yulesimon
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipf.html#scipy.stats.zipf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zipfian.html#scipy.stats.zipfian
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zmap.html#scipy.stats.zmap
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zscore.html#scipy.stats.zscore
https://data-apis.org/array-api/2021.12/
https://numpy.org/neps/nep-0047-array-api-standard.html
https://numpy.org/devdocs/reference/array_api.html
https://data-apis.org/array-api/latest/design_topics/device_support.html
https://data-apis.org/array-api/latest/design_topics/device_support.html

CuPy Documentation, Release 13.0.0

5.11.1 Array API Functions

This section is a full list of implemented APIs. For the detailed documentation, see the array API specification.

cupy.array_api.abs(x, /)
Array API compatible wrapper for np.abs.

See its docstring for more information.

Return type
Array

cupy.array_api.acos(x, /)
Array API compatible wrapper for np.arccos.

See its docstring for more information.

Return type
Array

cupy.array_api.acosh(x, /)
Array API compatible wrapper for np.arccosh.

See its docstring for more information.

Return type
Array

cupy.array_api.add(x1, x2, /)
Array API compatible wrapper for np.add.

See its docstring for more information.

Return type
Array

cupy.array_api.all(x, /, *, axis=None, keepdims=False)
Array API compatible wrapper for np.all.

See its docstring for more information.

Return type
Array

cupy.array_api.any(x, /, *, axis=None, keepdims=False)
Array API compatible wrapper for np.any.

See its docstring for more information.

Return type
Array

cupy.array_api.arange(start, /, stop=None, step=1, *, dtype=None, device=None)
Array API compatible wrapper for np.arange.

See its docstring for more information.

Return type
Array

5.11. Python Array API Support 895

https://data-apis.org/array-api/latest/API_specification/index.html
https://numpy.org/doc/stable/reference/generated/numpy.all.html#numpy.all
https://numpy.org/doc/stable/reference/generated/numpy.any.html#numpy.any
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange

CuPy Documentation, Release 13.0.0

cupy.array_api.argmax(x, /, *, axis=None, keepdims=False)
Array API compatible wrapper for np.argmax.

See its docstring for more information.

Return type
Array

cupy.array_api.argmin(x, /, *, axis=None, keepdims=False)
Array API compatible wrapper for np.argmin.

See its docstring for more information.

Return type
Array

cupy.array_api.argsort(x, /, *, axis=-1, descending=False, stable=True)
Array API compatible wrapper for np.argsort.

See its docstring for more information.

Return type
Array

cupy.array_api.asarray(obj, /, *, dtype=None, device=None, copy=None)
Array API compatible wrapper for np.asarray.

See its docstring for more information.

Return type
Array

cupy.array_api.asin(x, /)
Array API compatible wrapper for np.arcsin.

See its docstring for more information.

Return type
Array

cupy.array_api.asinh(x, /)
Array API compatible wrapper for np.arcsinh.

See its docstring for more information.

Return type
Array

cupy.array_api.atan(x, /)
Array API compatible wrapper for np.arctan.

See its docstring for more information.

Return type
Array

cupy.array_api.atan2(x1, x2, /)
Array API compatible wrapper for np.arctan2.

See its docstring for more information.

Return type
Array

896 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.argmax.html#numpy.argmax
https://numpy.org/doc/stable/reference/generated/numpy.argmin.html#numpy.argmin
https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort
https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray

CuPy Documentation, Release 13.0.0

cupy.array_api.atanh(x, /)
Array API compatible wrapper for np.arctanh.

See its docstring for more information.

Return type
Array

cupy.array_api.bitwise_and(x1, x2, /)
Array API compatible wrapper for np.bitwise_and.

See its docstring for more information.

Return type
Array

cupy.array_api.bitwise_invert(x, /)
Array API compatible wrapper for np.invert.

See its docstring for more information.

Return type
Array

cupy.array_api.bitwise_left_shift(x1, x2, /)
Array API compatible wrapper for np.left_shift.

See its docstring for more information.

Return type
Array

cupy.array_api.bitwise_or(x1, x2, /)
Array API compatible wrapper for np.bitwise_or.

See its docstring for more information.

Return type
Array

cupy.array_api.bitwise_right_shift(x1, x2, /)
Array API compatible wrapper for np.right_shift.

See its docstring for more information.

Return type
Array

cupy.array_api.bitwise_xor(x1, x2, /)
Array API compatible wrapper for np.bitwise_xor.

See its docstring for more information.

Return type
Array

cupy.array_api.broadcast_arrays(*arrays)
Array API compatible wrapper for np.broadcast_arrays.

See its docstring for more information.

Return type
List[Array]

5.11. Python Array API Support 897

https://numpy.org/doc/stable/reference/generated/numpy.broadcast_arrays.html#numpy.broadcast_arrays
https://docs.python.org/3/library/typing.html#typing.List

CuPy Documentation, Release 13.0.0

cupy.array_api.broadcast_to(x, /, shape)
Array API compatible wrapper for np.broadcast_to.

See its docstring for more information.

Return type
Array

cupy.array_api.can_cast(from_, to, /)
Array API compatible wrapper for np.can_cast.

See its docstring for more information.

Return type
bool

cupy.array_api.ceil(x, /)
Array API compatible wrapper for np.ceil.

See its docstring for more information.

Return type
Array

cupy.array_api.concat(arrays, /, *, axis=0)
Array API compatible wrapper for np.concatenate.

See its docstring for more information.

Return type
Array

cupy.array_api.cos(x, /)
Array API compatible wrapper for np.cos.

See its docstring for more information.

Return type
Array

cupy.array_api.cosh(x, /)
Array API compatible wrapper for np.cosh.

See its docstring for more information.

Return type
Array

cupy.array_api.divide(x1, x2, /)
Array API compatible wrapper for np.divide.

See its docstring for more information.

Return type
Array

cupy.array_api.empty(shape, *, dtype=None, device=None)
Array API compatible wrapper for np.empty.

See its docstring for more information.

Return type
Array

898 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to
https://numpy.org/doc/stable/reference/generated/numpy.can_cast.html#numpy.can_cast
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html#numpy.concatenate
https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty

CuPy Documentation, Release 13.0.0

cupy.array_api.empty_like(x, /, *, dtype=None, device=None)
Array API compatible wrapper for np.empty_like.

See its docstring for more information.

Return type
Array

cupy.array_api.equal(x1, x2, /)
Array API compatible wrapper for np.equal.

See its docstring for more information.

Return type
Array

cupy.array_api.exp(x, /)
Array API compatible wrapper for np.exp.

See its docstring for more information.

Return type
Array

cupy.array_api.expand_dims(x, /, *, axis)
Array API compatible wrapper for np.expand_dims.

See its docstring for more information.

Return type
Array

cupy.array_api.expm1(x, /)
Array API compatible wrapper for np.expm1.

See its docstring for more information.

Return type
Array

cupy.array_api.eye(n_rows, n_cols=None, /, *, k=0, dtype=None, device=None)
Array API compatible wrapper for np.eye.

See its docstring for more information.

Return type
Array

cupy.array_api.finfo(type, /)
Array API compatible wrapper for np.finfo.

See its docstring for more information.

Return type
finfo_object

cupy.array_api.flip(x, /, *, axis=None)
Array API compatible wrapper for np.flip.

See its docstring for more information.

Return type
Array

5.11. Python Array API Support 899

https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like
https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html#numpy.expand_dims
https://numpy.org/doc/stable/reference/generated/numpy.eye.html#numpy.eye
https://numpy.org/doc/stable/reference/generated/numpy.flip.html#numpy.flip

CuPy Documentation, Release 13.0.0

cupy.array_api.floor(x, /)
Array API compatible wrapper for np.floor.

See its docstring for more information.

Return type
Array

cupy.array_api.floor_divide(x1, x2, /)
Array API compatible wrapper for np.floor_divide.

See its docstring for more information.

Return type
Array

cupy.array_api.from_dlpack(x, /)
Array API compatible wrapper for np.from_dlpack.

See its docstring for more information.

Return type
Array

cupy.array_api.full(shape, fill_value, *, dtype=None, device=None)
Array API compatible wrapper for np.full.

See its docstring for more information.

Return type
Array

cupy.array_api.full_like(x, /, fill_value, *, dtype=None, device=None)
Array API compatible wrapper for np.full_like.

See its docstring for more information.

Return type
Array

cupy.array_api.greater(x1, x2, /)
Array API compatible wrapper for np.greater.

See its docstring for more information.

Return type
Array

cupy.array_api.greater_equal(x1, x2, /)
Array API compatible wrapper for np.greater_equal.

See its docstring for more information.

Return type
Array

cupy.array_api.iinfo(type, /)
Array API compatible wrapper for np.iinfo.

See its docstring for more information.

Return type
iinfo_object

900 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.from_dlpack.html#numpy.from_dlpack
https://numpy.org/doc/stable/reference/generated/numpy.full.html#numpy.full
https://numpy.org/doc/stable/reference/generated/numpy.full_like.html#numpy.full_like

CuPy Documentation, Release 13.0.0

cupy.array_api.isfinite(x, /)
Array API compatible wrapper for np.isfinite.

See its docstring for more information.

Return type
Array

cupy.array_api.isinf(x, /)
Array API compatible wrapper for np.isinf.

See its docstring for more information.

Return type
Array

cupy.array_api.isnan(x, /)
Array API compatible wrapper for np.isnan.

See its docstring for more information.

Return type
Array

cupy.array_api.less(x1, x2, /)
Array API compatible wrapper for np.less.

See its docstring for more information.

Return type
Array

cupy.array_api.less_equal(x1, x2, /)
Array API compatible wrapper for np.less_equal.

See its docstring for more information.

Return type
Array

cupy.array_api.linspace(start, stop, /, num, *, dtype=None, device=None, endpoint=True)
Array API compatible wrapper for np.linspace.

See its docstring for more information.

Return type
Array

cupy.array_api.log(x, /)
Array API compatible wrapper for np.log.

See its docstring for more information.

Return type
Array

cupy.array_api.log10(x, /)
Array API compatible wrapper for np.log10.

See its docstring for more information.

Return type
Array

5.11. Python Array API Support 901

https://numpy.org/doc/stable/reference/generated/numpy.linspace.html#numpy.linspace

CuPy Documentation, Release 13.0.0

cupy.array_api.log1p(x, /)
Array API compatible wrapper for np.log1p.

See its docstring for more information.

Return type
Array

cupy.array_api.log2(x, /)
Array API compatible wrapper for np.log2.

See its docstring for more information.

Return type
Array

cupy.array_api.logaddexp(x1, x2)
Array API compatible wrapper for np.logaddexp.

See its docstring for more information.

Return type
Array

cupy.array_api.logical_and(x1, x2, /)
Array API compatible wrapper for np.logical_and.

See its docstring for more information.

Return type
Array

cupy.array_api.logical_not(x, /)
Array API compatible wrapper for np.logical_not.

See its docstring for more information.

Return type
Array

cupy.array_api.logical_or(x1, x2, /)
Array API compatible wrapper for np.logical_or.

See its docstring for more information.

Return type
Array

cupy.array_api.logical_xor(x1, x2, /)
Array API compatible wrapper for np.logical_xor.

See its docstring for more information.

Return type
Array

cupy.array_api.matmul(x1, x2, /)
Array API compatible wrapper for np.matmul.

See its docstring for more information.

Return type
Array

902 Chapter 5. API Reference

CuPy Documentation, Release 13.0.0

cupy.array_api.meshgrid(*arrays, indexing='xy')
Array API compatible wrapper for np.meshgrid.

See its docstring for more information.

Return type
List[Array]

cupy.array_api.multiply(x1, x2, /)
Array API compatible wrapper for np.multiply.

See its docstring for more information.

Return type
Array

cupy.array_api.negative(x, /)
Array API compatible wrapper for np.negative.

See its docstring for more information.

Return type
Array

cupy.array_api.nonzero(x, /)
Array API compatible wrapper for np.nonzero.

See its docstring for more information.

Return type
Tuple[Array, . . .]

cupy.array_api.not_equal(x1, x2, /)
Array API compatible wrapper for np.not_equal.

See its docstring for more information.

Return type
Array

cupy.array_api.ones(shape, *, dtype=None, device=None)
Array API compatible wrapper for np.ones.

See its docstring for more information.

Return type
Array

cupy.array_api.ones_like(x, /, *, dtype=None, device=None)
Array API compatible wrapper for np.ones_like.

See its docstring for more information.

Return type
Array

cupy.array_api.permute_dims(x, /, axes)
Array API compatible wrapper for np.transpose.

See its docstring for more information.

Return type
Array

5.11. Python Array API Support 903

https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
https://numpy.org/doc/stable/reference/generated/numpy.nonzero.html#numpy.nonzero
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ones.html#numpy.ones
https://numpy.org/doc/stable/reference/generated/numpy.ones_like.html#numpy.ones_like
https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose

CuPy Documentation, Release 13.0.0

cupy.array_api.positive(x, /)
Array API compatible wrapper for np.positive.

See its docstring for more information.

Return type
Array

cupy.array_api.pow(x1, x2, /)
Array API compatible wrapper for np.power.

See its docstring for more information.

Return type
Array

cupy.array_api.remainder(x1, x2, /)
Array API compatible wrapper for np.remainder.

See its docstring for more information.

Return type
Array

cupy.array_api.reshape(x, /, shape)
Array API compatible wrapper for np.reshape.

See its docstring for more information.

Return type
Array

cupy.array_api.result_type(*arrays_and_dtypes)
Array API compatible wrapper for np.result_type.

See its docstring for more information.

Return type
Dtype

cupy.array_api.roll(x, /, shift, *, axis=None)
Array API compatible wrapper for np.roll.

See its docstring for more information.

Return type
Array

cupy.array_api.round(x, /)
Array API compatible wrapper for np.round.

See its docstring for more information.

Return type
Array

cupy.array_api.sign(x, /)
Array API compatible wrapper for np.sign.

See its docstring for more information.

Return type
Array

904 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.reshape.html#numpy.reshape
https://numpy.org/doc/stable/reference/generated/numpy.result_type.html#numpy.result_type
https://numpy.org/doc/stable/reference/generated/numpy.roll.html#numpy.roll
https://numpy.org/doc/stable/reference/generated/numpy.round.html#numpy.round

CuPy Documentation, Release 13.0.0

cupy.array_api.sin(x, /)
Array API compatible wrapper for np.sin.

See its docstring for more information.

Return type
Array

cupy.array_api.sinh(x, /)
Array API compatible wrapper for np.sinh.

See its docstring for more information.

Return type
Array

cupy.array_api.sort(x, /, *, axis=-1, descending=False, stable=True)
Array API compatible wrapper for np.sort.

See its docstring for more information.

Return type
Array

cupy.array_api.sqrt(x, /)
Array API compatible wrapper for np.sqrt.

See its docstring for more information.

Return type
Array

cupy.array_api.square(x, /)
Array API compatible wrapper for np.square.

See its docstring for more information.

Return type
Array

cupy.array_api.squeeze(x, /, axis)
Array API compatible wrapper for np.squeeze.

See its docstring for more information.

Return type
Array

cupy.array_api.stack(arrays, /, *, axis=0)
Array API compatible wrapper for np.stack.

See its docstring for more information.

Return type
Array

cupy.array_api.subtract(x1, x2, /)
Array API compatible wrapper for np.subtract.

See its docstring for more information.

Return type
Array

5.11. Python Array API Support 905

https://numpy.org/doc/stable/reference/generated/numpy.sort.html#numpy.sort
https://numpy.org/doc/stable/reference/generated/numpy.squeeze.html#numpy.squeeze
https://numpy.org/doc/stable/reference/generated/numpy.stack.html#numpy.stack

CuPy Documentation, Release 13.0.0

cupy.array_api.take(x, indices, /, *, axis)
Array API compatible wrapper for np.take. See its docstring for more information.

Return type
Array

cupy.array_api.tan(x, /)
Array API compatible wrapper for np.tan.

See its docstring for more information.

Return type
Array

cupy.array_api.tanh(x, /)
Array API compatible wrapper for np.tanh.

See its docstring for more information.

Return type
Array

cupy.array_api.tril(x, /, *, k=0)
Array API compatible wrapper for np.tril.

See its docstring for more information.

Return type
Array

cupy.array_api.triu(x, /, *, k=0)
Array API compatible wrapper for np.triu.

See its docstring for more information.

Return type
Array

cupy.array_api.trunc(x, /)
Array API compatible wrapper for np.trunc.

See its docstring for more information.

Return type
Array

cupy.array_api.unique_all(x, /)
Array API compatible wrapper for np.unique.

See its docstring for more information.

Return type
UniqueAllResult

cupy.array_api.unique_inverse(x, /)
Array API compatible wrapper for np.unique.

See its docstring for more information.

Return type
UniqueInverseResult

906 Chapter 5. API Reference

https://numpy.org/doc/stable/reference/generated/numpy.take.html#numpy.take
https://numpy.org/doc/stable/reference/generated/numpy.tril.html#numpy.tril
https://numpy.org/doc/stable/reference/generated/numpy.triu.html#numpy.triu
https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique
https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique

CuPy Documentation, Release 13.0.0

cupy.array_api.unique_values(x, /)
Array API compatible wrapper for np.unique.

See its docstring for more information.

Return type
Array

cupy.array_api.where(condition, x1, x2, /)
Array API compatible wrapper for np.where.

See its docstring for more information.

Return type
Array

cupy.array_api.zeros(shape, *, dtype=None, device=None)
Array API compatible wrapper for np.zeros.

See its docstring for more information.

Return type
Array

cupy.array_api.zeros_like(x, /, *, dtype=None, device=None)
Array API compatible wrapper for np.zeros_like.

See its docstring for more information.

Return type
Array

5.11.2 Array API Compliant Object

Array is a wrapper class built upon cupy.ndarray to enforce strict compliance with the array API standard. See the
documentation for detail.

This object should not be constructed directly. Rather, use one of the creation functions, such as cupy.array_api.
asarray().

Array(*args, **kwargs) n-d array object for the array API namespace.

cupy.array_api._array_object.Array

class cupy.array_api._array_object.Array(*args, **kwargs)
n-d array object for the array API namespace.

See the docstring of np.ndarray for more information.

This is a wrapper around numpy.ndarray that restricts the usage to only those things that are required by the
array API namespace. Note, attributes on this object that start with a single underscore are not part of the API
specification and should only be used internally. This object should not be constructed directly. Rather, use one
of the creation functions, such as asarray().

5.11. Python Array API Support 907

https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique
https://numpy.org/doc/stable/reference/generated/numpy.where.html#numpy.where
https://numpy.org/doc/stable/reference/generated/numpy.zeros.html#numpy.zeros
https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html#numpy.zeros_like
https://data-apis.org/array-api/latest/API_specification/array_object.html
https://data-apis.org/array-api/latest/API_specification/creation_functions.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

CuPy Documentation, Release 13.0.0

Methods

__getitem__(key, /)
Performs the operation __getitem__.

Return type
Array

__setitem__(key, value, /)
Performs the operation __setitem__.

to_device(device, /, stream=None)

Return type
Array

__eq__(other, /)
Performs the operation __eq__.

Return type
Array

__ne__(other, /)
Performs the operation __ne__.

Return type
Array

__lt__(other, /)
Performs the operation __lt__.

Return type
Array

__le__(other, /)
Performs the operation __le__.

Return type
Array

__gt__(other, /)
Performs the operation __gt__.

Return type
Array

__ge__(other, /)
Performs the operation __ge__.

Return type
Array

__bool__()

Performs the operation __bool__.

Return type
bool

908 Chapter 5. API Reference

https://docs.python.org/3/library/functions.html#bool

CuPy Documentation, Release 13.0.0

Attributes

T

Array API compatible wrapper for np.ndarray.T.

See its docstring for more information.

device

dtype

Array API compatible wrapper for np.ndarray.dtype.

See its docstring for more information.

mT

ndim

Array API compatible wrapper for np.ndarray.ndim.

See its docstring for more information.

shape

Array API compatible wrapper for np.ndarray.shape.

See its docstring for more information.

size

Array API compatible wrapper for np.ndarray.size.

See its docstring for more information.

5.11. Python Array API Support 909

CuPy Documentation, Release 13.0.0

910 Chapter 5. API Reference

CHAPTER

SIX

CONTRIBUTION GUIDE

This is a guide for all contributions to CuPy. The development of CuPy is running on the official repository at GitHub.
Anyone that wants to register an issue or to send a pull request should read through this document.

6.1 Classification of Contributions

There are several ways to contribute to CuPy community:

1. Registering an issue

2. Sending a pull request (PR)

3. Sending a question to CuPy’s Gitter channel, CuPy User Group, or StackOverflow

4. Open-sourcing an external example

5. Writing a post about CuPy

This document mainly focuses on 1 and 2, though other contributions are also appreciated.

6.2 Development Cycle

This section explains the development process of CuPy. Before contributing to CuPy, it is strongly recommended to
understand the development cycle.

6.2.1 Versioning

The versioning of CuPy follows PEP 440 and a part of Semantic versioning. The version number consists of three or
four parts: X.Y.Zw where X denotes the major version, Y denotes the minor version, Z denotes the revision number,
and the optional w denotes the prelease suffix. While the major, minor, and revision numbers follow the rule of semantic
versioning, the pre-release suffix follows PEP 440 so that the version string is much friendly with Python eco-system.

Note that a major update basically does not contain compatibility-breaking changes from the last release candi-
date (RC). This is not a strict rule, though; if there is a critical API bug that we have to fix for the major version, we
may add breaking changes to the major version up.

As for the backward compatibility, see API Compatibility Policy.

911

https://github.com/cupy/cupy
https://gitter.im/cupy/community
https://groups.google.com/forum/#!forum/cupy
https://stackoverflow.com/questions/tagged/cupy
https://www.python.org/dev/peps/pep-0440/
https://semver.org/

CuPy Documentation, Release 13.0.0

6.2.2 Release Cycle

The first one is the track of stable versions, which is a series of revision updates for the latest major version. The
second one is the track of development versions, which is a series of pre-releases for the upcoming major version.

Consider that X.0.0 is the latest major version and Y.0.0, Z.0.0 are the succeeding major versions. Then, the timeline
of the updates is depicted by the following table.

Date ver X ver Y ver Z
0 weeks X.0.0rc1 – –
4 weeks X.0.0 Y.0.0a1 –
8 weeks X.1.0* Y.0.0b1 –
12 weeks X.2.0* Y.0.0rc1 –
16 weeks – Y.0.0 Z.0.0a1

(* These might be revision releases)

The dates shown in the left-most column are relative to the release of X.0.0rc1. In particular, each revision/minor
release is made four weeks after the previous one of the same major version, and the pre-release of the upcoming major
version is made at the same time. Whether these releases are revision or minor is determined based on the contents of
each update.

Note that there are only three stable releases for the versions X.x.x. During the parallel development of Y.0.0 and
Z.0.0a1, the version Y is treated as an almost-stable version and Z is treated as a development version.

If there is a critical bug found in X.x.x after stopping the development of version X, we may release a hot-fix for this
version at any time.

We create a milestone for each upcoming release at GitHub. The GitHub milestone is basically used for collecting the
issues and PRs resolved in the release.

6.2.3 Git Branches

The main branch is used to develop pre-release versions. It means that alpha, beta, and RC updates are developed
at the main branch. This branch contains the most up-to-date source tree that includes features newly added after the
latest major version.

The stable version is developed at the individual branch named as vN where “N” reflects the version number (we call it
a versioned branch). For example, v1.0.0, v1.0.1, and v1.0.2 will be developed at the v1 branch.

Notes for contributors: When you send a pull request, you basically have to send it to the main branch. If the change
can also be applied to the stable version, a core team member will apply the same change to the stable version so that
the change is also included in the next revision update.

If the change is only applicable to the stable version and not to the main branch, please send it to the versioned branch.
We basically only accept changes to the latest versioned branch (where the stable version is developed) unless the fix
is critical.

If you want to make a new feature of the main branch available in the current stable version, please send a backport
PR to the stable version (the latest vN branch). See the next section for details.

Note: a change that can be applied to both branches should be sent to the main branch. Each release of the stable
version is also merged to the development version so that the change is also reflected to the next major version.

912 Chapter 6. Contribution Guide

CuPy Documentation, Release 13.0.0

6.2.4 Feature Backport PRs

We basically do not backport any new features of the development version to the stable versions. If you desire to include
the feature to the current stable version and you can work on the backport work, we welcome such a contribution. In
such a case, you have to send a backport PR to the latest vN branch. Note that we do not accept any feature backport
PRs to older versions because we are not running quality assurance workflows (e.g. CI) for older versions so
that we cannot ensure that the PR is correctly ported.
There are some rules on sending a backport PR.

• Start the PR title from the prefix [backport].
• Clarify the original PR number in the PR description (something like “This is a backport of #XXXX”).

• (optional) Write to the PR description the motivation of backporting the feature to the stable version.

Please follow these rules when you create a feature backport PR.

Note: PRs that do not include any changes/additions to APIs (e.g. bug fixes, documentation improvements) are usually
backported by core dev members. It is also appreciated to make such a backport PR by any contributors, though, so
that the overall development proceeds more smoothly!

6.3 Issues and Pull Requests

In this section, we explain how to send pull requests (PRs).

6.3.1 How to Send a Pull Request

If you can write code to fix an issue, we encourage to send a PR.

First of all, before starting to write any code, do not forget to confirm the following points.

• Read through the Coding Guidelines and Unit Testing.

• Check the appropriate branch that you should send the PR following Git Branches. If you do not have any idea
about selecting a branch, please choose the main branch.

In particular, check the branch before writing any code. The current source tree of the chosen branch is the starting
point of your change.

After writing your code (including unit tests and hopefully documentations!), send a PR on GitHub. You have to
write a precise explanation of what and how you fix; it is the first documentation of your code that developers read,
which is a very important part of your PR.

Once you send a PR, it is automatically tested on GitHub Actions. After the automatic test passes, core developers
will start reviewing your code. Note that this automatic PR test only includes CPU tests.

Note: We are also running continuous integration with GPU tests for the main branch and the versioned branch of the
latest major version. Since this service is currently running on our internal server, we do not use it for automatic PR
tests to keep the server secure.

If you are planning to add a new feature or modify existing APIs, it is recommended to open an issue and discuss
the design first. The design discussion needs lower cost for the core developers than code review. Following the
consequences of the discussions, you can send a PR that is smoothly reviewed in a shorter time.

6.3. Issues and Pull Requests 913

CuPy Documentation, Release 13.0.0

Even if your code is not complete, you can send a pull request as a work-in-progress PR by putting the [WIP] prefix
to the PR title. If you write a precise explanation about the PR, core developers and other contributors can join the
discussion about how to proceed the PR. WIP PR is also useful to have discussions based on a concrete code.

6.4 Coding Guidelines

Note: Coding guidelines are updated at v5.0. Those who have contributed to older versions should read the guidelines
again.

We use PEP8 and a part of OpenStack Style Guidelines related to general coding style as our basic style guidelines.

You can use autopep8 and flake8 commands to check your code.

In order to avoid confusion from using different tool versions, we pin the versions of those tools. Install them with the
following command (from within the top directory of CuPy repository):

$ pip install -e '.[stylecheck]'

And check your code with:

$ autopep8 path/to/your/code.py
$ flake8 path/to/your/code.py

To check Cython code, use .flake8.cython configuration file:

$ flake8 --config=.flake8.cython path/to/your/cython/code.pyx

The autopep8 supports automatically correct Python code to conform to the PEP 8 style guide:

$ autopep8 --in-place path/to/your/code.py

The flake8 command lets you know the part of your code not obeying our style guidelines. Before sending a pull
request, be sure to check that your code passes the flake8 checking.

Note that flake8 command is not perfect. It does not check some of the style guidelines. Here is a (not-complete) list
of the rules that flake8 cannot check.

• Relative imports are prohibited. [H304]

• Importing non-module symbols is prohibited.

• Import statements must be organized into three parts: standard libraries, third-party libraries, and internal im-
ports. [H306]

In addition, we restrict the usage of shortcut symbols in our code base. They are symbols imported by packages and
sub-packages of cupy. For example, cupy.cuda.Device is a shortcut of cupy.cuda.device.Device. It is not
allowed to use such shortcuts in the ``cupy`` library implementation. Note that you can still use them in tests and
examples directories.

Once you send a pull request, your coding style is automatically checked by GitHub Actions. The reviewing process
starts after the check passes.

The CuPy is designed based on NumPy’s API design. CuPy’s source code and documents contain the original NumPy
ones. Please note the followings when writing the document.

914 Chapter 6. Contribution Guide

https://www.python.org/dev/peps/pep-0008/
https://docs.openstack.org/developer/hacking/
https://github.com/cupy/cupy/tree/v13.0.0/tests
https://github.com/cupy/cupy/tree/v13.0.0/examples

CuPy Documentation, Release 13.0.0

• In order to identify overlapping parts, it is preferable to add some remarks that this document is just copied
or altered from the original one. It is also preferable to briefly explain the specification of the function in a
short paragraph, and refer to the corresponding function in NumPy so that users can read the detailed document.
However, it is possible to include a complete copy of the document with such a remark if users cannot summarize
in such a way.

• If a function in CuPy only implements a limited amount of features in the original one, users should explicitly
describe only what is implemented in the document.

For changes that modify or add new Cython files, please make sure the pointer types follow these guidelines (#1913).

• Pointers should be void* if only used within Cython, or intptr_t if exposed to the Python space.

• Memory sizes should be size_t.

• Memory offsets should be ptrdiff_t.

Note: We are incrementally enforcing the above rules, so some existing code may not follow the above guidelines, but
please ensure all new contributions do.

6.5 Unit Testing

Testing is one of the most important part of your code. You must write test cases and verify your implementation by
following our testing guide.

Note that we are using pytest and mock package for testing, so install them before writing your code:

$ pip install pytest mock

6.5.1 How to Run Tests

In order to run unit tests at the repository root, you first have to build Cython files in place by running the following
command:

$ pip install -e .

Note: When you modify *.pxd files, before running pip install -e ., you must clean *.cpp and *.so files once
with the following command, because Cython does not automatically rebuild those files nicely:

$ git clean -fdx

Once Cython modules are built, you can run unit tests by running the following command at the repository root:

$ python -m pytest

CUDA must be installed to run unit tests.

Some GPU tests require cuDNN to run. In order to skip unit tests that require cuDNN, specify -m='not cudnn'
option:

$ python -m pytest path/to/your/test.py -m='not cudnn'

6.5. Unit Testing 915

https://github.com/cupy/cupy/issues/1913

CuPy Documentation, Release 13.0.0

Some GPU tests involve multiple GPUs. If you want to run GPU tests with insufficient number of GPUs, specify the
number of available GPUs to CUPY_TEST_GPU_LIMIT. For example, if you have only one GPU, launch pytest by the
following command to skip multi-GPU tests:

$ export CUPY_TEST_GPU_LIMIT=1
$ python -m pytest path/to/gpu/test.py

Following this naming convention, you can run all the tests by running the following command at the repository root:

$ python -m pytest

Or you can also specify a root directory to search test scripts from:

$ python -m pytest tests/cupy_tests # to just run tests of CuPy
$ python -m pytest tests/install_tests # to just run tests of installation modules

If you modify the code related to existing unit tests, you must run appropriate commands.

6.5.2 Test File and Directory Naming Conventions

Tests are put into the tests/cupy_tests directory. In order to enable test runner to find test scripts correctly, we are using
special naming convention for the test subdirectories and the test scripts.

• The name of each subdirectory of tests must end with the _tests suffix.

• The name of each test script must start with the test_ prefix.

When we write a test for a module, we use the appropriate path and file name for the test script whose correspondence
to the tested module is clear. For example, if you want to write a test for a module cupy.x.y.z, the test script must be
located at tests/cupy_tests/x_tests/y_tests/test_z.py.

6.5.3 How to Write Tests

There are many examples of unit tests under the tests directory, so reading some of them is a good and recommended
way to learn how to write tests for CuPy. They simply use the unittest package of the standard library, while some
tests are using utilities from cupy.testing.

In addition to the Coding Guidelines mentioned above, the following rules are applied to the test code:

• All test classes must inherit from unittest.TestCase.

• Use unittest features to write tests, except for the following cases:

– Use assert statement instead of self.assert* methods (e.g., write assert x == 1 instead of self.
assertEqual(x, 1)).

– Use with pytest.raises(...): instead of with self.assertRaises(...):.

Note: We are incrementally applying the above style. Some existing tests may be using the old style (self.
assertRaises, etc.), but all newly written tests should follow the above style.

In order to write tests for multiple GPUs, use cupy.testing.multi_gpu() decorators instead:

916 Chapter 6. Contribution Guide

https://github.com/cupy/cupy/tree/v13.0.0/tests/cupy_tests
https://github.com/cupy/cupy/tree/v13.0.0/tests
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#module-unittest

CuPy Documentation, Release 13.0.0

import unittest
from cupy import testing

class TestMyFunc(unittest.TestCase):
...

@testing.multi_gpu(2) # specify the number of required GPUs here
def test_my_two_gpu_func(self):

...

If your test requires too much time, add cupy.testing.slow decorator. The test functions decorated by slow are
skipped if -m='not slow' is given:

import unittest
from cupy import testing

class TestMyFunc(unittest.TestCase):
...

@testing.slow
def test_my_slow_func(self):

...

Once you send a pull request, GitHub Actions automatically checks if your code meets our coding guidelines described
above. Since GitHub Actions does not support CUDA, we cannot run unit tests automatically. The reviewing process
starts after the automatic check passes. Note that reviewers will test your code without the option to check CUDA-
related code.

Note: Some of numerically unstable tests might cause errors irrelevant to your changes. In such a case, we ignore the
failures and go on to the review process, so do not worry about it!

6.6 Documentation

When adding a new feature to the framework, you also need to document it in the reference.

Note: If you are unsure about how to fix the documentation, you can submit a pull request without doing so. Reviewers
will help you fix the documentation appropriately.

The documentation source is stored under docs directory and written in reStructuredText format.

To build the documentation, you need to install Sphinx:

$ pip install -r docs/requirements.txt

Then you can build the documentation in HTML format locally:

$ cd docs
$ make html

6.6. Documentation 917

https://github.com/cupy/cupy/tree/main/docs
http://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
http://www.sphinx-doc.org/

CuPy Documentation, Release 13.0.0

HTML files are generated under build/html directory. Open index.html with the browser and see if it is rendered
as expected.

Note: Docstrings (documentation comments in the source code) are collected from the installed CuPy module. If you
modified docstrings, make sure to install the module (e.g., using pip install -e .) before building the documentation.

6.7 Tips for Developers

Here are some tips for developers hacking CuPy source code.

6.7.1 Install as Editable

During the development we recommend using pip with -e option to install as editable mode:

$ pip install -e .

Please note that even with -e, you will have to rerun pip install -e . to regenerate C++ sources using Cython if
you modified Cython source files (e.g., *.pyx files).

6.7.2 Use ccache

NVCC environment variable can be specified at the build time to use the custom command instead of nvcc . You can
speed up the rebuild using ccache (v3.4 or later) by:

$ export NVCC='ccache nvcc'

6.7.3 Limit Architecture

Use CUPY_NVCC_GENERATE_CODE environment variable to reduce the build time by limiting the target CUDA archi-
tectures. For example, if you only run your CuPy build with NVIDIA P100 and V100, you can use:

$ export CUPY_NVCC_GENERATE_CODE=arch=compute_60,code=sm_60;arch=compute_70,code=sm_70

See Environment variables for the description.

918 Chapter 6. Contribution Guide

https://ccache.dev/

CHAPTER

SEVEN

UPGRADE GUIDE

This page covers changes introduced in each major version that users should know when migrating from older releases.
Please see also the Compatibility Matrix for supported environments of each major version.

7.1 CuPy v13

7.1.1 Modernized CCCL support and requirement

NVIDIA’s CUDA C++ Core Libraries (CCCL) is the new home for the inter-dependent C++ libraries Thrust, CUB,
and libcu++ that are shipped with CUDA Toolkit 11.0+. To better serve our users with the latest CCCL features,
improvements, and bug fixes, starting CuPy v13 we bundle CCCL in the source and binary (pip/conda) releases of
CuPy. The same version of CCCL is used at both build-time (for building CuPy) and run-time (for JIT-compiling
kernels). This ensures uniform behavior, avoids surprises, and allows dual CUDA support as promised by CCCL
(currently CUDA 11 & 12), but this change leads to the following consequences distinct from the past releases:

• after the upgrade, the very first time of executing certain CuPy features may take longer than usual;

• the CCCL from any local CUDA installation is now ignored on purpose, either at build- or run- time;

• adventurous users who want to experiment with local CCCL changes need to update the CCCL submodule and
build CuPy from source;

As a result of this movement, CuPy now follows the same compiler requirement as CCCL (and, in turn, CUDA Toolkit)
and requires C++11 as the lowest C++ standard. CCCL expects to move to C++17 in the near future.

7.1.2 Requirement Changes

The following versions are no longer supported in CuPy v13.

• CUDA 11.1 or earlier

• cuDNN 8.7 or earlier

• cuTENSOR 1.x
– Support for cuTENSOR 2.0 is added starting with CuPy v13, and support for cuTENSOR 1.x will be

dropped. This is because there are significant API changes from cuTENSOR 1.x to 2.0, and from the
maintenance perspective, it is not practical to support both cuTENSOR 1.x and 2.0 APIs simultane-
ously.

• Python 3.8 or earlier

• NumPy 1.21 or earlier

• Ubuntu 18.04

919

CuPy Documentation, Release 13.0.0

7.1.3 NumPy/SciPy Baseline API Update

Baseline API has been bumped from NumPy 1.24 and SciPy 1.9 to NumPy 1.26 and SciPy 1.11. CuPy v13 will follow
the upstream products’ specifications of these baseline versions.

7.1.4 Change in cupy.asnumpy()/cupy.ndarray.get() Behavior

When transferring a CuPy array from GPU to CPU (as a NumPy array), previously the transfer could be nonblocking
and not properly ordered when a non-default stream is in use, leading to potential data race if the resulting array is
modified on host immediately after the copy starts. In CuPy v13, the default behavior is changed to be always blocking,
with a new optional argument blocking added to allow the previous nonblocking behavior if set to False, in which
case users are responsible for ensuring proper stream order.

7.1.5 Change in cupy.array()/cupy.asarray()/cupy.asanyarray() Behavior

When transferring a NumPy array from CPU to GPU, previously the transfer was always blocking even if the source
array is backed by pinned memory. In CuPy v13, the default behavior is changed to be asynchronous if the source array
is allocated as pinned to improve the performance.

A new optional argument blocking has been added to allow the previous blocking behavior if set to True. You might
want to set this option in case there is a possibility of overwriting the source array on CPU before the transfer completes.

7.1.6 Removal of cupy-wheel package

The cupy-wheel package, which aimed to serve as a “meta” package that chooses and installs the right CuPy binary
packages for the users’ environment, has been removed in CuPy v13. This is because the recent Pip no longer allows
changing requirements dynamically. See #7628 for the details.

7.1.7 API Changes

• An internal and undocumented API cupy.cuda.compile_with_cache(), which was marked deprecated in
CuPy v10, has been removed. We encourage downstream libraries and users to migrate to use public APIs,
such as RawModule (added in CuPy v7) or RawKernel (added in CuPy v5). See User-Defined Kernels for their
tutorials.

7.1.8 CUDA Runtime API is now statically linked

CuPy is now shipped with CUDA Runtime statically linked. Due to this, cupy.cuda.runtime.
runtimeGetVersion() always returns the version of CUDA Runtime that CuPy is built with, regardless of
the version of CUDA Runtime installed locally. If you need to retrieve the version of CUDA Runtime shared library
installed locally, use cupy.cuda.get_local_runtime_version() instead.

920 Chapter 7. Upgrade Guide

https://github.com/cupy/cupy/issues/7628

CuPy Documentation, Release 13.0.0

7.1.9 Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 12.2.

7.2 CuPy v12

7.2.1 Change in cupy.cuda.Device Behavior

The CUDA current device (set via cupy.cuda.Device.use() or cudaSetDevice()) will be reactivated when ex-
iting a device context manager. This reverts the change introduced in CuPy v10, making the behavior identical to the
one in CuPy v9 or earlier.

This decision was made for better interoperability with other libraries that might mutate the current CUDA device.
Suppose the following code:

def do_preprocess_cupy():
with cupy.cuda.Device(2):

...
pass

torch.cuda.set_device(1)
do_preprocess_cupy()
print(torch.cuda.get_device()) # -> ???

In CuPy v10 and v11, the code prints 0, which can be surprising for users. In CuPy v12, the code now prints 1, making
it easy for both users and library developers to maintain the current device where multiple devices are involved.

7.2.2 Deprecation of cupy.ndarray.scatter_{add,max,min}

These APIs have been marked as deprecated as cupy.{add,maximum,minimum}.at ufunc methods have been im-
plemented, which behave as equivalent and NumPy-compatible.

7.2.3 Requirement Changes

The following versions are no longer supported in CuPy v12.

• Python 3.7 or earlier

• NumPy 1.20 or earlier

• SciPy 1.6 or earlier

7.2. CuPy v12 921

CuPy Documentation, Release 13.0.0

7.2.4 Baseline API Update

Baseline API has been bumped from NumPy 1.23 and SciPy 1.8 to NumPy 1.24 and SciPy 1.9. CuPy v12 will follow
the upstream products’ specifications of these baseline versions.

7.2.5 Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 11.8.

7.3 CuPy v11

7.3.1 Unified Binary Package for CUDA 11.2+

CuPy v11 provides a unified binary package named cupy-cuda11x that supports all CUDA 11.2+ releases. This
replaces per-CUDA version binary packages (cupy-cuda112 ~ cupy-cuda117).

Note that CUDA 11.1 or earlier still requires per-CUDA version binary packages. cupy-cuda102, cupy-cuda110,
and cupy-cuda111 will be provided for CUDA 10.2, 11.0, and 11.1, respectively.

7.3.2 Requirement Changes

The following versions are no longer supported in CuPy v11.

• ROCm 4.2 or earlier

• NumPy 1.19 or earlier

• SciPy 1.5 or earlier

7.3.3 CUB Enabled by Default

CuPy v11 accelerates the computation with CUB by default. In case needed, you can turn it off by setting
CUPY_ACCELERATORS environment variable to "".

7.3.4 Baseline API Update

Baseline API has been bumped from NumPy 1.21 and SciPy 1.7 to NumPy 1.23 and SciPy 1.8. CuPy v11 will follow
the upstream products’ specifications of these baseline versions.

7.3.5 Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 11.7 and ROCm 5.0.

922 Chapter 7. Upgrade Guide

CuPy Documentation, Release 13.0.0

7.4 CuPy v10

7.4.1 Dropping CUDA 9.2 / 10.0 / 10.1 Support

CUDA 10.1 or earlier is no longer supported. Use CUDA 10.2 or later.

7.4.2 Dropping NCCL v2.4 / v2.6 / v2.7 Support

NCCL v2.4, v2.6, and v2.7 are no longer supported.

7.4.3 Dropping Python 3.6 Support

Python 3.6 is no longer supported.

7.4.4 Dropping NumPy 1.17 Support

NumPy 1.17 is no longer supported.

7.4.5 Change in cupy.cuda.Device Behavior

Current device set via use() will not be honored by the with Device block

Note: This change has been reverted in CuPy v12. See CuPy v12 section above for details.

The current device set via cupy.cuda.Device.use() will not be reactivated when exiting a device context manager.
An existing code mixing with device: block and device.use() may get different results between CuPy v10 and
v9.

cupy.cuda.Device(1).use()
with cupy.cuda.Device(0):

pass
cupy.cuda.Device() # -> CuPy v10 returns device 0 instead of device 1

This decision was made to serve CuPy users better, but it could lead to surprises to downstream developers depending
on CuPy, as essentially CuPy’s Device context manager no longer respects the CUDA cudaSetDevice()API. Mixing
device management functionalities (especially using context manager) from different libraries is highly discouraged.

For downstream libraries that still wish to respect the cudaGetDevice()/cudaSetDevice() APIs, you should avoid
managing current devices using the with Device context manager, and instead calling these APIs explicitly, see for
example cupy/cupy#5963.

7.4. CuPy v10 923

https://github.com/cupy/cupy/pull/5963

CuPy Documentation, Release 13.0.0

7.4.6 Changes in cupy.cuda.Stream Behavior

Stream is now managed per-device

Previoulys, it was users’ responsibility to keep the current stream consistent with the current CUDA device. For exam-
ple, the following code raises an error in CuPy v9 or earlier:

import cupy

with cupy.cuda.Device(0):
Create a stream on device 0.
s0 = cupy.cuda.Stream()

with cupy.cuda.Device(1):
with s0:

Try to use the stream on device 1
cupy.arange(10) # -> CUDA_ERROR_INVALID_HANDLE: invalid resource handle

CuPy v10 manages the current stream per-device, thus eliminating the need of switching the stream every time the
active device is changed. When using CuPy v10, the above example behaves differently because whenever a stream
is created, it is automatically associated with the current device and will be ignored when switching devices. In early
versions, trying to use s0 in device 1 raises an error because s0 is associated with device 0. However, in v10, this s0 is
ignored and the default stream for device 1 will be used instead.

Current stream set via use() will not be restored when exiting with block

Samely as the change of cupy.cuda.Device above, the current stream set via cupy.cuda.Stream.use()will not be
reactivated when exiting a stream context manager. An existing code mixing with stream: block and stream.use()
may get different results between CuPy v10 and v9.

s1 = cupy.cuda.Stream()
s2 = cupy.cuda.Stream()
s3 = cupy.cuda.Stream()
with s1:

s2.use()
with s3:

pass
cupy.cuda.get_current_stream() # -> CuPy v10 returns `s1` instead of `s2`.

Streams can now be shared between threads

The same cupy.cuda.Stream instance can now safely be shared between multiple threads.

To achieve this, CuPy v10 will not destroy the stream (cudaStreamDestroy) if the stream is the current stream of any
thread.

924 Chapter 7. Upgrade Guide

CuPy Documentation, Release 13.0.0

7.4.7 Big-Endian Arrays Automatically Converted to Little-Endian

cupy.array(), cupy.asarray() and its variants now always transfer the data to GPU in little-endian byte order.

Previously CuPy was copying the given numpy.ndarray to GPU as-is, regardless of the endianness. In CuPy v10,
big-endian arrays are converted to little-endian before the transfer, which is the native byte order on GPUs. This change
eliminates the need to manually change the array endianness before creating the CuPy array.

7.4.8 Baseline API Update

Baseline API has been bumped from NumPy 1.20 and SciPy 1.6 to NumPy 1.21 and SciPy 1.7. CuPy v10 will follow
the upstream products’ specifications of these baseline versions.

7.4.9 API Changes

• Device synchronize detection APIs (cupyx.allow_synchronize() and cupyx.DeviceSynchronized), in-
troduced as an experimental feature in CuPy v8, have been marked as deprecated because it is impossible to
detect synchronizations reliably.

• An internal API cupy.cuda.compile_with_cache() has been marked as deprecated as there are better alter-
natives (see RawModule added since CuPy v7 and RawKernel since v5). While it has a longstanding history,
this API has never been meant to be public. We encourage downstream libraries and users to migrate to the
aforementioned public APIs. See User-Defined Kernels for their tutorials.

• The DLPack routine cupy.fromDlpack() is deprecated in favor of cupy.from_dlpack(), which addresses
potential data race issues.

• A new module cupyx.profiler is added to host all profiling related APIs in CuPy. Accordingly, the following
APIs are relocated to this module as follows. The old routines are deprecated.

– cupy.prof.TimeRangeDecorator() -> cupyx.profiler.time_range()

– cupy.prof.time_range() -> cupyx.profiler.time_range()

– cupy.cuda.profile() -> cupyx.profiler.profile()

– cupyx.time.repeat() -> cupyx.profiler.benchmark()

• cupy.ndarray.__pos__() now returns a copy (samely as cupy.positive()) instead of returning self.

Note that deprecated APIs may be removed in the future CuPy releases.

7.4.10 Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 11.4 and ROCm 4.3.

7.4. CuPy v10 925

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

CuPy Documentation, Release 13.0.0

7.5 CuPy v9

7.5.1 Dropping Support of CUDA 9.0

CUDA 9.0 is no longer supported. Use CUDA 9.2 or later.

7.5.2 Dropping Support of cuDNN v7.5 and NCCL v2.3

cuDNN v7.5 (or earlier) and NCCL v2.3 (or earlier) are no longer supported.

7.5.3 Dropping Support of NumPy 1.16 and SciPy 1.3

NumPy 1.16 and SciPy 1.3 are no longer supported.

7.5.4 Dropping Support of Python 3.5

Python 3.5 is no longer supported in CuPy v9.

7.5.5 NCCL and cuDNN No Longer Included in Wheels

NCCL and cuDNN shared libraires are no longer included in wheels (see #4850 for discussions). You can manually
install them after installing wheel if you don’t have a previous installation; see Installation for details.

7.5.6 cuTENSOR Enabled in Wheels

cuTENSOR can now be used when installing CuPy via wheels.

7.5.7 cupy.cuda.{nccl,cudnn} Modules Needs Explicit Import

Previously cupy.cuda.nccl and cupy.cuda.cudnn modules were automatically imported. Since CuPy v9, these
modules need to be explicitly imported (i.e., import cupy.cuda.nccl / import cupy.cuda.cudnn.)

7.5.8 Baseline API Update

Baseline API has been bumped from NumPy 1.19 and SciPy 1.5 to NumPy 1.20 and SciPy 1.6. CuPy v9 will follow
the upstream products’ specifications of these baseline versions.

Following NumPy 1.20, aliases for the Python scalar types (cupy.bool, cupy.int, cupy.float, and cupy.complex)
are now deprecated. cupy.bool_, cupy.int_, cupy.float_ and cupy.complex_ should be used instead when
required.

926 Chapter 7. Upgrade Guide

https://github.com/cupy/cupy/issues/4850

CuPy Documentation, Release 13.0.0

7.5.9 Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 11.2 and Python 3.8.

7.6 CuPy v8

7.6.1 Dropping Support of CUDA 8.0 and 9.1

CUDA 8.0 and 9.1 are no longer supported. Use CUDA 9.0, 9.2, 10.0, or later.

7.6.2 Dropping Support of NumPy 1.15 and SciPy 1.2

NumPy 1.15 (or earlier) and SciPy 1.2 (or earlier) are no longer supported.

7.6.3 Update of Docker Images

• CuPy official Docker images (see Installation for details) are now updated to use CUDA 10.2 and Python 3.6.

• SciPy and Optuna are now pre-installed.

7.6.4 CUB Support and Compiler Requirement

CUB module is now built by default. You can enable the use of CUB by setting CUPY_ACCELERATORS="cub" (see
CUPY_ACCELERATORS for details).

Due to this change, g++-6 or later is required when building CuPy from the source. See Installation for details.

The following environment variables are no longer effective:

• CUB_DISABLED: Use CUPY_ACCELERATORS as aforementioned.

• CUB_PATH: No longer required as CuPy uses either the CUB source bundled with CUDA (only when using CUDA
11.0 or later) or the one in the CuPy distribution.

7.6.5 API Changes

• cupy.scatter_add, which was deprecated in CuPy v4, has been removed. Use cupyx.scatter_add() in-
stead.

• cupy.sparse module has been deprecated and will be removed in future releases. Use cupyx.scipy.sparse
instead.

• dtype argument of cupy.ndarray.min() and cupy.ndarray.max() has been removed to align with the
NumPy specification.

• cupy.allclose() now returns the result as 0-dim GPU array instead of Python bool to avoid device synchro-
nization.

• cupy.RawModule now delays the compilation to the time of the first call to align the behavior with cupy.
RawKernel.

• cupy.cuda.*_enabled flags (nccl_enabled, nvtx_enabled, etc.) has been deprecated. Use cupy.cuda.
*.available flag (cupy.cuda.nccl.available, cupy.cuda.nvtx.available, etc.) instead.

7.6. CuPy v8 927

CuPy Documentation, Release 13.0.0

• CHAINER_SEED environment variable is no longer effective. Use CUPY_SEED instead.

7.7 CuPy v7

7.7.1 Dropping Support of Python 2.7 and 3.4

Starting from CuPy v7, Python 2.7 and 3.4 are no longer supported as it reaches its end-of-life (EOL) in January 2020
(2.7) and March 2019 (3.4). Python 3.5.1 is the minimum Python version supported by CuPy v7. Please upgrade the
Python version if you are using affected versions of Python to any later versions listed under Installation.

7.8 CuPy v6

7.8.1 Binary Packages Ignore LD_LIBRARY_PATH

Prior to CuPy v6, LD_LIBRARY_PATH environment variable can be used to override cuDNN / NCCL libraries bundled
in the binary distribution (also known as wheels). In CuPy v6, LD_LIBRARY_PATH will be ignored during discovery of
cuDNN / NCCL; CuPy binary distributions always use libraries that comes with the package to avoid errors caused by
unexpected override.

7.9 CuPy v5

7.9.1 cupyx.scipy Namespace

cupyx.scipy namespace has been introduced to provide CUDA-enabled SciPy functions. cupy.sparse module has
been renamed to cupyx.scipy.sparse; cupy.sparse will be kept as an alias for backward compatibility.

7.9.2 Dropped Support for CUDA 7.0 / 7.5

CuPy v5 no longer supports CUDA 7.0 / 7.5.

7.9.3 Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 9.2 and cuDNN 7.

To use these images, you may need to upgrade the NVIDIA driver on your host. See Requirements of nvidia-docker
for details.

928 Chapter 7. Upgrade Guide

https://github.com/NVIDIA/nvidia-docker/wiki/CUDA#requirements

CuPy Documentation, Release 13.0.0

7.10 CuPy v4

Note: The version number has been bumped from v2 to v4 to align with the versioning of Chainer. Therefore, CuPy
v3 does not exist.

7.10.1 Default Memory Pool

Prior to CuPy v4, memory pool was only enabled by default when CuPy is used with Chainer. In CuPy v4, memory
pool is now enabled by default, even when you use CuPy without Chainer. The memory pool significantly improves
the performance by mitigating the overhead of memory allocation and CPU/GPU synchronization.

Attention: When you monitor GPU memory usage (e.g., using nvidia-smi), you may notice that GPU memory
not being freed even after the array instance become out of scope. This is expected behavior, as the default memory
pool “caches” the allocated memory blocks.

To access the default memory pool instance, use get_default_memory_pool() and
get_default_pinned_memory_pool(). You can access the statistics and free all unused memory blocks
“cached” in the memory pool.

import cupy
a = cupy.ndarray(100, dtype=cupy.float32)
mempool = cupy.get_default_memory_pool()

For performance, the size of actual allocation may become larger than the requested␣
→˓array size.
print(mempool.used_bytes()) # 512
print(mempool.total_bytes()) # 512

Even if the array goes out of scope, its memory block is kept in the pool.
a = None
print(mempool.used_bytes()) # 0
print(mempool.total_bytes()) # 512

You can clear the memory block by calling `free_all_blocks`.
mempool.free_all_blocks()
print(mempool.used_bytes()) # 0
print(mempool.total_bytes()) # 0

You can even disable the default memory pool by the code below. Be sure to do this before any other CuPy operations.

import cupy
cupy.cuda.set_allocator(None)
cupy.cuda.set_pinned_memory_allocator(None)

7.10. CuPy v4 929

CuPy Documentation, Release 13.0.0

7.10.2 Compute Capability

CuPy v4 now requires NVIDIA GPU with Compute Capability 3.0 or larger. See the List of CUDA GPUs to check if
your GPU supports Compute Capability 3.0.

7.10.3 CUDA Stream

As CUDA Stream is fully supported in CuPy v4, cupy.cuda.RandomState.set_stream, the function to change the
stream used by the random number generator, has been removed. Please use cupy.cuda.Stream.use() instead.

See the discussion in #306 for more details.

7.10.4 cupyx Namespace

cupyx namespace has been introduced to provide features specific to CuPy (i.e., features not provided in NumPy) while
avoiding collision in future. See CuPy-specific functions for the list of such functions.

For this rule, cupy.scatter_add() has been moved to cupyx.scatter_add(). cupy.scatter_add() is still
available as an alias, but it is encouraged to use cupyx.scatter_add() instead.

7.10.5 Update of Docker Images

CuPy official Docker images (see Installation for details) are now updated to use CUDA 8.0 and cuDNN 6.0. This
change was introduced because CUDA 7.5 does not support NVIDIA Pascal GPUs.

To use these images, you may need to upgrade the NVIDIA driver on your host. See Requirements of nvidia-docker
for details.

7.11 CuPy v2

7.11.1 Changed Behavior of count_nonzero Function

For performance reasons, cupy.count_nonzero() has been changed to return zero-dimensional ndarray instead of
int when axis=None. See the discussion in #154 for more details.

930 Chapter 7. Upgrade Guide

https://developer.nvidia.com/cuda-gpus
https://github.com/cupy/cupy/pull/306
https://github.com/NVIDIA/nvidia-docker/wiki/CUDA#requirements
https://github.com/cupy/cupy/pull/154

CuPy Documentation, Release 13.0.0

7.12 Compatibility Matrix

CuPy CCPage 931, 1CUDA ROCm cuTEN-
SOR

NCCL cuDNNPython NumPySciPy Baseline
API Spec.

Docs

v13 3.5~ 11.2~ 4.3~ 2.0~ 2.16~ 8.8~ 3.9~ 1.22~ 1.7~ NumPy 1.26
& SciPy
1.11

lat-
est

v12 3.0~9.0 10.2~12.x4.3 & 5.0 1.4~1.7 2.8~2.17 7.6~8.83.8~3.12 1.21~1.261.7~1.11 NumPy 1.24
& SciPy 1.9

sta-
ble

v11 3.0~9.0 10.2~12.04.3 & 5.0 1.4~1.6 2.8~2.16 7.6~8.73.7~3.11 1.20~1.241.6~1.9 NumPy 1.23
& SciPy 1.8

v11.6.0

v10 3.0~8.x 10.2~11.74.0 & 4.2
& 4.3 &
5.0

1.3~1.5 2.8~2.11 7.6~8.43.7~3.10 1.18~1.221.4~1.8 NumPy 1.21
& SciPy 1.7

v10.6.0

v9 3.0~8.x 9.2~11.5 3.5~4.3 1.2~1.3 2.4 &
2.6~2.11

7.6~8.23.6~3.9 1.17~1.211.4~1.7 NumPy 1.20
& SciPy 1.6

v9.6.0

v8 3.0~8.x 9.0 &
9.2~11.2

3.x2 1.2 2.0~2.8 7.0~8.13.5~3.9 1.16~1.201.3~1.6 NumPy 1.19
& SciPy 1.5

v8.6.0

v7 3.0~8.x 8.0~11.0 2.x2 1.0 1.3~2.7 5.0~8.03.5~3.8 1.9~1.19(not
speci-
fied)

(not speci-
fied)

v7.8.0

v6 3.0~7.x 8.0~10.1 n/a n/a 1.3~2.4 5.0~7.52.7 &
3.4~3.8

1.9~1.17(not
speci-
fied)

(not speci-
fied)

v6.7.0

v5 3.0~7.x 8.0~10.1 n/a n/a 1.3~2.4 5.0~7.52.7 &
3.4~3.7

1.9~1.16(not
speci-
fied)

(not speci-
fied)

v5.4.0

v4 3.0~7.x 7.0~9.2 n/a n/a 1.3~2.2 4.0~7.12.7 &
3.4~3.6

1.9~1.14(not
speci-
fied)

(not speci-
fied)

v4.5.0

1 CUDA Compute Capability
2 Highly experimental support with limited features.

7.12. Compatibility Matrix 931

https://docs.cupy.dev/en/latest/install.html
https://docs.cupy.dev/en/latest/install.html
https://docs.cupy.dev/en/stable/install.html
https://docs.cupy.dev/en/stable/install.html
https://docs.cupy.dev/en/v11.6.0/install.html
https://docs.cupy.dev/en/v10.6.0/install.html
https://docs.cupy.dev/en/v9.6.0/install.html
https://docs.cupy.dev/en/v8.6.0/install.html
https://docs.cupy.dev/en/v7.8.0/install.html
https://docs.cupy.dev/en/v6.7.0/install.html
https://docs.cupy.dev/en/v5.4.0/install.html
https://docs.cupy.dev/en/v4.5.0/install.html

CuPy Documentation, Release 13.0.0

932 Chapter 7. Upgrade Guide

CHAPTER

EIGHT

LICENSE

Copyright (c) 2015 Preferred Infrastructure, Inc.

Copyright (c) 2015 Preferred Networks, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

8.1 NumPy

The CuPy is designed based on NumPy’s API. CuPy’s source code and documents contain the original NumPy ones.

Copyright (c) 2005-2016, NumPy Developers.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the NumPy Developers nor the names of any contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

933

CuPy Documentation, Release 13.0.0

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

8.2 SciPy

The CuPy is designed based on SciPy’s API. CuPy’s source code and documents contain the original SciPy ones.

Copyright (c) 2001, 2002 Enthought, Inc.

All rights reserved.

Copyright (c) 2003-2016 SciPy Developers.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

c. Neither the name of Enthought nor the names of the SciPy Developers may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

8.3 cuSignal

Part of CuPy’s signal processing routines and their documentation are ported from RAPIDS cuSignal.

Copyright (c) 2019-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

934 Chapter 8. License

https://github.com/rapidsai/cusignal

CuPy Documentation, Release 13.0.0

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

8.3. cuSignal 935

CuPy Documentation, Release 13.0.0

936 Chapter 8. License

PYTHON MODULE INDEX

c
cupy, ??
cupy.array_api, 895
cupy.fft, 138
cupy.linalg, 173
cupy.polynomial.polynomial, 217
cupy.polynomial.polyutils, 220
cupy.random, 227
cupy.testing, 301
cupyx.distributed, 835
cupyx.distributed.array, 840
cupyx.optimizing, 746
cupyx.scipy, 318
cupyx.scipy.fft, 318
cupyx.scipy.fftpack, 340
cupyx.scipy.interpolate, 347
cupyx.scipy.linalg, 392
cupyx.scipy.ndimage, 405
cupyx.scipy.signal, 455
cupyx.scipy.signal.windows, 596
cupyx.scipy.sparse, 624
cupyx.scipy.sparse.csgraph, 690
cupyx.scipy.sparse.linalg, 676
cupyx.scipy.spatial, 691
cupyx.scipy.spatial.distance, 692
cupyx.scipy.special, 700
cupyx.scipy.stats, 733

937

CuPy Documentation, Release 13.0.0

938 Python Module Index

INDEX

Symbols
_JitRawKernel (class in cupyx.jit._interface), 833
__bool__() (cupy.array_api._array_object.Array

method), 908
__bool__() (cupy.ndarray method), 68
__bool__() (cupyx.distributed.array.DistributedArray

method), 845
__bool__() (cupyx.scipy.sparse.coo_matrix method),

633
__bool__() (cupyx.scipy.sparse.csc_matrix method),

643
__bool__() (cupyx.scipy.sparse.csr_matrix method),

653
__bool__() (cupyx.scipy.sparse.dia_matrix method),

660
__bool__() (cupyx.scipy.sparse.spmatrix method), 665
__call__() (cupy.ElementwiseKernel method), 813
__call__() (cupy.RawKernel method), 817
__call__() (cupy.ReductionKernel method), 815
__call__() (cupy.poly1d method), 222
__call__() (cupy.ufunc method), 73
__call__() (cupy.vectorize method), 151
__call__() (cupyx.GeneralizedUFunc method), 97
__call__() (cupyx.jit._interface._JitRawKernel

method), 833
__call__() (cupyx.profiler.time_range method), 744
__call__() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 363
__call__() (cupyx.scipy.interpolate.BPoly method),

372
__call__() (cupyx.scipy.interpolate.BSpline method),

377
__call__() (cupyx.scipy.interpolate.BarycentricInterpolator

method), 349
__call__() (cupyx.scipy.interpolate.CubicHermiteSpline

method), 354
__call__() (cupyx.scipy.interpolate.KroghInterpolator

method), 350
__call__() (cupyx.scipy.interpolate.NdPPoly method),

390
__call__() (cupyx.scipy.interpolate.PPoly method),

367

__call__() (cupyx.scipy.interpolate.PchipInterpolator
method), 358

__call__() (cupyx.scipy.interpolate.RBFInterpolator
method), 383

__call__() (cupyx.scipy.interpolate.RegularGridInterpolator
method), 388

__call__() (cupyx.scipy.signal.CZT method), 593
__call__() (cupyx.scipy.signal.ZoomFFT method), 595
__call__() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
__copy__() (cupy.ndarray method), 59
__copy__() (cupyx.distributed.array.DistributedArray

method), 841
__enter__() (cupy.cuda.Device method), 747
__enter__() (cupy.cuda.ExternalStream method), 782
__enter__() (cupy.cuda.MemoryHook method), 772
__enter__() (cupy.cuda.Stream method), 779
__enter__() (cupy.cuda.memory_hooks.DebugPrintHook

method), 774
__enter__() (cupy.cuda.memory_hooks.LineProfileHook

method), 776
__enter__() (cupy.fft.config.set_cufft_callbacks

method), 149
__enter__() (cupyx.profiler.time_range method), 744
__eq__() (cupy.ElementwiseKernel method), 813
__eq__() (cupy.RawKernel method), 817
__eq__() (cupy.RawModule method), 821
__eq__() (cupy.ReductionKernel method), 815
__eq__() (cupy.array_api._array_object.Array method),

908
__eq__() (cupy.broadcast method), 119
__eq__() (cupy.cuda.CFunctionAllocator method), 770
__eq__() (cupy.cuda.Device method), 748
__eq__() (cupy.cuda.Event method), 786
__eq__() (cupy.cuda.ExternalStream method), 784
__eq__() (cupy.cuda.Graph method), 787
__eq__() (cupy.cuda.ManagedMemory method), 753
__eq__() (cupy.cuda.Memory method), 751
__eq__() (cupy.cuda.MemoryAsync method), 752
__eq__() (cupy.cuda.MemoryAsyncPool method), 767
__eq__() (cupy.cuda.MemoryHook method), 773
__eq__() (cupy.cuda.MemoryPointer method), 759

939

CuPy Documentation, Release 13.0.0

__eq__() (cupy.cuda.MemoryPool method), 765
__eq__() (cupy.cuda.PinnedMemory method), 756
__eq__() (cupy.cuda.PinnedMemoryPointer method),

760
__eq__() (cupy.cuda.PinnedMemoryPool method), 768
__eq__() (cupy.cuda.PythonFunctionAllocator method),

769
__eq__() (cupy.cuda.Stream method), 781
__eq__() (cupy.cuda.UnownedMemory method), 755
__eq__() (cupy.cuda.memory_hooks.DebugPrintHook

method), 775
__eq__() (cupy.cuda.memory_hooks.LineProfileHook

method), 777
__eq__() (cupy.cuda.nccl.NcclCommunicator method),

798
__eq__() (cupy.cuda.texture.CUDAarray method), 790
__eq__() (cupy.cuda.texture.ChannelFormatDescriptor

method), 788
__eq__() (cupy.cuda.texture.ResourceDescriptor

method), 791
__eq__() (cupy.cuda.texture.SurfaceObject method),

794
__eq__() (cupy.cuda.texture.TextureDescriptor method),

793
__eq__() (cupy.cuda.texture.TextureObject method),

793
__eq__() (cupy.fft.config.set_cufft_callbacks method),

149
__eq__() (cupy.flatiter method), 168
__eq__() (cupy.ndarray method), 68
__eq__() (cupy.poly1d method), 222
__eq__() (cupy.random.BitGenerator method), 237
__eq__() (cupy.random.Generator method), 236
__eq__() (cupy.random.MRG32k3a method), 239
__eq__() (cupy.random.Philox4x3210 method), 241
__eq__() (cupy.random.RandomState method), 250
__eq__() (cupy.random.XORWOW method), 238
__eq__() (cupy.ufunc method), 74
__eq__() (cupy.vectorize method), 151
__eq__() (cupyx.GeneralizedUFunc method), 97
__eq__() (cupyx.distributed.NCCLBackend method),

839
__eq__() (cupyx.distributed.array.DistributedArray

method), 845
__eq__() (cupyx.jit._interface._JitRawKernel method),

834
__eq__() (cupyx.profiler.time_range method), 744
__eq__() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 366
__eq__() (cupyx.scipy.interpolate.BPoly method), 375
__eq__() (cupyx.scipy.interpolate.BSpline method), 379
__eq__() (cupyx.scipy.interpolate.BarycentricInterpolator

method), 349
__eq__() (cupyx.scipy.interpolate.CubicHermiteSpline

method), 357
__eq__() (cupyx.scipy.interpolate.KroghInterpolator

method), 351
__eq__() (cupyx.scipy.interpolate.NdPPoly method),

392
__eq__() (cupyx.scipy.interpolate.PPoly method), 370
__eq__() (cupyx.scipy.interpolate.PchipInterpolator

method), 361
__eq__() (cupyx.scipy.interpolate.RBFInterpolator

method), 383
__eq__() (cupyx.scipy.interpolate.RegularGridInterpolator

method), 389
__eq__() (cupyx.scipy.signal.CZT method), 593
__eq__() (cupyx.scipy.signal.StateSpace method), 540
__eq__() (cupyx.scipy.signal.TransferFunction method),

542
__eq__() (cupyx.scipy.signal.ZerosPolesGain method),

544
__eq__() (cupyx.scipy.signal.ZoomFFT method), 595
__eq__() (cupyx.scipy.signal.dlti method), 550
__eq__() (cupyx.scipy.signal.lti method), 539
__eq__() (cupyx.scipy.sparse.coo_matrix method), 632
__eq__() (cupyx.scipy.sparse.csc_matrix method), 642
__eq__() (cupyx.scipy.sparse.csr_matrix method), 653
__eq__() (cupyx.scipy.sparse.dia_matrix method), 660
__eq__() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
__eq__() (cupyx.scipy.sparse.linalg.SuperLU method),

690
__eq__() (cupyx.scipy.sparse.spmatrix method), 665
__exit__() (cupy.cuda.Device method), 747
__exit__() (cupy.cuda.ExternalStream method), 782
__exit__() (cupy.cuda.MemoryHook method), 772
__exit__() (cupy.cuda.Stream method), 779
__exit__() (cupy.cuda.memory_hooks.DebugPrintHook

method), 774
__exit__() (cupy.cuda.memory_hooks.LineProfileHook

method), 776
__exit__() (cupy.fft.config.set_cufft_callbacks method),

149
__exit__() (cupyx.profiler.time_range method), 744
__ge__() (cupy.ElementwiseKernel method), 813
__ge__() (cupy.RawKernel method), 817
__ge__() (cupy.RawModule method), 821
__ge__() (cupy.ReductionKernel method), 815
__ge__() (cupy.array_api._array_object.Array method),

908
__ge__() (cupy.broadcast method), 119
__ge__() (cupy.cuda.CFunctionAllocator method), 770
__ge__() (cupy.cuda.Device method), 748
__ge__() (cupy.cuda.Event method), 786
__ge__() (cupy.cuda.ExternalStream method), 784
__ge__() (cupy.cuda.Graph method), 787
__ge__() (cupy.cuda.ManagedMemory method), 754

940 Index

CuPy Documentation, Release 13.0.0

__ge__() (cupy.cuda.Memory method), 751
__ge__() (cupy.cuda.MemoryAsync method), 752
__ge__() (cupy.cuda.MemoryAsyncPool method), 768
__ge__() (cupy.cuda.MemoryHook method), 773
__ge__() (cupy.cuda.MemoryPointer method), 759
__ge__() (cupy.cuda.MemoryPool method), 765
__ge__() (cupy.cuda.PinnedMemory method), 756
__ge__() (cupy.cuda.PinnedMemoryPointer method),

760
__ge__() (cupy.cuda.PinnedMemoryPool method), 769
__ge__() (cupy.cuda.PythonFunctionAllocator method),

769
__ge__() (cupy.cuda.Stream method), 781
__ge__() (cupy.cuda.UnownedMemory method), 755
__ge__() (cupy.cuda.memory_hooks.DebugPrintHook

method), 775
__ge__() (cupy.cuda.memory_hooks.LineProfileHook

method), 778
__ge__() (cupy.cuda.nccl.NcclCommunicator method),

798
__ge__() (cupy.cuda.texture.CUDAarray method), 790
__ge__() (cupy.cuda.texture.ChannelFormatDescriptor

method), 789
__ge__() (cupy.cuda.texture.ResourceDescriptor

method), 792
__ge__() (cupy.cuda.texture.SurfaceObject method),

794
__ge__() (cupy.cuda.texture.TextureDescriptor method),

793
__ge__() (cupy.cuda.texture.TextureObject method),

794
__ge__() (cupy.fft.config.set_cufft_callbacks method),

149
__ge__() (cupy.flatiter method), 168
__ge__() (cupy.ndarray method), 68
__ge__() (cupy.poly1d method), 223
__ge__() (cupy.random.BitGenerator method), 237
__ge__() (cupy.random.Generator method), 236
__ge__() (cupy.random.MRG32k3a method), 240
__ge__() (cupy.random.Philox4x3210 method), 241
__ge__() (cupy.random.RandomState method), 250
__ge__() (cupy.random.XORWOW method), 239
__ge__() (cupy.ufunc method), 74
__ge__() (cupy.vectorize method), 152
__ge__() (cupyx.GeneralizedUFunc method), 98
__ge__() (cupyx.distributed.NCCLBackend method),

839
__ge__() (cupyx.distributed.array.DistributedArray

method), 845
__ge__() (cupyx.jit._interface._JitRawKernel method),

834
__ge__() (cupyx.profiler.time_range method), 745
__ge__() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 366

__ge__() (cupyx.scipy.interpolate.BPoly method), 375
__ge__() (cupyx.scipy.interpolate.BSpline method), 379
__ge__() (cupyx.scipy.interpolate.BarycentricInterpolator

method), 350
__ge__() (cupyx.scipy.interpolate.CubicHermiteSpline

method), 357
__ge__() (cupyx.scipy.interpolate.KroghInterpolator

method), 351
__ge__() (cupyx.scipy.interpolate.NdPPoly method),

392
__ge__() (cupyx.scipy.interpolate.PPoly method), 371
__ge__() (cupyx.scipy.interpolate.PchipInterpolator

method), 362
__ge__() (cupyx.scipy.interpolate.RBFInterpolator

method), 384
__ge__() (cupyx.scipy.interpolate.RegularGridInterpolator

method), 389
__ge__() (cupyx.scipy.signal.CZT method), 594
__ge__() (cupyx.scipy.signal.StateSpace method), 541
__ge__() (cupyx.scipy.signal.TransferFunction method),

542
__ge__() (cupyx.scipy.signal.ZerosPolesGain method),

544
__ge__() (cupyx.scipy.signal.ZoomFFT method), 595
__ge__() (cupyx.scipy.signal.dlti method), 550
__ge__() (cupyx.scipy.signal.lti method), 539
__ge__() (cupyx.scipy.sparse.coo_matrix method), 632
__ge__() (cupyx.scipy.sparse.csc_matrix method), 643
__ge__() (cupyx.scipy.sparse.csr_matrix method), 653
__ge__() (cupyx.scipy.sparse.dia_matrix method), 660
__ge__() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
__ge__() (cupyx.scipy.sparse.linalg.SuperLU method),

690
__ge__() (cupyx.scipy.sparse.spmatrix method), 665
__getitem__() (cupy.array_api._array_object.Array

method), 908
__getitem__() (cupy.flatiter method), 168
__getitem__() (cupy.ndarray method), 58
__getitem__() (cupy.poly1d method), 222
__getitem__() (cupyx.distributed.array.DistributedArray

method), 841
__getitem__() (cupyx.jit._interface._JitRawKernel

method), 833
__getitem__() (cupyx.scipy.sparse.csc_matrix

method), 634
__getitem__() (cupyx.scipy.sparse.csr_matrix

method), 644
__gt__() (cupy.ElementwiseKernel method), 813
__gt__() (cupy.RawKernel method), 817
__gt__() (cupy.RawModule method), 821
__gt__() (cupy.ReductionKernel method), 815
__gt__() (cupy.array_api._array_object.Array method),

908

Index 941

CuPy Documentation, Release 13.0.0

__gt__() (cupy.broadcast method), 119
__gt__() (cupy.cuda.CFunctionAllocator method), 770
__gt__() (cupy.cuda.Device method), 748
__gt__() (cupy.cuda.Event method), 786
__gt__() (cupy.cuda.ExternalStream method), 784
__gt__() (cupy.cuda.Graph method), 787
__gt__() (cupy.cuda.ManagedMemory method), 754
__gt__() (cupy.cuda.Memory method), 751
__gt__() (cupy.cuda.MemoryAsync method), 752
__gt__() (cupy.cuda.MemoryAsyncPool method), 768
__gt__() (cupy.cuda.MemoryHook method), 773
__gt__() (cupy.cuda.MemoryPointer method), 759
__gt__() (cupy.cuda.MemoryPool method), 765
__gt__() (cupy.cuda.PinnedMemory method), 756
__gt__() (cupy.cuda.PinnedMemoryPointer method),

760
__gt__() (cupy.cuda.PinnedMemoryPool method), 769
__gt__() (cupy.cuda.PythonFunctionAllocator method),

769
__gt__() (cupy.cuda.Stream method), 781
__gt__() (cupy.cuda.UnownedMemory method), 755
__gt__() (cupy.cuda.memory_hooks.DebugPrintHook

method), 775
__gt__() (cupy.cuda.memory_hooks.LineProfileHook

method), 778
__gt__() (cupy.cuda.nccl.NcclCommunicator method),

798
__gt__() (cupy.cuda.texture.CUDAarray method), 790
__gt__() (cupy.cuda.texture.ChannelFormatDescriptor

method), 788
__gt__() (cupy.cuda.texture.ResourceDescriptor

method), 792
__gt__() (cupy.cuda.texture.SurfaceObject method),

794
__gt__() (cupy.cuda.texture.TextureDescriptor method),

793
__gt__() (cupy.cuda.texture.TextureObject method),

794
__gt__() (cupy.fft.config.set_cufft_callbacks method),

149
__gt__() (cupy.flatiter method), 168
__gt__() (cupy.ndarray method), 68
__gt__() (cupy.poly1d method), 223
__gt__() (cupy.random.BitGenerator method), 237
__gt__() (cupy.random.Generator method), 236
__gt__() (cupy.random.MRG32k3a method), 240
__gt__() (cupy.random.Philox4x3210 method), 241
__gt__() (cupy.random.RandomState method), 250
__gt__() (cupy.random.XORWOW method), 238
__gt__() (cupy.ufunc method), 74
__gt__() (cupy.vectorize method), 152
__gt__() (cupyx.GeneralizedUFunc method), 98
__gt__() (cupyx.distributed.NCCLBackend method),

839

__gt__() (cupyx.distributed.array.DistributedArray
method), 845

__gt__() (cupyx.jit._interface._JitRawKernel method),
834

__gt__() (cupyx.profiler.time_range method), 744
__gt__() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 366
__gt__() (cupyx.scipy.interpolate.BPoly method), 375
__gt__() (cupyx.scipy.interpolate.BSpline method), 379
__gt__() (cupyx.scipy.interpolate.BarycentricInterpolator

method), 349
__gt__() (cupyx.scipy.interpolate.CubicHermiteSpline

method), 357
__gt__() (cupyx.scipy.interpolate.KroghInterpolator

method), 351
__gt__() (cupyx.scipy.interpolate.NdPPoly method),

392
__gt__() (cupyx.scipy.interpolate.PPoly method), 370
__gt__() (cupyx.scipy.interpolate.PchipInterpolator

method), 361
__gt__() (cupyx.scipy.interpolate.RBFInterpolator

method), 384
__gt__() (cupyx.scipy.interpolate.RegularGridInterpolator

method), 389
__gt__() (cupyx.scipy.signal.CZT method), 594
__gt__() (cupyx.scipy.signal.StateSpace method), 540
__gt__() (cupyx.scipy.signal.TransferFunction method),

542
__gt__() (cupyx.scipy.signal.ZerosPolesGain method),

544
__gt__() (cupyx.scipy.signal.ZoomFFT method), 595
__gt__() (cupyx.scipy.signal.dlti method), 550
__gt__() (cupyx.scipy.signal.lti method), 539
__gt__() (cupyx.scipy.sparse.coo_matrix method), 632
__gt__() (cupyx.scipy.sparse.csc_matrix method), 642
__gt__() (cupyx.scipy.sparse.csr_matrix method), 653
__gt__() (cupyx.scipy.sparse.dia_matrix method), 660
__gt__() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
__gt__() (cupyx.scipy.sparse.linalg.SuperLU method),

690
__gt__() (cupyx.scipy.sparse.spmatrix method), 665
__iter__() (cupy.flatiter method), 168
__iter__() (cupy.ndarray method), 59
__iter__() (cupy.poly1d method), 222
__iter__() (cupyx.distributed.array.DistributedArray

method), 841
__iter__() (cupyx.scipy.sparse.coo_matrix method),

626
__iter__() (cupyx.scipy.sparse.csc_matrix method),

634
__iter__() (cupyx.scipy.sparse.csr_matrix method),

644
__iter__() (cupyx.scipy.sparse.dia_matrix method),

942 Index

CuPy Documentation, Release 13.0.0

654
__iter__() (cupyx.scipy.sparse.spmatrix method), 661
__le__() (cupy.ElementwiseKernel method), 813
__le__() (cupy.RawKernel method), 817
__le__() (cupy.RawModule method), 821
__le__() (cupy.ReductionKernel method), 815
__le__() (cupy.array_api._array_object.Array method),

908
__le__() (cupy.broadcast method), 119
__le__() (cupy.cuda.CFunctionAllocator method), 770
__le__() (cupy.cuda.Device method), 748
__le__() (cupy.cuda.Event method), 786
__le__() (cupy.cuda.ExternalStream method), 784
__le__() (cupy.cuda.Graph method), 787
__le__() (cupy.cuda.ManagedMemory method), 754
__le__() (cupy.cuda.Memory method), 751
__le__() (cupy.cuda.MemoryAsync method), 752
__le__() (cupy.cuda.MemoryAsyncPool method), 768
__le__() (cupy.cuda.MemoryHook method), 773
__le__() (cupy.cuda.MemoryPointer method), 759
__le__() (cupy.cuda.MemoryPool method), 765
__le__() (cupy.cuda.PinnedMemory method), 756
__le__() (cupy.cuda.PinnedMemoryPointer method),

760
__le__() (cupy.cuda.PinnedMemoryPool method), 769
__le__() (cupy.cuda.PythonFunctionAllocator method),

769
__le__() (cupy.cuda.Stream method), 781
__le__() (cupy.cuda.UnownedMemory method), 755
__le__() (cupy.cuda.memory_hooks.DebugPrintHook

method), 775
__le__() (cupy.cuda.memory_hooks.LineProfileHook

method), 778
__le__() (cupy.cuda.nccl.NcclCommunicator method),

798
__le__() (cupy.cuda.texture.CUDAarray method), 790
__le__() (cupy.cuda.texture.ChannelFormatDescriptor

method), 788
__le__() (cupy.cuda.texture.ResourceDescriptor

method), 791
__le__() (cupy.cuda.texture.SurfaceObject method),

794
__le__() (cupy.cuda.texture.TextureDescriptor method),

793
__le__() (cupy.cuda.texture.TextureObject method),

793
__le__() (cupy.fft.config.set_cufft_callbacks method),

149
__le__() (cupy.flatiter method), 168
__le__() (cupy.ndarray method), 68
__le__() (cupy.poly1d method), 222
__le__() (cupy.random.BitGenerator method), 237
__le__() (cupy.random.Generator method), 236
__le__() (cupy.random.MRG32k3a method), 240

__le__() (cupy.random.Philox4x3210 method), 241
__le__() (cupy.random.RandomState method), 250
__le__() (cupy.random.XORWOW method), 238
__le__() (cupy.ufunc method), 74
__le__() (cupy.vectorize method), 152
__le__() (cupyx.GeneralizedUFunc method), 98
__le__() (cupyx.distributed.NCCLBackend method),

839
__le__() (cupyx.distributed.array.DistributedArray

method), 845
__le__() (cupyx.jit._interface._JitRawKernel method),

834
__le__() (cupyx.profiler.time_range method), 744
__le__() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 366
__le__() (cupyx.scipy.interpolate.BPoly method), 375
__le__() (cupyx.scipy.interpolate.BSpline method), 379
__le__() (cupyx.scipy.interpolate.BarycentricInterpolator

method), 349
__le__() (cupyx.scipy.interpolate.CubicHermiteSpline

method), 357
__le__() (cupyx.scipy.interpolate.KroghInterpolator

method), 351
__le__() (cupyx.scipy.interpolate.NdPPoly method),

392
__le__() (cupyx.scipy.interpolate.PPoly method), 370
__le__() (cupyx.scipy.interpolate.PchipInterpolator

method), 361
__le__() (cupyx.scipy.interpolate.RBFInterpolator

method), 384
__le__() (cupyx.scipy.interpolate.RegularGridInterpolator

method), 389
__le__() (cupyx.scipy.signal.CZT method), 593
__le__() (cupyx.scipy.signal.StateSpace method), 540
__le__() (cupyx.scipy.signal.TransferFunction method),

542
__le__() (cupyx.scipy.signal.ZerosPolesGain method),

544
__le__() (cupyx.scipy.signal.ZoomFFT method), 595
__le__() (cupyx.scipy.signal.dlti method), 550
__le__() (cupyx.scipy.signal.lti method), 539
__le__() (cupyx.scipy.sparse.coo_matrix method), 632
__le__() (cupyx.scipy.sparse.csc_matrix method), 642
__le__() (cupyx.scipy.sparse.csr_matrix method), 653
__le__() (cupyx.scipy.sparse.dia_matrix method), 660
__le__() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
__le__() (cupyx.scipy.sparse.linalg.SuperLU method),

690
__le__() (cupyx.scipy.sparse.spmatrix method), 665
__len__() (cupy.flatiter method), 168
__len__() (cupy.ndarray method), 59
__len__() (cupy.poly1d method), 222
__len__() (cupyx.distributed.array.DistributedArray

Index 943

CuPy Documentation, Release 13.0.0

method), 841
__len__() (cupyx.scipy.sparse.coo_matrix method), 626
__len__() (cupyx.scipy.sparse.csc_matrix method), 634
__len__() (cupyx.scipy.sparse.csr_matrix method), 644
__len__() (cupyx.scipy.sparse.dia_matrix method), 654
__len__() (cupyx.scipy.sparse.spmatrix method), 661
__lt__() (cupy.ElementwiseKernel method), 813
__lt__() (cupy.RawKernel method), 817
__lt__() (cupy.RawModule method), 821
__lt__() (cupy.ReductionKernel method), 815
__lt__() (cupy.array_api._array_object.Array method),

908
__lt__() (cupy.broadcast method), 119
__lt__() (cupy.cuda.CFunctionAllocator method), 770
__lt__() (cupy.cuda.Device method), 748
__lt__() (cupy.cuda.Event method), 786
__lt__() (cupy.cuda.ExternalStream method), 784
__lt__() (cupy.cuda.Graph method), 787
__lt__() (cupy.cuda.ManagedMemory method), 753
__lt__() (cupy.cuda.Memory method), 751
__lt__() (cupy.cuda.MemoryAsync method), 752
__lt__() (cupy.cuda.MemoryAsyncPool method), 768
__lt__() (cupy.cuda.MemoryHook method), 773
__lt__() (cupy.cuda.MemoryPointer method), 759
__lt__() (cupy.cuda.MemoryPool method), 765
__lt__() (cupy.cuda.PinnedMemory method), 756
__lt__() (cupy.cuda.PinnedMemoryPointer method),

760
__lt__() (cupy.cuda.PinnedMemoryPool method), 768
__lt__() (cupy.cuda.PythonFunctionAllocator method),

769
__lt__() (cupy.cuda.Stream method), 781
__lt__() (cupy.cuda.UnownedMemory method), 755
__lt__() (cupy.cuda.memory_hooks.DebugPrintHook

method), 775
__lt__() (cupy.cuda.memory_hooks.LineProfileHook

method), 778
__lt__() (cupy.cuda.nccl.NcclCommunicator method),

798
__lt__() (cupy.cuda.texture.CUDAarray method), 790
__lt__() (cupy.cuda.texture.ChannelFormatDescriptor

method), 788
__lt__() (cupy.cuda.texture.ResourceDescriptor

method), 791
__lt__() (cupy.cuda.texture.SurfaceObject method),

794
__lt__() (cupy.cuda.texture.TextureDescriptor method),

793
__lt__() (cupy.cuda.texture.TextureObject method),

793
__lt__() (cupy.fft.config.set_cufft_callbacks method),

149
__lt__() (cupy.flatiter method), 168
__lt__() (cupy.ndarray method), 68

__lt__() (cupy.poly1d method), 222
__lt__() (cupy.random.BitGenerator method), 237
__lt__() (cupy.random.Generator method), 236
__lt__() (cupy.random.MRG32k3a method), 240
__lt__() (cupy.random.Philox4x3210 method), 241
__lt__() (cupy.random.RandomState method), 250
__lt__() (cupy.random.XORWOW method), 238
__lt__() (cupy.ufunc method), 74
__lt__() (cupy.vectorize method), 151
__lt__() (cupyx.GeneralizedUFunc method), 98
__lt__() (cupyx.distributed.NCCLBackend method),

839
__lt__() (cupyx.distributed.array.DistributedArray

method), 845
__lt__() (cupyx.jit._interface._JitRawKernel method),

834
__lt__() (cupyx.profiler.time_range method), 744
__lt__() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 366
__lt__() (cupyx.scipy.interpolate.BPoly method), 375
__lt__() (cupyx.scipy.interpolate.BSpline method), 379
__lt__() (cupyx.scipy.interpolate.BarycentricInterpolator

method), 349
__lt__() (cupyx.scipy.interpolate.CubicHermiteSpline

method), 357
__lt__() (cupyx.scipy.interpolate.KroghInterpolator

method), 351
__lt__() (cupyx.scipy.interpolate.NdPPoly method),

392
__lt__() (cupyx.scipy.interpolate.PPoly method), 370
__lt__() (cupyx.scipy.interpolate.PchipInterpolator

method), 361
__lt__() (cupyx.scipy.interpolate.RBFInterpolator

method), 384
__lt__() (cupyx.scipy.interpolate.RegularGridInterpolator

method), 389
__lt__() (cupyx.scipy.signal.CZT method), 593
__lt__() (cupyx.scipy.signal.StateSpace method), 540
__lt__() (cupyx.scipy.signal.TransferFunction method),

542
__lt__() (cupyx.scipy.signal.ZerosPolesGain method),

544
__lt__() (cupyx.scipy.signal.ZoomFFT method), 595
__lt__() (cupyx.scipy.signal.dlti method), 550
__lt__() (cupyx.scipy.signal.lti method), 539
__lt__() (cupyx.scipy.sparse.coo_matrix method), 632
__lt__() (cupyx.scipy.sparse.csc_matrix method), 642
__lt__() (cupyx.scipy.sparse.csr_matrix method), 653
__lt__() (cupyx.scipy.sparse.dia_matrix method), 660
__lt__() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
__lt__() (cupyx.scipy.sparse.linalg.SuperLU method),

690
__lt__() (cupyx.scipy.sparse.spmatrix method), 665

944 Index

CuPy Documentation, Release 13.0.0

__ne__() (cupy.ElementwiseKernel method), 813
__ne__() (cupy.RawKernel method), 817
__ne__() (cupy.RawModule method), 821
__ne__() (cupy.ReductionKernel method), 815
__ne__() (cupy.array_api._array_object.Array method),

908
__ne__() (cupy.broadcast method), 119
__ne__() (cupy.cuda.CFunctionAllocator method), 770
__ne__() (cupy.cuda.Device method), 748
__ne__() (cupy.cuda.Event method), 786
__ne__() (cupy.cuda.ExternalStream method), 784
__ne__() (cupy.cuda.Graph method), 787
__ne__() (cupy.cuda.ManagedMemory method), 753
__ne__() (cupy.cuda.Memory method), 751
__ne__() (cupy.cuda.MemoryAsync method), 752
__ne__() (cupy.cuda.MemoryAsyncPool method), 767
__ne__() (cupy.cuda.MemoryHook method), 773
__ne__() (cupy.cuda.MemoryPointer method), 759
__ne__() (cupy.cuda.MemoryPool method), 765
__ne__() (cupy.cuda.PinnedMemory method), 756
__ne__() (cupy.cuda.PinnedMemoryPointer method),

760
__ne__() (cupy.cuda.PinnedMemoryPool method), 768
__ne__() (cupy.cuda.PythonFunctionAllocator method),

769
__ne__() (cupy.cuda.Stream method), 781
__ne__() (cupy.cuda.UnownedMemory method), 755
__ne__() (cupy.cuda.memory_hooks.DebugPrintHook

method), 775
__ne__() (cupy.cuda.memory_hooks.LineProfileHook

method), 777
__ne__() (cupy.cuda.nccl.NcclCommunicator method),

798
__ne__() (cupy.cuda.texture.CUDAarray method), 790
__ne__() (cupy.cuda.texture.ChannelFormatDescriptor

method), 788
__ne__() (cupy.cuda.texture.ResourceDescriptor

method), 791
__ne__() (cupy.cuda.texture.SurfaceObject method),

794
__ne__() (cupy.cuda.texture.TextureDescriptor method),

793
__ne__() (cupy.cuda.texture.TextureObject method),

793
__ne__() (cupy.fft.config.set_cufft_callbacks method),

149
__ne__() (cupy.flatiter method), 168
__ne__() (cupy.ndarray method), 68
__ne__() (cupy.poly1d method), 222
__ne__() (cupy.random.BitGenerator method), 237
__ne__() (cupy.random.Generator method), 236
__ne__() (cupy.random.MRG32k3a method), 240
__ne__() (cupy.random.Philox4x3210 method), 241
__ne__() (cupy.random.RandomState method), 250

__ne__() (cupy.random.XORWOW method), 238
__ne__() (cupy.ufunc method), 74
__ne__() (cupy.vectorize method), 151
__ne__() (cupyx.GeneralizedUFunc method), 97
__ne__() (cupyx.distributed.NCCLBackend method),

839
__ne__() (cupyx.distributed.array.DistributedArray

method), 845
__ne__() (cupyx.jit._interface._JitRawKernel method),

834
__ne__() (cupyx.profiler.time_range method), 744
__ne__() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 366
__ne__() (cupyx.scipy.interpolate.BPoly method), 375
__ne__() (cupyx.scipy.interpolate.BSpline method), 379
__ne__() (cupyx.scipy.interpolate.BarycentricInterpolator

method), 349
__ne__() (cupyx.scipy.interpolate.CubicHermiteSpline

method), 357
__ne__() (cupyx.scipy.interpolate.KroghInterpolator

method), 351
__ne__() (cupyx.scipy.interpolate.NdPPoly method),

392
__ne__() (cupyx.scipy.interpolate.PPoly method), 370
__ne__() (cupyx.scipy.interpolate.PchipInterpolator

method), 361
__ne__() (cupyx.scipy.interpolate.RBFInterpolator

method), 384
__ne__() (cupyx.scipy.interpolate.RegularGridInterpolator

method), 389
__ne__() (cupyx.scipy.signal.CZT method), 593
__ne__() (cupyx.scipy.signal.StateSpace method), 540
__ne__() (cupyx.scipy.signal.TransferFunction method),

542
__ne__() (cupyx.scipy.signal.ZerosPolesGain method),

544
__ne__() (cupyx.scipy.signal.ZoomFFT method), 595
__ne__() (cupyx.scipy.signal.dlti method), 550
__ne__() (cupyx.scipy.signal.lti method), 539
__ne__() (cupyx.scipy.sparse.coo_matrix method), 632
__ne__() (cupyx.scipy.sparse.csc_matrix method), 642
__ne__() (cupyx.scipy.sparse.csr_matrix method), 653
__ne__() (cupyx.scipy.sparse.dia_matrix method), 660
__ne__() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
__ne__() (cupyx.scipy.sparse.linalg.SuperLU method),

690
__ne__() (cupyx.scipy.sparse.spmatrix method), 665
__next__() (cupy.flatiter method), 168
__nonzero__() (cupyx.scipy.sparse.coo_matrix

method), 632
__nonzero__() (cupyx.scipy.sparse.csc_matrix

method), 643
__nonzero__() (cupyx.scipy.sparse.csr_matrix

Index 945

CuPy Documentation, Release 13.0.0

method), 653
__nonzero__() (cupyx.scipy.sparse.dia_matrix

method), 660
__nonzero__() (cupyx.scipy.sparse.spmatrix method),

665
__setitem__() (cupy.array_api._array_object.Array

method), 908
__setitem__() (cupy.flatiter method), 168
__setitem__() (cupy.ndarray method), 58
__setitem__() (cupy.poly1d method), 222
__setitem__() (cupyx.distributed.array.DistributedArray

method), 841
__setitem__() (cupyx.scipy.sparse.csc_matrix

method), 634
__setitem__() (cupyx.scipy.sparse.csr_matrix

method), 644

A
A (cupyx.scipy.signal.StateSpace attribute), 541
A (cupyx.scipy.sparse.coo_matrix attribute), 633
A (cupyx.scipy.sparse.csc_matrix attribute), 643
A (cupyx.scipy.sparse.csr_matrix attribute), 653
A (cupyx.scipy.sparse.dia_matrix attribute), 660
A (cupyx.scipy.sparse.spmatrix attribute), 665
abcd_normalize() (in module cupyx.scipy.signal), 521
abort() (cupy.cuda.nccl.NcclCommunicator method),

797
abs() (in module cupy.array_api), 895
absolute() (in module cupy), 80
accumulate() (cupy.ufunc method), 74
acos() (in module cupy.array_api), 895
acosh() (in module cupy.array_api), 895
add() (in module cupy), 76
add() (in module cupy.array_api), 895
add_callback() (cupy.cuda.ExternalStream method),

782
add_callback() (cupy.cuda.Stream method), 779
add_xi() (cupyx.scipy.interpolate.BarycentricInterpolator

method), 349
adjoint() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
advise() (cupy.cuda.ManagedMemory method), 753
affine_transform() (in module cupyx.scipy.ndimage),

424
Akima1DInterpolator (class in cu-

pyx.scipy.interpolate), 362
all() (cupy.ndarray method), 59
all() (cupyx.distributed.array.DistributedArray

method), 841
all() (in module cupy), 187
all() (in module cupy.array_api), 895
all_chunks() (cupyx.distributed.array.DistributedArray

method), 841

all_gather() (cupyx.distributed.NCCLBackend
method), 837

all_reduce() (cupyx.distributed.NCCLBackend
method), 837

all_to_all() (cupyx.distributed.NCCLBackend
method), 837

allclose() (in module cupy), 194
allGather() (cupy.cuda.nccl.NcclCommunicator

method), 797
alloc() (in module cupy.cuda), 761
alloc_pinned_memory() (in module cupy.cuda), 761
alloc_postprocess()

(cupy.cuda.memory_hooks.DebugPrintHook
method), 774

alloc_postprocess()
(cupy.cuda.memory_hooks.LineProfileHook
method), 776

alloc_postprocess() (cupy.cuda.MemoryHook
method), 772

alloc_preprocess() (cupy.cuda.memory_hooks.DebugPrintHook
method), 774

alloc_preprocess() (cupy.cuda.memory_hooks.LineProfileHook
method), 776

alloc_preprocess() (cupy.cuda.MemoryHook
method), 772

allReduce() (cupy.cuda.nccl.NcclCommunicator
method), 797

amax() (in module cupy), 288
amin() (in module cupy), 287
angle() (in module cupy), 208
antiderivative() (cu-

pyx.scipy.interpolate.Akima1DInterpolator
method), 363

antiderivative() (cupyx.scipy.interpolate.BPoly
method), 372

antiderivative() (cupyx.scipy.interpolate.BSpline
method), 377

antiderivative() (cu-
pyx.scipy.interpolate.CubicHermiteSpline
method), 354

antiderivative() (cupyx.scipy.interpolate.NdPPoly
method), 390

antiderivative() (cu-
pyx.scipy.interpolate.PchipInterpolator
method), 359

antiderivative() (cupyx.scipy.interpolate.PPoly
method), 368

any() (cupy.ndarray method), 59
any() (cupyx.distributed.array.DistributedArray

method), 841
any() (in module cupy), 187
any() (in module cupy.array_api), 895
append() (in module cupy), 129
apply_along_axis() (in module cupy), 151

946 Index

CuPy Documentation, Release 13.0.0

arange() (in module cupy), 107
arange() (in module cupy.array_api), 895
arccos() (in module cupy), 85
arccosh() (in module cupy), 87
arcsin() (cupyx.scipy.sparse.coo_matrix method), 626
arcsin() (cupyx.scipy.sparse.csc_matrix method), 634
arcsin() (cupyx.scipy.sparse.csr_matrix method), 644
arcsin() (cupyx.scipy.sparse.dia_matrix method), 654
arcsin() (in module cupy), 85
arcsinh() (cupyx.scipy.sparse.coo_matrix method), 626
arcsinh() (cupyx.scipy.sparse.csc_matrix method), 634
arcsinh() (cupyx.scipy.sparse.csr_matrix method), 644
arcsinh() (cupyx.scipy.sparse.dia_matrix method), 654
arcsinh() (in module cupy), 87
arctan() (cupyx.scipy.sparse.coo_matrix method), 626
arctan() (cupyx.scipy.sparse.csc_matrix method), 634
arctan() (cupyx.scipy.sparse.csr_matrix method), 644
arctan() (cupyx.scipy.sparse.dia_matrix method), 654
arctan() (in module cupy), 85
arctan2() (in module cupy), 86
arctanh() (cupyx.scipy.sparse.coo_matrix method), 626
arctanh() (cupyx.scipy.sparse.csc_matrix method), 634
arctanh() (cupyx.scipy.sparse.csr_matrix method), 645
arctanh() (cupyx.scipy.sparse.dia_matrix method), 655
arctanh() (in module cupy), 87
argmax() (cupy.ndarray method), 59
argmax() (cupyx.distributed.array.DistributedArray

method), 841
argmax() (cupyx.scipy.sparse.csc_matrix method), 634
argmax() (cupyx.scipy.sparse.csr_matrix method), 645
argmax() (in module cupy), 282
argmax() (in module cupy.array_api), 895
argmin() (cupy.ndarray method), 59
argmin() (cupyx.distributed.array.DistributedArray

method), 841
argmin() (cupyx.scipy.sparse.csc_matrix method), 634
argmin() (cupyx.scipy.sparse.csr_matrix method), 645
argmin() (in module cupy), 283
argmin() (in module cupy.array_api), 896
argpartition() (cupy.ndarray method), 60
argpartition() (cupyx.distributed.array.DistributedArray

method), 842
argpartition() (in module cupy), 281
argrelextrema() (in module cupyx.scipy.signal), 567
argrelmax() (in module cupyx.scipy.signal), 566
argrelmin() (in module cupyx.scipy.signal), 565
argsort() (cupy.ndarray method), 60
argsort() (cupyx.distributed.array.DistributedArray

method), 842
argsort() (in module cupy), 279
argsort() (in module cupy.array_api), 896
argwhere() (in module cupy), 284
around() (in module cupy), 198

arr (cupy.cuda.texture.ResourceDescriptor attribute),
792

Array (class in cupy.array_api._array_object), 907
array() (in module cupy), 70
array2string() (in module cupy), 171
array_equal() (in module cupy), 195
array_equiv() (in module cupy), 196
array_repr() (in module cupy), 172
array_split() (in module cupy), 127
array_str() (in module cupy), 172
as_series() (in module cupy.polynomial.polyutils), 220
as_strided() (in module cupy.lib.stride_tricks), 164
asanyarray() (in module cupy), 104
asarray() (in module cupy), 71
asarray() (in module cupy.array_api), 896
asarray_chkfinite() (in module cupy), 122
ascontiguousarray() (in module cupy), 104
asfarray() (in module cupy), 121
asformat() (cupyx.scipy.sparse.coo_matrix method),

626
asformat() (cupyx.scipy.sparse.csc_matrix method),

635
asformat() (cupyx.scipy.sparse.csr_matrix method),

645
asformat() (cupyx.scipy.sparse.dia_matrix method),

655
asformat() (cupyx.scipy.sparse.spmatrix method), 661
asfortranarray() (in module cupy), 121
asfptype() (cupyx.scipy.sparse.coo_matrix method),

626
asfptype() (cupyx.scipy.sparse.csc_matrix method),

635
asfptype() (cupyx.scipy.sparse.csr_matrix method),

645
asfptype() (cupyx.scipy.sparse.dia_matrix method),

655
asfptype() (cupyx.scipy.sparse.spmatrix method), 661
asin() (in module cupy.array_api), 896
asinh() (in module cupy.array_api), 896
aslinearoperator() (in module cu-

pyx.scipy.sparse.linalg), 678
asnumpy() (in module cupy), 71
assert_allclose() (in module cupy.testing), 303
assert_array_almost_equal() (in module

cupy.testing), 302
assert_array_almost_equal_nulp() (in module

cupy.testing), 303
assert_array_equal() (in module cupy.testing), 304
assert_array_less() (in module cupy.testing), 304
assert_array_list_equal() (in module

cupy.testing), 305
assert_array_max_ulp() (in module cupy.testing),

303
astype() (cupy.ndarray method), 60

Index 947

CuPy Documentation, Release 13.0.0

astype() (cupyx.distributed.array.DistributedArray
method), 842

astype() (cupyx.scipy.sparse.coo_matrix method), 626
astype() (cupyx.scipy.sparse.csc_matrix method), 635
astype() (cupyx.scipy.sparse.csr_matrix method), 646
astype() (cupyx.scipy.sparse.dia_matrix method), 655
astype() (cupyx.scipy.sparse.spmatrix method), 661
at() (cupy.ufunc method), 74
atan() (in module cupy.array_api), 896
atan2() (in module cupy.array_api), 896
atanh() (in module cupy.array_api), 896
atleast_1d() (in module cupy), 117
atleast_2d() (in module cupy), 117
atleast_3d() (in module cupy), 118
atomic_add (in module cupyx.jit), 828
atomic_and (in module cupyx.jit), 831
atomic_cas (in module cupyx.jit), 830
atomic_dec (in module cupyx.jit), 830
atomic_exch (in module cupyx.jit), 828
atomic_inc (in module cupyx.jit), 830
atomic_max (in module cupyx.jit), 829
atomic_min (in module cupyx.jit), 829
atomic_or (in module cupyx.jit), 831
atomic_sub (in module cupyx.jit), 828
atomic_xor (in module cupyx.jit), 831
attributes (cupy.cuda.Device attribute), 748
attributes (cupy.RawKernel attribute), 818
average() (in module cupy), 292
axis (cupyx.scipy.interpolate.Akima1DInterpolator at-

tribute), 366
axis (cupyx.scipy.interpolate.BPoly attribute), 375
axis (cupyx.scipy.interpolate.CubicHermiteSpline

attribute), 357
axis (cupyx.scipy.interpolate.PchipInterpolator at-

tribute), 362
axis (cupyx.scipy.interpolate.PPoly attribute), 371

B
B (cupyx.scipy.signal.StateSpace attribute), 541
backend (cupy.RawKernel attribute), 818
backend (cupy.RawModule attribute), 822
BadCoefficients, 509
band_stop_obj() (in module cupyx.scipy.signal), 522
barrier() (cupyx.distributed.NCCLBackend method),

837
barthann() (in module cupyx.scipy.signal.windows),

599
bartlett() (in module cupy), 316
bartlett() (in module cupyx.scipy.signal.windows),

599
barycentric_interpolate() (in module cu-

pyx.scipy.interpolate), 351
BarycentricInterpolator (class in cu-

pyx.scipy.interpolate), 348

base (cupy.flatiter attribute), 168
base (cupy.ndarray attribute), 68
base (cupyx.distributed.array.DistributedArray at-

tribute), 846
base_repr() (in module cupy), 173
basis_element() (cupyx.scipy.interpolate.BSpline

class method), 377
bcast() (cupy.cuda.nccl.NcclCommunicator method),

797
bdtr() (in module cupyx.scipy.special), 705
bdtrc() (in module cupyx.scipy.special), 706
bdtri() (in module cupyx.scipy.special), 706
begin_capture() (cupy.cuda.ExternalStream method),

782
begin_capture() (cupy.cuda.Stream method), 779
benchmark() (in module cupyx.profiler), 743
beta() (cupy.random.Generator method), 228
beta() (cupy.random.RandomState method), 242
beta() (in module cupy.random), 251
beta() (in module cupyx.scipy.special), 720
betainc() (in module cupyx.scipy.special), 721
betaincinv() (in module cupyx.scipy.special), 721
betaln() (in module cupyx.scipy.special), 720
bilinear() (in module cupyx.scipy.signal), 485
bilinear_zpk() (in module cupyx.scipy.signal), 486
binary_closing() (in module cupyx.scipy.ndimage),

440
binary_dilation() (in module cupyx.scipy.ndimage),

441
binary_erosion() (in module cupyx.scipy.ndimage),

442
binary_fill_holes() (in module cu-

pyx.scipy.ndimage), 443
binary_hit_or_miss() (in module cu-

pyx.scipy.ndimage), 443
binary_opening() (in module cupyx.scipy.ndimage),

444
binary_propagation() (in module cu-

pyx.scipy.ndimage), 445
binary_repr() (in module cupy), 136
binary_version (cupy.RawKernel attribute), 818
bincount() (in module cupy), 301
binomial() (cupy.random.Generator method), 229
binomial() (cupy.random.RandomState method), 242
binomial() (in module cupy.random), 252
BitGenerator (class in cupy.random), 237
bitwise_and() (in module cupy), 88
bitwise_and() (in module cupy.array_api), 897
bitwise_invert() (in module cupy.array_api), 897
bitwise_left_shift() (in module cupy.array_api),

897
bitwise_or() (in module cupy), 88
bitwise_or() (in module cupy.array_api), 897

948 Index

CuPy Documentation, Release 13.0.0

bitwise_right_shift() (in module cupy.array_api),
897

bitwise_xor() (in module cupy), 89
bitwise_xor() (in module cupy.array_api), 897
black_tophat() (in module cupyx.scipy.ndimage), 446
blackman() (in module cupy), 316
blackman() (in module cupyx.scipy.signal.windows),

601
blackmanharris() (in module cu-

pyx.scipy.signal.windows), 602
block_diag() (in module cupyx.scipy.linalg), 397
blockDim (in module cupyx.jit), 824
blockIdx (in module cupyx.jit), 824
bmat() (in module cupyx.scipy.sparse), 670
bode() (cupyx.scipy.signal.dlti method), 549
bode() (cupyx.scipy.signal.lti method), 538
bode() (in module cupyx.scipy.signal), 548
bohman() (in module cupyx.scipy.signal.windows), 603
boxcar() (in module cupyx.scipy.signal.windows), 604
boxcox() (in module cupyx.scipy.special), 715
boxcox1p() (in module cupyx.scipy.special), 715
boxcox_llf() (in module cupyx.scipy.stats), 735
BPoly (class in cupyx.scipy.interpolate), 371
broadcast (class in cupy), 118
broadcast() (cupy.cuda.nccl.NcclCommunicator

method), 797
broadcast() (cupyx.distributed.NCCLBackend

method), 837
broadcast_arrays() (in module cupy), 120
broadcast_arrays() (in module cupy.array_api), 897
broadcast_to() (in module cupy), 119
broadcast_to() (in module cupy.array_api), 897
BSpline (class in cupyx.scipy.interpolate), 375
btdtr() (in module cupyx.scipy.special), 707
btdtri() (in module cupyx.scipy.special), 707
buttap() (in module cupyx.scipy.signal), 522
butter() (in module cupyx.scipy.signal), 509
buttord() (in module cupyx.scipy.signal), 510
byte_bounds() (in module cupy), 212
bytes() (in module cupy.random), 252

C
c (cupy.poly1d attribute), 223
c (cupyx.scipy.interpolate.Akima1DInterpolator at-

tribute), 366
c (cupyx.scipy.interpolate.BPoly attribute), 375
c (cupyx.scipy.interpolate.CubicHermiteSpline attribute),

357
c (cupyx.scipy.interpolate.PchipInterpolator attribute),

362
c (cupyx.scipy.interpolate.PPoly attribute), 371
C (cupyx.scipy.signal.StateSpace attribute), 541
c_ (in module cupy), 153
cache_mode_ca (cupy.RawKernel attribute), 818

cached_code (cupy.ElementwiseKernel attribute), 813
cached_code (cupy.ReductionKernel attribute), 815
cached_code (cupyx.jit._interface._JitRawKernel

attribute), 834
cached_codes (cupy.ElementwiseKernel attribute), 813
cached_codes (cupy.ReductionKernel attribute), 815
cached_codes (cupyx.jit._interface._JitRawKernel at-

tribute), 834
can_cast() (in module cupy), 136
can_cast() (in module cupy.array_api), 898
canberra() (in module cupyx.scipy.spatial.distance),

696
cbrt() (in module cupy), 83
cbrt() (in module cupyx.scipy.special), 729
cdist() (in module cupyx.scipy.spatial.distance), 693
ceil() (cupyx.scipy.sparse.coo_matrix method), 626
ceil() (cupyx.scipy.sparse.csc_matrix method), 635
ceil() (cupyx.scipy.sparse.csr_matrix method), 646
ceil() (cupyx.scipy.sparse.dia_matrix method), 655
ceil() (in module cupy), 95
ceil() (in module cupy.array_api), 898
center_of_mass() (in module cupyx.scipy.ndimage),

431
CFunctionAllocator (class in cupy.cuda), 770
cg() (in module cupyx.scipy.sparse.linalg), 680
cgs() (in module cupyx.scipy.sparse.linalg), 682
change_mode() (cupyx.distributed.array.DistributedArray

method), 842
ChannelFormatDescriptor (class in

cupy.cuda.texture), 788
chDesc (cupy.cuda.texture.ResourceDescriptor at-

tribute), 792
chdtr() (in module cupyx.scipy.special), 712
chdtrc() (in module cupyx.scipy.special), 712
chdtri() (in module cupyx.scipy.special), 713
cheb1ap() (in module cupyx.scipy.signal), 522
cheb1ord() (in module cupyx.scipy.signal), 515
cheb2ap() (in module cupyx.scipy.signal), 523
cheb2ord() (in module cupyx.scipy.signal), 517
chebwin() (in module cupyx.scipy.signal.windows), 605
cheby1() (in module cupyx.scipy.signal), 514
cheby2() (in module cupyx.scipy.signal), 516
chebyshev() (in module cupyx.scipy.spatial.distance),

696
check_async_error()

(cupy.cuda.nccl.NcclCommunicator method),
797

check_COLA() (in module cupyx.scipy.signal), 588
check_NOLA() (in module cupyx.scipy.signal), 589
chirp() (in module cupyx.scipy.signal), 554
chisquare() (cupy.random.Generator method), 229
chisquare() (cupy.random.RandomState method), 242
chisquare() (in module cupy.random), 253
choice() (cupy.random.RandomState method), 242

Index 949

CuPy Documentation, Release 13.0.0

choice() (in module cupy.random), 253
cholesky() (in module cupy.linalg), 177
choose() (cupy.ndarray method), 61
choose() (cupyx.distributed.array.DistributedArray

method), 842
choose() (in module cupy), 163
choose_conv_method() (in module cupyx.scipy.signal),

461
circulant() (in module cupyx.scipy.linalg), 398
cityblock() (in module cupyx.scipy.spatial.distance),

696
clear_memo() (in module cupy), 835
clip() (cupy.ndarray method), 61
clip() (cupyx.distributed.array.DistributedArray

method), 842
clip() (in module cupy), 210
code (cupy.RawKernel attribute), 818
code (cupy.RawModule attribute), 822
coef (cupy.poly1d attribute), 223
coefficients (cupy.poly1d attribute), 223
coeffs (cupy.poly1d attribute), 223
coherence() (in module cupyx.scipy.signal), 577
column_stack() (in module cupy), 125
comm (cupy.cuda.nccl.NcclCommunicator attribute), 799
common_type() (in module cupy), 137
companion() (in module cupyx.scipy.linalg), 398
compile() (cupy.RawKernel method), 817
compile() (cupy.RawModule method), 820
compress() (cupy.ndarray method), 61
compress() (cupyx.distributed.array.DistributedArray

method), 842
compress() (in module cupy), 163
compute_capability (cupy.cuda.Device attribute), 748
concat() (in module cupy.array_api), 898
concatenate() (in module cupy), 123
conj() (cupy.ndarray method), 61
conj() (cupyx.distributed.array.DistributedArray

method), 842
conj() (cupyx.scipy.sparse.coo_matrix method), 626
conj() (cupyx.scipy.sparse.csc_matrix method), 635
conj() (cupyx.scipy.sparse.csr_matrix method), 646
conj() (cupyx.scipy.sparse.dia_matrix method), 655
conj() (cupyx.scipy.sparse.spmatrix method), 661
conj() (in module cupy), 81
conjugate() (cupy.ndarray method), 61
conjugate() (cupyx.distributed.array.DistributedArray

method), 842
conjugate() (cupyx.scipy.sparse.coo_matrix method),

627
conjugate() (cupyx.scipy.sparse.csc_matrix method),

635
conjugate() (cupyx.scipy.sparse.csr_matrix method),

646

conjugate() (cupyx.scipy.sparse.dia_matrix method),
655

conjugate() (cupyx.scipy.sparse.spmatrix method), 661
conjugate() (in module cupy), 81
connected_components() (in module cu-

pyx.scipy.sparse.csgraph), 691
const_size_bytes (cupy.RawKernel attribute), 818
construct_fast() (cu-

pyx.scipy.interpolate.Akima1DInterpolator
class method), 364

construct_fast() (cupyx.scipy.interpolate.BPoly class
method), 373

construct_fast() (cupyx.scipy.interpolate.BSpline
class method), 378

construct_fast() (cu-
pyx.scipy.interpolate.CubicHermiteSpline
class method), 355

construct_fast() (cupyx.scipy.interpolate.NdPPoly
class method), 391

construct_fast() (cu-
pyx.scipy.interpolate.PchipInterpolator class
method), 359

construct_fast() (cupyx.scipy.interpolate.PPoly class
method), 368

cont2discrete() (in module cupyx.scipy.signal), 534
convolution_matrix() (in module cupyx.scipy.linalg),

399
convolve() (in module cupy), 209
convolve() (in module cupyx.scipy.ndimage), 406
convolve() (in module cupyx.scipy.signal), 455
convolve1d() (in module cupyx.scipy.ndimage), 406
convolve1d3o() (in module cupyx.signal), 741
convolve2d() (in module cupyx.scipy.signal), 459
coo_matrix (class in cupyx.scipy.sparse), 625
copy() (cupy.flatiter method), 168
copy() (cupy.ndarray method), 61
copy() (cupyx.distributed.array.DistributedArray

method), 842
copy() (cupyx.scipy.sparse.coo_matrix method), 627
copy() (cupyx.scipy.sparse.csc_matrix method), 636
copy() (cupyx.scipy.sparse.csr_matrix method), 646
copy() (cupyx.scipy.sparse.dia_matrix method), 656
copy() (cupyx.scipy.sparse.spmatrix method), 662
copy() (in module cupy), 105
copy_from() (cupy.cuda.MemoryPointer method), 756
copy_from() (cupy.cuda.texture.CUDAarray method),

789
copy_from_async() (cupy.cuda.MemoryPointer

method), 757
copy_from_device() (cupy.cuda.MemoryPointer

method), 757
copy_from_device_async()

(cupy.cuda.MemoryPointer method), 757
copy_from_host() (cupy.cuda.MemoryPointer

950 Index

CuPy Documentation, Release 13.0.0

method), 757
copy_from_host_async() (cupy.cuda.MemoryPointer

method), 757
copy_to() (cupy.cuda.texture.CUDAarray method), 790
copy_to_host() (cupy.cuda.MemoryPointer method),

758
copy_to_host_async() (cupy.cuda.MemoryPointer

method), 758
copysign() (in module cupy), 94
copyto() (in module cupy), 113
corrcoef() (in module cupy), 296
correlate() (in module cupy), 297
correlate() (in module cupyx.scipy.ndimage), 407
correlate() (in module cupyx.scipy.signal), 456
correlate1d() (in module cupyx.scipy.ndimage), 408
correlate2d() (in module cupyx.scipy.signal), 460
correlation() (in module cu-

pyx.scipy.spatial.distance), 697
correlation_lags() (in module cupyx.scipy.signal),

462
cos() (in module cupy), 85
cos() (in module cupy.array_api), 898
cosdg() (in module cupyx.scipy.special), 730
cosh() (in module cupy), 86
cosh() (in module cupy.array_api), 898
cosine() (in module cupyx.scipy.signal.windows), 606
cosine() (in module cupyx.scipy.spatial.distance), 697
cosm1() (in module cupyx.scipy.special), 731
cotdg() (in module cupyx.scipy.special), 730
count_nonzero() (cupyx.scipy.sparse.coo_matrix

method), 627
count_nonzero() (cupyx.scipy.sparse.csc_matrix

method), 636
count_nonzero() (cupyx.scipy.sparse.csr_matrix

method), 646
count_nonzero() (cupyx.scipy.sparse.dia_matrix

method), 656
count_nonzero() (cupyx.scipy.sparse.spmatrix

method), 662
count_nonzero() (in module cupy), 286
cov() (in module cupy), 297
cross() (in module cupy), 205
csc_matrix (class in cupyx.scipy.sparse), 633
csd() (in module cupyx.scipy.signal), 575
cspline1d() (in module cupyx.scipy.signal), 463
cspline1d_eval() (in module cupyx.scipy.signal), 465
cspline2d() (in module cupyx.scipy.signal), 464
csr_matrix (class in cupyx.scipy.sparse), 644
cstruct (cupy.ndarray attribute), 68
cstruct (cupyx.distributed.array.DistributedArray at-

tribute), 846
cuArr (cupy.cuda.texture.ResourceDescriptor attribute),

792

CubicHermiteSpline (class in cupyx.scipy.interpolate),
353

cublas_handle (cupy.cuda.Device attribute), 748
CUDA_PATH, 852
CUDAarray (class in cupy.cuda.texture), 789
cumprod() (cupy.ndarray method), 61
cumprod() (cupyx.distributed.array.DistributedArray

method), 842
cumprod() (in module cupy), 201
cumsum() (cupy.ndarray method), 61
cumsum() (cupyx.distributed.array.DistributedArray

method), 842
cumsum() (in module cupy), 202
cupy

module, 1
cupy.array_api

module, 895
cupy.fft

module, 138
cupy.linalg

module, 173
cupy.polynomial.polynomial

module, 217
cupy.polynomial.polyutils

module, 220
cupy.random

module, 227
cupy.testing

module, 301
CUPY_ACCELERATORS, 40, 176, 852, 922, 927
CUPY_CACHE_DIR, 40, 850
CUPY_CACHE_SAVE_CUDA_SOURCE, 850
CUPY_CUDA_ARRAY_INTERFACE_EXPORT_VERSION, 43
CUPY_CUDA_ARRAY_INTERFACE_SYNC, 43
CUPY_DLPACK_EXPORT_VERSION, 48
cupyx.distributed

module, 835
cupyx.distributed.array

module, 840
cupyx.optimizing

module, 746
cupyx.scipy

module, 318
cupyx.scipy.fft

module, 318
cupyx.scipy.fftpack

module, 340
cupyx.scipy.interpolate

module, 347
cupyx.scipy.linalg

module, 392
cupyx.scipy.ndimage

module, 405
cupyx.scipy.signal

Index 951

CuPy Documentation, Release 13.0.0

module, 455
cupyx.scipy.signal.windows

module, 596
cupyx.scipy.sparse

module, 624
cupyx.scipy.sparse.csgraph

module, 690
cupyx.scipy.sparse.linalg

module, 676
cupyx.scipy.spatial

module, 691
cupyx.scipy.spatial.distance

module, 692
cupyx.scipy.special

module, 700
cupyx.scipy.stats

module, 733
cusolver_handle (cupy.cuda.Device attribute), 748
cusolver_sp_handle (cupy.cuda.Device attribute), 748
cusparse_handle (cupy.cuda.Device attribute), 748
cwt() (in module cupyx.scipy.signal), 564
CZT (class in cupyx.scipy.signal), 592
czt() (in module cupyx.scipy.signal), 590
czt_points() (in module cupyx.scipy.signal), 596

D
D (cupyx.scipy.signal.StateSpace attribute), 541
data (cupy.ndarray attribute), 68
data (cupyx.distributed.array.DistributedArray at-

tribute), 846
dbode() (in module cupyx.scipy.signal), 553
dct() (in module cupyx.scipy.fft), 330
dctn() (in module cupyx.scipy.fft), 332
DebugPrintHook (class in cupy.cuda.memory_hooks),

773
decimate() (in module cupyx.scipy.signal), 479
deconvolve() (in module cupyx.scipy.signal), 476
default_rng() (in module cupy.random), 228
deg2rad() (cupyx.scipy.sparse.coo_matrix method), 627
deg2rad() (cupyx.scipy.sparse.csc_matrix method), 636
deg2rad() (cupyx.scipy.sparse.csr_matrix method), 646
deg2rad() (cupyx.scipy.sparse.dia_matrix method), 656
deg2rad() (in module cupy), 88
degrees() (in module cupy), 87
delete() (in module cupy), 129
den (cupyx.scipy.signal.TransferFunction attribute), 543
depth (cupy.cuda.texture.CUDAarray attribute), 790
deriv() (cupy.poly1d method), 222
derivative() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 364
derivative() (cupyx.scipy.interpolate.BPoly method),

373
derivative() (cupyx.scipy.interpolate.BSpline

method), 378

derivative() (cupyx.scipy.interpolate.CubicHermiteSpline
method), 355

derivative() (cupyx.scipy.interpolate.KroghInterpolator
method), 350

derivative() (cupyx.scipy.interpolate.NdPPoly
method), 391

derivative() (cupyx.scipy.interpolate.PchipInterpolator
method), 359

derivative() (cupyx.scipy.interpolate.PPoly method),
368

derivatives() (cupyx.scipy.interpolate.KroghInterpolator
method), 351

desc (cupy.cuda.texture.CUDAarray attribute), 790
design_matrix() (cupyx.scipy.interpolate.BSpline

class method), 378
destroy() (cupy.cuda.nccl.NcclCommunicator

method), 797
det() (in module cupy.linalg), 181
detrend() (in module cupyx.scipy.signal), 480
Device (class in cupy.cuda), 747
device (cupy.array_api._array_object.Array attribute),

909
device (cupy.cuda.ManagedMemory attribute), 754
device (cupy.cuda.Memory attribute), 752
device (cupy.cuda.MemoryAsync attribute), 753
device (cupy.cuda.MemoryPointer attribute), 759
device (cupy.cuda.UnownedMemory attribute), 755
device (cupy.ndarray attribute), 68
device (cupyx.distributed.array.DistributedArray

attribute), 846
device (cupyx.scipy.sparse.coo_matrix attribute), 633
device (cupyx.scipy.sparse.csc_matrix attribute), 643
device (cupyx.scipy.sparse.csr_matrix attribute), 653
device (cupyx.scipy.sparse.dia_matrix attribute), 660
device (cupyx.scipy.sparse.spmatrix attribute), 665
device_id (cupy.cuda.ManagedMemory attribute), 754
device_id (cupy.cuda.Memory attribute), 752
device_id (cupy.cuda.MemoryAsync attribute), 753
device_id (cupy.cuda.MemoryPointer attribute), 759
device_id (cupy.cuda.UnownedMemory attribute), 755
device_id() (cupy.cuda.nccl.NcclCommunicator

method), 797
deviceCanAccessPeer() (in module

cupy.cuda.runtime), 805
deviceEnablePeerAccess() (in module

cupy.cuda.runtime), 805
deviceGetAttribute() (in module

cupy.cuda.runtime), 804
deviceGetByPCIBusId() (in module

cupy.cuda.runtime), 804
deviceGetDefaultMemPool() (in module

cupy.cuda.runtime), 804
deviceGetLimit() (in module cupy.cuda.runtime), 806
deviceGetMemPool() (in module cupy.cuda.runtime),

952 Index

CuPy Documentation, Release 13.0.0

804
deviceGetPCIBusId() (in module cupy.cuda.runtime),

804
devices (cupyx.distributed.array.DistributedArray at-

tribute), 846
deviceSetLimit() (in module cupy.cuda.runtime), 806
deviceSetMemPool() (in module cupy.cuda.runtime),

805
deviceSynchronize() (in module cupy.cuda.runtime),

805
dfreqresp() (in module cupyx.scipy.signal), 552
dft() (in module cupyx.scipy.linalg), 399
dia_matrix (class in cupyx.scipy.sparse), 654
diag() (in module cupy), 110
diag_indices() (in module cupy), 160
diag_indices_from() (in module cupy), 161
diagflat() (in module cupy), 111
diagonal() (cupy.ndarray method), 61
diagonal() (cupyx.distributed.array.DistributedArray

method), 842
diagonal() (cupyx.scipy.sparse.coo_matrix method),

627
diagonal() (cupyx.scipy.sparse.csc_matrix method),

636
diagonal() (cupyx.scipy.sparse.csr_matrix method),

647
diagonal() (cupyx.scipy.sparse.dia_matrix method),

656
diagonal() (cupyx.scipy.sparse.spmatrix method), 662
diagonal() (in module cupy), 163
diags() (in module cupyx.scipy.sparse), 668
diff() (in module cupy), 203
digamma() (in module cupyx.scipy.special), 723
digitize() (in module cupy), 301
dimpulse() (in module cupyx.scipy.signal), 551
dirichlet() (cupy.random.Generator method), 230
dirichlet() (cupy.random.RandomState method), 243
dirichlet() (in module cupy.random), 254
distance_matrix() (in module cupyx.scipy.spatial),

692
distance_matrix() (in module cu-

pyx.scipy.spatial.distance), 694
distance_transform_edt() (in module cu-

pyx.scipy.ndimage), 446
distributed_array() (in module cu-

pyx.distributed.array), 840
DistributedArray (class in cupyx.distributed.array),

840
divide() (in module cupy), 77
divide() (in module cupy.array_api), 898
divmod() (in module cupy), 80
dlsim() (in module cupyx.scipy.signal), 550
dlti (class in cupyx.scipy.signal), 549
done (cupy.cuda.Event attribute), 786

done (cupy.cuda.ExternalStream attribute), 785
done (cupy.cuda.Stream attribute), 781
dot() (cupy.ndarray method), 61
dot() (cupyx.distributed.array.DistributedArray

method), 842
dot() (cupyx.scipy.sparse.coo_matrix method), 628
dot() (cupyx.scipy.sparse.csc_matrix method), 636
dot() (cupyx.scipy.sparse.csr_matrix method), 647
dot() (cupyx.scipy.sparse.dia_matrix method), 656
dot() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
dot() (cupyx.scipy.sparse.spmatrix method), 662
dot() (in module cupy), 174
driverGetVersion() (in module cupy.cuda.runtime),

803
dsplit() (in module cupy), 127
dst() (in module cupyx.scipy.fft), 334
dstack() (in module cupy), 125
dstep() (in module cupyx.scipy.signal), 551
dstn() (in module cupyx.scipy.fft), 335
dt (cupyx.scipy.signal.dlti attribute), 550
dt (cupyx.scipy.signal.lti attribute), 539
dt (cupyx.scipy.signal.StateSpace attribute), 541
dt (cupyx.scipy.signal.TransferFunction attribute), 543
dt (cupyx.scipy.signal.ZerosPolesGain attribute), 544
dtype (cupy.array_api._array_object.Array attribute),

909
dtype (cupy.ndarray attribute), 68
dtype (cupyx.distributed.array.DistributedArray at-

tribute), 846
dtype (cupyx.scipy.sparse.coo_matrix attribute), 633
dtype (cupyx.scipy.sparse.csc_matrix attribute), 643
dtype (cupyx.scipy.sparse.csr_matrix attribute), 653
dtype (cupyx.scipy.sparse.dia_matrix attribute), 660
dump() (cupy.ndarray method), 62
dump() (cupyx.distributed.array.DistributedArray

method), 842
dumps() (cupy.ndarray method), 62
dumps() (cupyx.distributed.array.DistributedArray

method), 842

E
ediff1d() (in module cupy), 204
eigh() (in module cupy.linalg), 180
eigsh() (in module cupyx.scipy.sparse.linalg), 686
eigvalsh() (in module cupy.linalg), 180
einsum() (in module cupy), 176
ElementwiseKernel (class in cupy), 812
eliminate_zeros() (cupyx.scipy.sparse.coo_matrix

method), 628
eliminate_zeros() (cupyx.scipy.sparse.csc_matrix

method), 636
eliminate_zeros() (cupyx.scipy.sparse.csr_matrix

method), 647

Index 953

CuPy Documentation, Release 13.0.0

ellip() (in module cupyx.scipy.signal), 511
ellipap() (in module cupyx.scipy.signal), 523
ellipord() (in module cupyx.scipy.signal), 512
empty() (in module cupy), 99
empty() (in module cupy.array_api), 898
empty_like() (in module cupy), 99
empty_like() (in module cupy.array_api), 898
empty_like_pinned() (in module cupyx), 739
empty_pinned() (in module cupyx), 739
enable_cooperative_groups (cupy.RawKernel

attribute), 818
enable_cooperative_groups (cupy.RawModule at-

tribute), 822
end_capture() (cupy.cuda.ExternalStream method),

783
end_capture() (cupy.cuda.Stream method), 780
entr() (in module cupyx.scipy.special), 717
entropy() (in module cupyx.scipy.stats), 734
environment variable

CUDA_PATH, 850, 852
CUPY_ACCELERATORS, 40, 176, 851, 852, 922, 927
CUPY_CACHE_DIR, 40, 850
CUPY_CACHE_IN_MEMORY, 850
CUPY_CACHE_SAVE_CUDA_SOURCE, 850
CUPY_COMPILE_WITH_PTX, 851
CUPY_CUDA_ARRAY_INTERFACE_EXPORT_VERSION,

43, 851
CUPY_CUDA_ARRAY_INTERFACE_SYNC, 43, 851
CUPY_CUDA_COMPILE_WITH_DEBUG, 850
CUPY_CUDA_PER_THREAD_DEFAULT_STREAM, 851
CUPY_DISABLE_JITIFY_CACHE, 850
CUPY_DLPACK_EXPORT_VERSION, 48, 851
CUPY_DUMP_CUDA_SOURCE_ON_ERROR, 850
CUPY_EXPERIMENTAL_SLICE_COPY, 850
CUPY_GPU_MEMORY_LIMIT, 850
CUPY_INSTALL_USE_HIP, 852
CUPY_NUM_BUILD_JOBS, 852
CUPY_NUM_NVCC_THREADS, 852
CUPY_NVCC_GENERATE_CODE, 852
CUPY_SEED, 850
CUPY_TF32, 851
CUPY_USE_CUDA_PYTHON, 852
CUTENSOR_PATH, 852
NVCC, 851, 852

equal() (in module cupy), 91
equal() (in module cupy.array_api), 899
erf() (in module cupyx.scipy.special), 724
erfc() (in module cupyx.scipy.special), 724
erfcinv() (in module cupyx.scipy.special), 725
erfcx() (in module cupyx.scipy.special), 724
erfinv() (in module cupyx.scipy.special), 724
euclidean() (in module cupyx.scipy.spatial.distance),

698
Event (class in cupy.cuda), 785

eventCreate() (in module cupy.cuda.runtime), 810
eventCreateWithFlags() (in module

cupy.cuda.runtime), 810
eventDestroy() (in module cupy.cuda.runtime), 810
eventElapsedTime() (in module cupy.cuda.runtime),

810
eventQuery() (in module cupy.cuda.runtime), 810
eventRecord() (in module cupy.cuda.runtime), 810
eventSynchronize() (in module cupy.cuda.runtime),

811
exp() (in module cupy), 81
exp() (in module cupy.array_api), 899
exp1() (in module cupyx.scipy.special), 726
exp10() (in module cupyx.scipy.special), 729
exp2() (in module cupy), 81
exp2() (in module cupyx.scipy.special), 729
expand_dims() (in module cupy), 120
expand_dims() (in module cupy.array_api), 899
expi() (in module cupyx.scipy.special), 726
expit() (in module cupyx.scipy.special), 714
expm() (in module cupyx.scipy.linalg), 394
expm1() (cupyx.scipy.sparse.coo_matrix method), 628
expm1() (cupyx.scipy.sparse.csc_matrix method), 636
expm1() (cupyx.scipy.sparse.csr_matrix method), 647
expm1() (cupyx.scipy.sparse.dia_matrix method), 656
expm1() (in module cupy), 82
expm1() (in module cupy.array_api), 899
expm1() (in module cupyx.scipy.special), 731
expn() (in module cupyx.scipy.special), 726
exponential() (cupy.random.Generator method), 230
exponential() (cupy.random.RandomState method),

243
exponential() (in module cupy.random), 254
exponential() (in module cupyx.scipy.signal.windows),

607
exprel() (in module cupyx.scipy.special), 727
extend() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 364
extend() (cupyx.scipy.interpolate.BPoly method), 373
extend() (cupyx.scipy.interpolate.CubicHermiteSpline

method), 355
extend() (cupyx.scipy.interpolate.PchipInterpolator

method), 360
extend() (cupyx.scipy.interpolate.PPoly method), 369
ExternalStream (class in cupy.cuda), 782
extract() (in module cupy), 285
extrapolate (cupyx.scipy.interpolate.Akima1DInterpolator

attribute), 366
extrapolate (cupyx.scipy.interpolate.BPoly attribute),

375
extrapolate (cupyx.scipy.interpolate.CubicHermiteSpline

attribute), 357
extrapolate (cupyx.scipy.interpolate.PchipInterpolator

attribute), 362

954 Index

CuPy Documentation, Release 13.0.0

extrapolate (cupyx.scipy.interpolate.PPoly attribute),
371

extrema() (in module cupyx.scipy.ndimage), 431
eye() (in module cupy), 100
eye() (in module cupy.array_api), 899
eye() (in module cupyx.scipy.sparse), 666

F
f() (cupy.random.Generator method), 230
f() (cupy.random.RandomState method), 243
f() (in module cupy.random), 255
fabs() (in module cupy), 80
factorized() (in module cupyx.scipy.sparse.linalg),

680
fdtr() (in module cupyx.scipy.special), 707
fdtrc() (in module cupyx.scipy.special), 708
fdtri() (in module cupyx.scipy.special), 708
fft() (in module cupy.fft), 138
fft() (in module cupyx.scipy.fft), 319
fft() (in module cupyx.scipy.fftpack), 341
fft2() (in module cupy.fft), 139
fft2() (in module cupyx.scipy.fft), 320
fft2() (in module cupyx.scipy.fftpack), 342
fftconvolve() (in module cupyx.scipy.signal), 457
fftfreq() (in module cupy.fft), 145
fftfreq() (in module cupyx.scipy.fft), 339
fftn() (in module cupy.fft), 140
fftn() (in module cupyx.scipy.fft), 322
fftn() (in module cupyx.scipy.fftpack), 344
fftshift() (in module cupy.fft), 146
fftshift() (in module cupyx.scipy.fft), 338
fht() (in module cupyx.scipy.fft), 337
fiedler() (in module cupyx.scipy.linalg), 400
fiedler_companion() (in module cupyx.scipy.linalg),

400
file_path (cupy.RawKernel attribute), 818
file_path (cupy.RawModule attribute), 822
fill() (cupy.ndarray method), 62
fill() (cupyx.distributed.array.DistributedArray

method), 842
fill_diagonal() (in module cupy), 167
filtfilt() (in module cupyx.scipy.signal), 473
find() (in module cupyx.scipy.sparse), 674
find_peaks() (in module cupyx.scipy.signal), 568
findfreqs() (in module cupyx.scipy.signal), 486
finfo() (in module cupy.array_api), 899
firls() (in module cupyx.scipy.signal), 494
firwin() (in module cupyx.scipy.signal), 491
firwin2() (in module cupyx.scipy.signal), 493
fix() (in module cupy), 198
flags (cupy.cuda.texture.CUDAarray attribute), 790
flags (cupy.ndarray attribute), 68
flags (cupyx.distributed.array.DistributedArray at-

tribute), 846

flat (cupy.ndarray attribute), 68
flat (cupyx.distributed.array.DistributedArray at-

tribute), 846
flatiter (class in cupy), 167
flatnonzero() (in module cupy), 284
flatten() (cupy.ndarray method), 62
flatten() (cupyx.distributed.array.DistributedArray

method), 843
flattop() (in module cupyx.scipy.signal.windows), 609
flip() (in module cupy), 132
flip() (in module cupy.array_api), 899
fliplr() (in module cupy), 132
flipud() (in module cupy), 133
float_power() (in module cupy), 79
floor() (cupyx.scipy.sparse.coo_matrix method), 628
floor() (cupyx.scipy.sparse.csc_matrix method), 636
floor() (cupyx.scipy.sparse.csr_matrix method), 647
floor() (cupyx.scipy.sparse.dia_matrix method), 656
floor() (in module cupy), 95
floor() (in module cupy.array_api), 899
floor_divide() (in module cupy), 78
floor_divide() (in module cupy.array_api), 900
fmax() (in module cupy), 92
fmin() (in module cupy), 93
fmod() (in module cupy), 80
for_all_dtypes() (in module cupy.testing), 311
for_all_dtypes_combination() (in module

cupy.testing), 313
for_CF_orders() (in module cupy.testing), 315
for_complex_dtypes() (in module cupy.testing), 313
for_dtypes() (in module cupy.testing), 310
for_dtypes_combination() (in module cupy.testing),

313
for_float_dtypes() (in module cupy.testing), 312
for_int_dtypes() (in module cupy.testing), 312
for_int_dtypes_combination() (in module

cupy.testing), 314
for_orders() (in module cupy.testing), 315
for_signed_dtypes() (in module cupy.testing), 312
for_signed_dtypes_combination() (in module

cupy.testing), 314
for_unsigned_dtypes() (in module cupy.testing), 312
for_unsigned_dtypes_combination() (in module

cupy.testing), 314
format (cupyx.scipy.sparse.coo_matrix attribute), 633
format (cupyx.scipy.sparse.csc_matrix attribute), 643
format (cupyx.scipy.sparse.csr_matrix attribute), 653
format (cupyx.scipy.sparse.dia_matrix attribute), 660
format_float_positional() (in module cupy), 172
format_float_scientific() (in module cupy), 173
fourier_ellipsoid() (in module cu-

pyx.scipy.ndimage), 422
fourier_gaussian() (in module cupyx.scipy.ndimage),

423

Index 955

CuPy Documentation, Release 13.0.0

fourier_shift() (in module cupyx.scipy.ndimage), 423
fourier_uniform() (in module cupyx.scipy.ndimage),

424
free() (cupy.cuda.PinnedMemoryPool method), 768
free() (in module cupy.cuda.runtime), 807
free_all_blocks() (cupy.cuda.MemoryAsyncPool

method), 766
free_all_blocks() (cupy.cuda.MemoryPool method),

763
free_all_blocks() (cupy.cuda.PinnedMemoryPool

method), 768
free_all_free() (cupy.cuda.MemoryPool method),

763
free_bytes() (cupy.cuda.MemoryAsyncPool method),

766
free_bytes() (cupy.cuda.MemoryPool method), 763
free_postprocess() (cupy.cuda.memory_hooks.DebugPrintHook

method), 774
free_postprocess() (cupy.cuda.memory_hooks.LineProfileHook

method), 777
free_postprocess() (cupy.cuda.MemoryHook

method), 772
free_preprocess() (cupy.cuda.memory_hooks.DebugPrintHook

method), 774
free_preprocess() (cupy.cuda.memory_hooks.LineProfileHook

method), 777
free_preprocess() (cupy.cuda.MemoryHook method),

772
freeArray() (in module cupy.cuda.runtime), 807
freeAsync() (in module cupy.cuda.runtime), 807
freeHost() (in module cupy.cuda.runtime), 807
freqresp() (cupyx.scipy.signal.dlti method), 549
freqresp() (cupyx.scipy.signal.lti method), 538
freqresp() (in module cupyx.scipy.signal), 547
freqs() (in module cupyx.scipy.signal), 487
freqs_zpk() (in module cupyx.scipy.signal), 488
freqz() (in module cupyx.scipy.signal), 488
freqz_zpk() (in module cupyx.scipy.signal), 490
frexp() (in module cupy), 95
from_bernstein_basis() (cu-

pyx.scipy.interpolate.Akima1DInterpolator
class method), 364

from_bernstein_basis() (cu-
pyx.scipy.interpolate.CubicHermiteSpline
class method), 355

from_bernstein_basis() (cu-
pyx.scipy.interpolate.PchipInterpolator class
method), 360

from_bernstein_basis() (cu-
pyx.scipy.interpolate.PPoly class method),
369

from_derivatives() (cupyx.scipy.interpolate.BPoly
class method), 373

from_dlpack() (in module cupy), 745

from_dlpack() (in module cupy.array_api), 900
from_pci_bus_id() (cupy.cuda.Device method), 747
from_power_basis() (cupyx.scipy.interpolate.BPoly

class method), 374
from_spline() (cupyx.scipy.interpolate.Akima1DInterpolator

class method), 364
from_spline() (cupyx.scipy.interpolate.CubicHermiteSpline

class method), 355
from_spline() (cupyx.scipy.interpolate.PchipInterpolator

class method), 360
from_spline() (cupyx.scipy.interpolate.PPoly class

method), 369
frombuffer() (in module cupy), 105
fromfile() (in module cupy), 105
fromfunction() (in module cupy), 106
fromiter() (in module cupy), 106
fromstring() (in module cupy), 106
full() (in module cupy), 103
full() (in module cupy.array_api), 900
full_like() (in module cupy), 103
full_like() (in module cupy.array_api), 900
fuse() (in module cupy), 822

G
gain (cupyx.scipy.signal.ZerosPolesGain attribute), 544
gamma() (cupy.random.Generator method), 231
gamma() (cupy.random.RandomState method), 243
gamma() (in module cupy.random), 255
gamma() (in module cupyx.scipy.special), 718
gammainc() (in module cupyx.scipy.special), 719
gammaincc() (in module cupyx.scipy.special), 720
gammainccinv() (in module cupyx.scipy.special), 720
gammaincinv() (in module cupyx.scipy.special), 719
gammaln() (in module cupyx.scipy.special), 718
gammatone() (in module cupyx.scipy.signal), 497
gather() (cupyx.distributed.NCCLBackend method),

837
gauss_spline() (in module cupyx.scipy.signal), 463
gaussian() (in module cupyx.scipy.signal.windows),

610
gaussian_filter() (in module cupyx.scipy.ndimage),

408
gaussian_filter1d() (in module cu-

pyx.scipy.ndimage), 409
gaussian_gradient_magnitude() (in module cu-

pyx.scipy.ndimage), 410
gaussian_laplace() (in module cupyx.scipy.ndimage),

410
gausspulse() (in module cupyx.scipy.signal), 555
gcd() (in module cupy), 83
gdtr() (in module cupyx.scipy.special), 709
gdtrc() (in module cupyx.scipy.special), 709
general_cosine() (in module cu-

pyx.scipy.signal.windows), 611

956 Index

CuPy Documentation, Release 13.0.0

general_gaussian() (in module cu-
pyx.scipy.signal.windows), 612

general_hamming() (in module cu-
pyx.scipy.signal.windows), 613

GeneralizedUFunc (class in cupyx), 96
generate_binary_structure() (in module cu-

pyx.scipy.ndimage), 449
Generator (class in cupy.random), 228
generator (cupy.random.MRG32k3a attribute), 240
generator (cupy.random.Philox4x3210 attribute), 241
generator (cupy.random.XORWOW attribute), 239
generic_filter() (in module cupyx.scipy.ndimage),

411
generic_filter1d() (in module cupyx.scipy.ndimage),

412
generic_gradient_magnitude() (in module cu-

pyx.scipy.ndimage), 413
generic_laplace() (in module cupyx.scipy.ndimage),

414
genfromtxt() (in module cupy), 171
geometric() (cupy.random.Generator method), 231
geometric() (cupy.random.RandomState method), 243
geometric() (in module cupy.random), 256
get() (cupy.ndarray method), 62
get() (cupy.poly1d method), 222
get() (cupyx.distributed.array.DistributedArray

method), 843
get() (cupyx.scipy.sparse.coo_matrix method), 628
get() (cupyx.scipy.sparse.csc_matrix method), 636
get() (cupyx.scipy.sparse.csr_matrix method), 647
get() (cupyx.scipy.sparse.dia_matrix method), 656
get() (cupyx.scipy.sparse.spmatrix method), 662
get_allocator() (in module cupy.cuda), 762
get_array_module() (in module cupy), 72
get_array_module() (in module cupyx.scipy), 72
get_build_version() (in module cupy.cuda.nccl), 799
get_channel_format()

(cupy.cuda.texture.ChannelFormatDescriptor
method), 788

get_current_stream() (in module cupy.cuda), 785
get_default_memory_pool() (in module cupy), 750
get_default_pinned_memory_pool() (in module

cupy), 751
get_elapsed_time() (in module cupy.cuda), 786
get_fft_plan() (in module cupyx.scipy.fftpack), 346
get_function() (cupy.RawModule method), 820
get_global() (cupy.RawModule method), 821
get_limit() (cupy.cuda.MemoryAsyncPool method),

766
get_limit() (cupy.cuda.MemoryPool method), 763
get_local_runtime_version() (in module

cupy.cuda), 800
get_plan_cache() (in module cupy.fft.config), 149
get_random_state() (in module cupy.random), 275

get_resource_desc()
(cupy.cuda.texture.ResourceDescriptor
method), 791

get_shape() (cupyx.scipy.sparse.coo_matrix method),
628

get_shape() (cupyx.scipy.sparse.csc_matrix method),
637

get_shape() (cupyx.scipy.sparse.csr_matrix method),
647

get_shape() (cupyx.scipy.sparse.dia_matrix method),
657

get_shape() (cupyx.scipy.sparse.spmatrix method), 662
get_texture_desc() (cupy.cuda.texture.TextureDescriptor

method), 793
get_unique_id() (in module cupy.cuda.nccl), 799
get_version() (in module cupy.cuda.nccl), 799
get_window() (in module cupyx.scipy.signal), 559
get_window() (in module cupyx.scipy.signal.windows),

597
getcol() (cupyx.scipy.sparse.csc_matrix method), 637
getcol() (cupyx.scipy.sparse.csr_matrix method), 647
getDevice() (in module cupy.cuda.runtime), 804
getDeviceCount() (in module cupy.cuda.runtime), 805
getDeviceProperties() (in module

cupy.cuda.runtime), 804
getformat() (cupyx.scipy.sparse.coo_matrix method),

628
getformat() (cupyx.scipy.sparse.csc_matrix method),

637
getformat() (cupyx.scipy.sparse.csr_matrix method),

648
getformat() (cupyx.scipy.sparse.dia_matrix method),

657
getformat() (cupyx.scipy.sparse.spmatrix method), 662
getH() (cupyx.scipy.sparse.coo_matrix method), 628
getH() (cupyx.scipy.sparse.csc_matrix method), 637
getH() (cupyx.scipy.sparse.csr_matrix method), 647
getH() (cupyx.scipy.sparse.dia_matrix method), 656
getH() (cupyx.scipy.sparse.spmatrix method), 662
getmaxprint() (cupyx.scipy.sparse.coo_matrix

method), 628
getmaxprint() (cupyx.scipy.sparse.csc_matrix

method), 637
getmaxprint() (cupyx.scipy.sparse.csr_matrix

method), 648
getmaxprint() (cupyx.scipy.sparse.dia_matrix

method), 657
getmaxprint() (cupyx.scipy.sparse.spmatrix method),

662
getnnz() (cupyx.scipy.sparse.coo_matrix method), 628
getnnz() (cupyx.scipy.sparse.csc_matrix method), 637
getnnz() (cupyx.scipy.sparse.csr_matrix method), 648
getnnz() (cupyx.scipy.sparse.dia_matrix method), 657
getnnz() (cupyx.scipy.sparse.spmatrix method), 663

Index 957

CuPy Documentation, Release 13.0.0

getrow() (cupyx.scipy.sparse.csc_matrix method), 637
getrow() (cupyx.scipy.sparse.csr_matrix method), 648
gmres() (in module cupyx.scipy.sparse.linalg), 681
gradient() (in module cupy), 204
Graph (class in cupy.cuda), 787
graph (cupy.cuda.Graph attribute), 788
graphExec (cupy.cuda.Graph attribute), 788
greater() (in module cupy), 90
greater() (in module cupy.array_api), 900
greater_equal() (in module cupy), 90
greater_equal() (in module cupy.array_api), 900
grey_closing() (in module cupyx.scipy.ndimage), 449
grey_dilation() (in module cupyx.scipy.ndimage), 450
grey_erosion() (in module cupyx.scipy.ndimage), 450
grey_opening() (in module cupyx.scipy.ndimage), 451
grid (in module cupyx.jit), 825
gridDim (in module cupyx.jit), 825
gridsize (in module cupyx.jit), 825
group_delay() (in module cupyx.scipy.signal), 498
groupEnd() (in module cupy.cuda.nccl), 800
groupStart() (in module cupy.cuda.nccl), 799
gumbel() (cupy.random.RandomState method), 243
gumbel() (in module cupy.random), 256

H
H (cupyx.scipy.sparse.coo_matrix attribute), 633
H (cupyx.scipy.sparse.csc_matrix attribute), 643
H (cupyx.scipy.sparse.csr_matrix attribute), 653
H (cupyx.scipy.sparse.dia_matrix attribute), 660
H (cupyx.scipy.sparse.linalg.LinearOperator attribute),

678
H (cupyx.scipy.sparse.spmatrix attribute), 665
hadamard() (in module cupyx.scipy.linalg), 401
hamming() (in module cupy), 317
hamming() (in module cupyx.scipy.signal.windows), 615
hamming() (in module cupyx.scipy.spatial.distance), 698
hankel() (in module cupyx.scipy.linalg), 401
hann() (in module cupyx.scipy.signal.windows), 616
hanning() (in module cupy), 317
has_canonical_format (cu-

pyx.scipy.sparse.csc_matrix attribute), 643
has_canonical_format (cu-

pyx.scipy.sparse.csr_matrix attribute), 653
has_sorted_indices (cupyx.scipy.sparse.csc_matrix

attribute), 643
has_sorted_indices (cupyx.scipy.sparse.csr_matrix

attribute), 654
heaviside() (in module cupy), 81
height (cupy.cuda.texture.CUDAarray attribute), 790
hellinger() (in module cupyx.scipy.spatial.distance),

700
helmert() (in module cupyx.scipy.linalg), 402
hfft() (in module cupy.fft), 144
hfft() (in module cupyx.scipy.fft), 327

hfft2() (in module cupyx.scipy.fft), 328
hfftn() (in module cupyx.scipy.fft), 329
hilbert() (in module cupyx.scipy.linalg), 402
hilbert() (in module cupyx.scipy.signal), 478
hilbert2() (in module cupyx.scipy.signal), 479
histogram() (in module cupy), 298
histogram() (in module cupyx.scipy.ndimage), 432
histogram2d() (in module cupy), 299
histogramdd() (in module cupy), 300
hostAlloc() (in module cupy.cuda.runtime), 806
hostRegister() (in module cupy.cuda.runtime), 807
hostUnregister() (in module cupy.cuda.runtime), 807
hsplit() (in module cupy), 127
hstack() (in module cupy), 124
hstack() (in module cupyx.scipy.sparse), 671
huber() (in module cupyx.scipy.special), 717
hypergeometric() (cupy.random.Generator method),

232
hypergeometric() (cupy.random.RandomState

method), 244
hypergeometric() (in module cupy.random), 257
hypot() (in module cupy), 86

I
i0() (in module cupy), 206
i0() (in module cupyx.scipy.special), 704
i0e() (in module cupyx.scipy.special), 704
i1() (in module cupyx.scipy.special), 704
i1e() (in module cupyx.scipy.special), 704
id (cupy.cuda.Device attribute), 749
idct() (in module cupyx.scipy.fft), 331
idctn() (in module cupyx.scipy.fft), 333
identity (cupy.ReductionKernel attribute), 815
identity() (in module cupy), 100
identity() (in module cupyx.scipy.sparse), 667
idst() (in module cupyx.scipy.fft), 334
idstn() (in module cupyx.scipy.fft), 336
ifft() (in module cupy.fft), 139
ifft() (in module cupyx.scipy.fft), 320
ifft() (in module cupyx.scipy.fftpack), 342
ifft2() (in module cupy.fft), 140
ifft2() (in module cupyx.scipy.fft), 321
ifft2() (in module cupyx.scipy.fftpack), 343
ifftn() (in module cupy.fft), 141
ifftn() (in module cupyx.scipy.fft), 322
ifftn() (in module cupyx.scipy.fftpack), 344
ifftshift() (in module cupy.fft), 147
ifftshift() (in module cupyx.scipy.fft), 338
ifht() (in module cupyx.scipy.fft), 337
ihfft() (in module cupy.fft), 145
ihfft() (in module cupyx.scipy.fft), 328
ihfft2() (in module cupyx.scipy.fft), 329
ihfftn() (in module cupyx.scipy.fft), 330
iinfo() (in module cupy.array_api), 900

958 Index

CuPy Documentation, Release 13.0.0

iircomb() (in module cupyx.scipy.signal), 518
iirdesign() (in module cupyx.scipy.signal), 499
iirfilter() (in module cupyx.scipy.signal), 501
iirnotch() (in module cupyx.scipy.signal), 519
iirpeak() (in module cupyx.scipy.signal), 520
imag (cupy.ndarray attribute), 69
imag (cupyx.distributed.array.DistributedArray at-

tribute), 846
imag() (in module cupy), 208
impulse() (cupyx.scipy.signal.dlti method), 549
impulse() (cupyx.scipy.signal.lti method), 538
impulse() (in module cupyx.scipy.signal), 546
in1d() (in module cupy), 276
in_params (cupy.ElementwiseKernel attribute), 813
in_params (cupy.ReductionKernel attribute), 816
index_map (cupyx.distributed.array.DistributedArray at-

tribute), 846
indices() (in module cupy), 154
init_process_group() (in module cupyx.distributed),

835
initAll() (cupy.cuda.nccl.NcclCommunicator static

method), 798
inner() (in module cupy), 174
integ() (cupy.poly1d method), 222
integers() (cupy.random.Generator method), 232
integrate() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 365
integrate() (cupyx.scipy.interpolate.BPoly method),

374
integrate() (cupyx.scipy.interpolate.BSpline method),

379
integrate() (cupyx.scipy.interpolate.CubicHermiteSpline

method), 356
integrate() (cupyx.scipy.interpolate.NdPPoly

method), 391
integrate() (cupyx.scipy.interpolate.PchipInterpolator

method), 360
integrate() (cupyx.scipy.interpolate.PPoly method),

369
integrate_1d() (cupyx.scipy.interpolate.NdPPoly

method), 391
interp() (in module cupy), 211
interpn() (in module cupyx.scipy.interpolate), 384
intersect1d() (in module cupy), 276
inv() (in module cupy.linalg), 185
inv_boxcox() (in module cupyx.scipy.special), 716
inv_boxcox1p() (in module cupyx.scipy.special), 716
invert() (in module cupy), 89
invres() (in module cupyx.scipy.signal), 507
invresz() (in module cupyx.scipy.signal), 508
ipcCloseMemHandle() (in module cupy.cuda.runtime),

811
ipcGetEventHandle() (in module cupy.cuda.runtime),

811

ipcGetMemHandle() (in module cupy.cuda.runtime),
811

ipcOpenEventHandle() (in module
cupy.cuda.runtime), 811

ipcOpenMemHandle() (in module cupy.cuda.runtime),
811

irfft() (in module cupy.fft), 142
irfft() (in module cupyx.scipy.fft), 324
irfft() (in module cupyx.scipy.fftpack), 346
irfft2() (in module cupy.fft), 143
irfft2() (in module cupyx.scipy.fft), 325
irfftn() (in module cupy.fft), 144
irfftn() (in module cupyx.scipy.fft), 326
is_capturing() (cupy.cuda.ExternalStream method),

783
is_capturing() (cupy.cuda.Stream method), 780
isclose() (in module cupy), 195
iscomplex() (in module cupy), 190
iscomplexobj() (in module cupy), 190
isfinite() (in module cupy), 93
isfinite() (in module cupy.array_api), 900
isfortran() (in module cupy), 191
isin() (in module cupy), 277
isinf() (in module cupy), 94
isinf() (in module cupy.array_api), 901
isnan() (in module cupy), 94
isnan() (in module cupy.array_api), 901
isneginf() (in module cupy), 188
isposinf() (in module cupy), 189
isreal() (in module cupy), 192
isrealobj() (in module cupy), 193
isscalar() (in module cupy), 193
issparse() (in module cupyx.scipy.sparse), 674
isspmatrix() (in module cupyx.scipy.sparse), 674
isspmatrix_coo() (in module cupyx.scipy.sparse), 675
isspmatrix_csc() (in module cupyx.scipy.sparse), 675
isspmatrix_csr() (in module cupyx.scipy.sparse), 675
isspmatrix_dia() (in module cupyx.scipy.sparse), 675
istft() (in module cupyx.scipy.signal), 585
item() (cupy.ndarray method), 63
item() (cupyx.distributed.array.DistributedArray

method), 843
itemsize (cupy.ndarray attribute), 69
itemsize (cupyx.distributed.array.DistributedArray at-

tribute), 846
iterate_structure() (in module cu-

pyx.scipy.ndimage), 452
ix_() (in module cupy), 157

J
j0() (in module cupyx.scipy.special), 701
j1() (in module cupyx.scipy.special), 701
jensenshannon() (in module cu-

pyx.scipy.spatial.distance), 698

Index 959

CuPy Documentation, Release 13.0.0

K
k0() (in module cupyx.scipy.special), 701
k0e() (in module cupyx.scipy.special), 702
k1() (in module cupyx.scipy.special), 702
k1e() (in module cupyx.scipy.special), 702
kaiser() (in module cupy), 317
kaiser() (in module cupyx.scipy.signal.windows), 617
kaiser_atten() (in module cupyx.scipy.signal), 502
kaiser_beta() (in module cupyx.scipy.signal), 503
kaiserord() (in module cupyx.scipy.signal), 503
kernel (cupy.RawKernel attribute), 818
kl_div() (in module cupyx.scipy.special), 717
kl_divergence() (in module cu-

pyx.scipy.spatial.distance), 700
krogh_interpolate() (in module cu-

pyx.scipy.interpolate), 352
KroghInterpolator (class in cupyx.scipy.interpolate),

350
kron() (in module cupy), 177
kron() (in module cupyx.scipy.linalg), 403
kron() (in module cupyx.scipy.sparse), 667
kronsum() (in module cupyx.scipy.sparse), 668
kwargs (cupy.ElementwiseKernel attribute), 813

L
label() (in module cupyx.scipy.ndimage), 432
labeled_comprehension() (in module cu-

pyx.scipy.ndimage), 433
laneid (in module cupyx.jit), 826
laplace() (cupy.random.RandomState method), 244
laplace() (in module cupy.random), 257
laplace() (in module cupyx.scipy.ndimage), 414
launch() (cupy.cuda.Graph method), 787
launch_host_func() (cupy.cuda.ExternalStream

method), 783
launch_host_func() (cupy.cuda.Stream method), 780
launchHostFunc() (in module cupy.cuda.runtime), 810
lcm() (in module cupy), 84
ldexp() (in module cupy), 95
left_shift() (in module cupy), 89
leslie() (in module cupyx.scipy.linalg), 403
less() (in module cupy), 90
less() (in module cupy.array_api), 901
less_equal() (in module cupy), 91
less_equal() (in module cupy.array_api), 901
lexsort() (in module cupy), 279
lfilter() (in module cupyx.scipy.signal), 470
lfilter_zi() (in module cupyx.scipy.signal), 473
lfiltic() (in module cupyx.scipy.signal), 472
LinearOperator (class in cupyx.scipy.sparse.linalg),

676
LineProfileHook (class in cupy.cuda.memory_hooks),

776
linspace() (in module cupy), 107

linspace() (in module cupy.array_api), 901
load() (in module cupy), 169
loadtxt() (in module cupy), 106
lobpcg() (in module cupyx.scipy.sparse.linalg), 686
local_size_bytes (cupy.RawKernel attribute), 818
log() (in module cupy), 82
log() (in module cupy.array_api), 901
log10() (in module cupy), 82
log10() (in module cupy.array_api), 901
log1p() (cupyx.scipy.sparse.coo_matrix method), 628
log1p() (cupyx.scipy.sparse.csc_matrix method), 638
log1p() (cupyx.scipy.sparse.csr_matrix method), 648
log1p() (cupyx.scipy.sparse.dia_matrix method), 657
log1p() (in module cupy), 82
log1p() (in module cupy.array_api), 901
log1p() (in module cupyx.scipy.special), 731
log2() (in module cupy), 82
log2() (in module cupy.array_api), 902
log_expit() (in module cupyx.scipy.special), 715
log_ndtr() (in module cupyx.scipy.special), 713
log_softmax() (in module cupyx.scipy.special), 727
logaddexp() (in module cupy), 78
logaddexp() (in module cupy.array_api), 902
logaddexp2() (in module cupy), 78
loggamma() (in module cupyx.scipy.special), 719
logical_and() (in module cupy), 91
logical_and() (in module cupy.array_api), 902
logical_not() (in module cupy), 92
logical_not() (in module cupy.array_api), 902
logical_or() (in module cupy), 91
logical_or() (in module cupy.array_api), 902
logical_xor() (in module cupy), 92
logical_xor() (in module cupy.array_api), 902
logistic() (cupy.random.RandomState method), 244
logistic() (in module cupy.random), 258
logit() (in module cupyx.scipy.special), 714
lognormal() (cupy.random.RandomState method), 244
lognormal() (in module cupy.random), 258
logseries() (cupy.random.Generator method), 233
logseries() (cupy.random.RandomState method), 244
logseries() (in module cupy.random), 259
logspace() (in module cupy), 108
logsumexp() (in module cupyx.scipy.special), 732
lombscargle() (in module cupyx.scipy.signal), 581
lp2bp() (in module cupyx.scipy.signal), 523
lp2bp_zpk() (in module cupyx.scipy.signal), 524
lp2bs() (in module cupyx.scipy.signal), 525
lp2bs_zpk() (in module cupyx.scipy.signal), 525
lp2hp() (in module cupyx.scipy.signal), 526
lp2hp_zpk() (in module cupyx.scipy.signal), 527
lp2lp() (in module cupyx.scipy.signal), 527
lp2lp_zpk() (in module cupyx.scipy.signal), 528
lpmv() (in module cupyx.scipy.special), 725
lsim() (in module cupyx.scipy.signal), 545

960 Index

CuPy Documentation, Release 13.0.0

lsmr() (in module cupyx.scipy.sparse.linalg), 684
lsqr() (in module cupyx.scipy.sparse.linalg), 683
lstsq() (in module cupy.linalg), 184
lti (class in cupyx.scipy.signal), 538
lu() (in module cupyx.scipy.linalg), 395
lu_factor() (in module cupyx.scipy.linalg), 395
lu_solve() (in module cupyx.scipy.linalg), 396

M
make_2d_index_map() (in module cu-

pyx.distributed.array), 848
make_interp_spline() (in module cu-

pyx.scipy.interpolate), 379
malloc() (cupy.cuda.CFunctionAllocator method), 770
malloc() (cupy.cuda.MemoryAsyncPool method), 766
malloc() (cupy.cuda.MemoryPool method), 764
malloc() (cupy.cuda.PinnedMemoryPool method), 768
malloc() (cupy.cuda.PythonFunctionAllocator method),

769
malloc() (in module cupy.cuda.runtime), 806
malloc3DArray() (in module cupy.cuda.runtime), 806
malloc_async() (in module cupy.cuda), 761
malloc_managed() (in module cupy.cuda), 760
malloc_postprocess()

(cupy.cuda.memory_hooks.DebugPrintHook
method), 775

malloc_postprocess()
(cupy.cuda.memory_hooks.LineProfileHook
method), 777

malloc_postprocess() (cupy.cuda.MemoryHook
method), 772

malloc_preprocess()
(cupy.cuda.memory_hooks.DebugPrintHook
method), 775

malloc_preprocess()
(cupy.cuda.memory_hooks.LineProfileHook
method), 777

malloc_preprocess() (cupy.cuda.MemoryHook
method), 772

mallocArray() (in module cupy.cuda.runtime), 806
mallocAsync() (in module cupy.cuda.runtime), 806
mallocFromPoolAsync() (in module

cupy.cuda.runtime), 806
mallocManaged() (in module cupy.cuda.runtime), 806
ManagedMemory (class in cupy.cuda), 753
map_coordinates() (in module cupyx.scipy.ndimage),

426
map_expr (cupy.ReductionKernel attribute), 816
Mark() (in module cupy.cuda.nvtx), 795
MarkC() (in module cupy.cuda.nvtx), 795
mask_indices() (in module cupy), 155
matmat() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
matmul (in module cupy), 77

matmul() (in module cupy.array_api), 902
matmul() (in module cupyx.distributed.array), 849
matrix_power() (in module cupy.linalg), 177
matrix_rank() (in module cupy.linalg), 182
matvec() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
max() (cupy.ndarray method), 63
max() (cupyx.distributed.array.DistributedArray

method), 843
max() (cupyx.scipy.sparse.csc_matrix method), 638
max() (cupyx.scipy.sparse.csr_matrix method), 648
max_dynamic_shared_size_bytes (cupy.RawKernel

attribute), 818
max_len_seq() (in module cupyx.scipy.signal), 556
max_threads_per_block (cupy.RawKernel attribute),

818
maximum() (cupyx.scipy.sparse.coo_matrix method), 628
maximum() (cupyx.scipy.sparse.csc_matrix method), 638
maximum() (cupyx.scipy.sparse.csr_matrix method), 649
maximum() (cupyx.scipy.sparse.dia_matrix method), 657
maximum() (cupyx.scipy.sparse.spmatrix method), 663
maximum() (in module cupy), 92
maximum() (in module cupyx.scipy.ndimage), 433
maximum_filter() (in module cupyx.scipy.ndimage),

415
maximum_filter1d() (in module cupyx.scipy.ndimage),

416
maximum_position() (in module cupyx.scipy.ndimage),

434
may_share_memory() (in module cupy), 212
mean() (cupy.ndarray method), 63
mean() (cupyx.distributed.array.DistributedArray

method), 843
mean() (cupyx.scipy.sparse.coo_matrix method), 628
mean() (cupyx.scipy.sparse.csc_matrix method), 638
mean() (cupyx.scipy.sparse.csr_matrix method), 649
mean() (cupyx.scipy.sparse.dia_matrix method), 657
mean() (cupyx.scipy.sparse.spmatrix method), 663
mean() (in module cupy), 293
mean() (in module cupyx.scipy.ndimage), 435
medfilt() (in module cupyx.scipy.signal), 468
medfilt2d() (in module cupyx.scipy.signal), 468
median() (in module cupy), 292
median() (in module cupyx.scipy.ndimage), 435
median_filter() (in module cupyx.scipy.ndimage), 416
mem (cupy.cuda.MemoryPointer attribute), 759
mem (cupy.cuda.PinnedMemoryPointer attribute), 760
mem_info (cupy.cuda.Device attribute), 749
memAdvise() (in module cupy.cuda.runtime), 809
memcpy() (in module cupy.cuda.runtime), 807
memcpy2D() (in module cupy.cuda.runtime), 808
memcpy2DAsync() (in module cupy.cuda.runtime), 808
memcpy2DFromArray() (in module cupy.cuda.runtime),

808

Index 961

CuPy Documentation, Release 13.0.0

memcpy2DFromArrayAsync() (in module
cupy.cuda.runtime), 808

memcpy2DToArray() (in module cupy.cuda.runtime),
808

memcpy2DToArrayAsync() (in module
cupy.cuda.runtime), 808

memcpy3D() (in module cupy.cuda.runtime), 808
memcpy3DAsync() (in module cupy.cuda.runtime), 809
memcpy_async (in module cupyx.jit.cg), 832
memcpyAsync() (in module cupy.cuda.runtime), 807
memcpyPeer() (in module cupy.cuda.runtime), 807
memcpyPeerAsync() (in module cupy.cuda.runtime),

808
memGetInfo() (in module cupy.cuda.runtime), 807
memoize() (in module cupy), 835
Memory (class in cupy.cuda), 751
MemoryAsync (class in cupy.cuda), 752
memoryAsyncHasStat (cupy.cuda.MemoryAsyncPool

attribute), 768
MemoryAsyncPool (class in cupy.cuda), 765
MemoryHook (class in cupy.cuda), 771
MemoryPointer (class in cupy.cuda), 756
MemoryPool (class in cupy.cuda), 763
memPoolCreate() (in module cupy.cuda.runtime), 805
memPoolDestroy() (in module cupy.cuda.runtime), 805
memPoolTrimTo() (in module cupy.cuda.runtime), 805
memPrefetchAsync() (in module cupy.cuda.runtime),

809
memset() (cupy.cuda.MemoryPointer method), 758
memset() (in module cupy.cuda.runtime), 809
memset_async() (cupy.cuda.MemoryPointer method),

758
memsetAsync() (in module cupy.cuda.runtime), 809
meshgrid() (in module cupy), 109
meshgrid() (in module cupy.array_api), 902
mgrid (in module cupy), 109
min() (cupy.ndarray method), 63
min() (cupyx.distributed.array.DistributedArray

method), 843
min() (cupyx.scipy.sparse.csc_matrix method), 638
min() (cupyx.scipy.sparse.csr_matrix method), 649
min_scalar_type() (in module cupy), 136
minimum() (cupyx.scipy.sparse.coo_matrix method), 629
minimum() (cupyx.scipy.sparse.csc_matrix method), 639
minimum() (cupyx.scipy.sparse.csr_matrix method), 649
minimum() (cupyx.scipy.sparse.dia_matrix method), 657
minimum() (cupyx.scipy.sparse.spmatrix method), 663
minimum() (in module cupy), 92
minimum() (in module cupyx.scipy.ndimage), 436
minimum_filter() (in module cupyx.scipy.ndimage),

417
minimum_filter1d() (in module cupyx.scipy.ndimage),

418
minimum_phase() (in module cupyx.scipy.signal), 495

minimum_position() (in module cupyx.scipy.ndimage),
436

minkowski() (in module cupyx.scipy.spatial.distance),
695

minres() (in module cupyx.scipy.sparse.linalg), 683
mod() (in module cupy), 79
mode (cupyx.distributed.array.DistributedArray at-

tribute), 846
modf() (in module cupy), 95
module

cupy, 1
cupy.array_api, 895
cupy.fft, 138
cupy.linalg, 173
cupy.polynomial.polynomial, 217
cupy.polynomial.polyutils, 220
cupy.random, 227
cupy.testing, 301
cupyx.distributed, 835
cupyx.distributed.array, 840
cupyx.optimizing, 746
cupyx.scipy, 318
cupyx.scipy.fft, 318
cupyx.scipy.fftpack, 340
cupyx.scipy.interpolate, 347
cupyx.scipy.linalg, 392
cupyx.scipy.ndimage, 405
cupyx.scipy.signal, 455
cupyx.scipy.signal.windows, 596
cupyx.scipy.sparse, 624
cupyx.scipy.sparse.csgraph, 690
cupyx.scipy.sparse.linalg, 676
cupyx.scipy.spatial, 691
cupyx.scipy.spatial.distance, 692
cupyx.scipy.special, 700
cupyx.scipy.stats, 733

module (cupy.RawModule attribute), 822
morlet() (in module cupyx.scipy.signal), 561
morlet2() (in module cupyx.scipy.signal), 563
morphological_gradient() (in module cu-

pyx.scipy.ndimage), 452
morphological_laplace() (in module cu-

pyx.scipy.ndimage), 453
moveaxis() (in module cupy), 115
MRG32k3a (class in cupy.random), 239
msort() (in module cupy), 280
mT (cupy.array_api._array_object.Array attribute), 909
multigammaln() (in module cupyx.scipy.special), 723
multinomial() (in module cupy.random), 259
multiply() (cupyx.scipy.sparse.coo_matrix method),

629
multiply() (cupyx.scipy.sparse.csc_matrix method),

639

962 Index

CuPy Documentation, Release 13.0.0

multiply() (cupyx.scipy.sparse.csr_matrix method),
649

multiply() (cupyx.scipy.sparse.dia_matrix method),
657

multiply() (cupyx.scipy.sparse.spmatrix method), 663
multiply() (in module cupy), 77
multiply() (in module cupy.array_api), 903
multivariate_normal() (cupy.random.RandomState

method), 244
multivariate_normal() (in module cupy.random),

260

N
n_free_blocks() (cupy.cuda.MemoryAsyncPool

method), 767
n_free_blocks() (cupy.cuda.MemoryPool method),

764
n_free_blocks() (cupy.cuda.PinnedMemoryPool

method), 768
name (cupy.cuda.memory_hooks.DebugPrintHook

attribute), 775
name (cupy.cuda.memory_hooks.LineProfileHook at-

tribute), 778
name (cupy.cuda.MemoryHook attribute), 773
name (cupy.ElementwiseKernel attribute), 813
name (cupy.RawKernel attribute), 818
name (cupy.ReductionKernel attribute), 816
name (cupy.ufunc attribute), 75
name_expressions (cupy.RawModule attribute), 822
nan_to_num() (in module cupy), 210
nanargmax() (in module cupy), 283
nanargmin() (in module cupy), 284
nancumprod() (in module cupy), 202
nancumsum() (in module cupy), 203
nanmax() (in module cupy), 289
nanmean() (in module cupy), 295
nanmedian() (in module cupy), 294
nanmin() (in module cupy), 288
nanprod() (in module cupy), 200
nanstd() (in module cupy), 295
nansum() (in module cupy), 201
nanvar() (in module cupy), 296
nargs (cupy.ElementwiseKernel attribute), 814
nargs (cupy.ReductionKernel attribute), 816
nargs (cupy.ufunc attribute), 75
nbdtr() (in module cupyx.scipy.special), 710
nbdtrc() (in module cupyx.scipy.special), 710
nbdtri() (in module cupyx.scipy.special), 710
nbytes (cupy.ndarray attribute), 69
nbytes (cupyx.distributed.array.DistributedArray

attribute), 847
NCCLBackend (class in cupyx.distributed), 836
NcclCommunicator (class in cupy.cuda.nccl), 797
nd (cupy.broadcast attribute), 119

ndarray (class in cupy), 57
ndim (cupy.array_api._array_object.Array attribute),

909
ndim (cupy.cuda.texture.CUDAarray attribute), 790
ndim (cupy.ndarray attribute), 69
ndim (cupyx.distributed.array.DistributedArray at-

tribute), 847
ndim (cupyx.scipy.sparse.coo_matrix attribute), 633
ndim (cupyx.scipy.sparse.csc_matrix attribute), 643
ndim (cupyx.scipy.sparse.csr_matrix attribute), 654
ndim (cupyx.scipy.sparse.dia_matrix attribute), 660
ndim (cupyx.scipy.sparse.linalg.LinearOperator at-

tribute), 678
ndim (cupyx.scipy.sparse.spmatrix attribute), 665
NdPPoly (class in cupyx.scipy.interpolate), 389
ndtr() (in module cupyx.scipy.special), 713
ndtri() (in module cupyx.scipy.special), 714
negative() (in module cupy), 78
negative() (in module cupy.array_api), 903
negative_binomial() (cupy.random.RandomState

method), 245
negative_binomial() (in module cupy.random), 261
next_fast_len() (in module cupyx.scipy.fft), 340
nextafter() (in module cupy), 94
nin (cupy.ElementwiseKernel attribute), 814
nin (cupy.ReductionKernel attribute), 816
nin (cupy.ufunc attribute), 75
nnz (cupyx.scipy.sparse.coo_matrix attribute), 633
nnz (cupyx.scipy.sparse.csc_matrix attribute), 643
nnz (cupyx.scipy.sparse.csr_matrix attribute), 654
nnz (cupyx.scipy.sparse.dia_matrix attribute), 660
nnz (cupyx.scipy.sparse.spmatrix attribute), 665
no_return (cupy.ElementwiseKernel attribute), 814
noncentral_chisquare() (cupy.random.RandomState

method), 245
noncentral_chisquare() (in module cupy.random),

261
noncentral_f() (cupy.random.RandomState method),

245
noncentral_f() (in module cupy.random), 262
nonzero() (cupy.ndarray method), 63
nonzero() (cupyx.distributed.array.DistributedArray

method), 843
nonzero() (in module cupy), 153
nonzero() (in module cupy.array_api), 903
norm() (in module cupy.linalg), 181
norm() (in module cupyx.scipy.sparse.linalg), 678
normal() (cupy.random.RandomState method), 245
normal() (in module cupy.random), 262
normalize() (in module cupyx.scipy.signal), 528
not_equal() (in module cupy), 91
not_equal() (in module cupy.array_api), 903
nout (cupy.ElementwiseKernel attribute), 814
nout (cupy.ReductionKernel attribute), 816

Index 963

CuPy Documentation, Release 13.0.0

nout (cupy.ufunc attribute), 75
null (cupy.cuda.Stream attribute), 781
num (cupyx.scipy.signal.TransferFunction attribute), 543
num_regs (cupy.RawKernel attribute), 818
numpy_cupy_allclose() (in module cupy.testing), 305
numpy_cupy_array_almost_equal() (in module

cupy.testing), 306
numpy_cupy_array_almost_equal_nulp() (in mod-

ule cupy.testing), 307
numpy_cupy_array_equal() (in module cupy.testing),

308
numpy_cupy_array_less() (in module cupy.testing),

309
numpy_cupy_array_list_equal() (in module

cupy.testing), 309
numpy_cupy_array_max_ulp() (in module

cupy.testing), 308
nuttall() (in module cupyx.scipy.signal.windows), 619
NVCC, 852

O
o (cupy.poly1d attribute), 223
oaconvolve() (in module cupyx.scipy.signal), 458
ogrid (in module cupy), 110
ones() (in module cupy), 101
ones() (in module cupy.array_api), 903
ones_like() (in module cupy), 101
ones_like() (in module cupy.array_api), 903
operation (cupy.ElementwiseKernel attribute), 814
optimize() (in module cupyx.optimizing), 746
options (cupy.RawKernel attribute), 818
options (cupy.RawModule attribute), 822
options (cupy.ReductionKernel attribute), 816
order (cupy.poly1d attribute), 223
order_filter() (in module cupyx.scipy.signal), 467
out_params (cupy.ElementwiseKernel attribute), 814
out_params (cupy.ReductionKernel attribute), 816
outer() (cupy.ufunc method), 74
outer() (in module cupy), 175
output() (cupyx.scipy.signal.dlti method), 549
output() (cupyx.scipy.signal.lti method), 538

P
packbits() (in module cupy), 135
pad() (in module cupy), 214
params (cupy.ElementwiseKernel attribute), 814
params (cupy.ReductionKernel attribute), 816
pareto() (cupy.random.RandomState method), 246
pareto() (in module cupy.random), 263
partition() (cupy.ndarray method), 63
partition() (cupyx.distributed.array.DistributedArray

method), 843
partition() (in module cupy), 280
parzen() (in module cupyx.scipy.signal.windows), 620

pchip_interpolate() (in module cu-
pyx.scipy.interpolate), 352

PchipInterpolator (class in cupyx.scipy.interpolate),
357

pci_bus_id (cupy.cuda.Device attribute), 749
pdist() (in module cupyx.scipy.spatial.distance), 693
pdtr() (in module cupyx.scipy.special), 711
pdtrc() (in module cupyx.scipy.special), 711
pdtri() (in module cupyx.scipy.special), 712
peak_prominences() (in module cupyx.scipy.signal),

570
peak_widths() (in module cupyx.scipy.signal), 571
percentile() (in module cupy), 290
percentile_filter() (in module cu-

pyx.scipy.ndimage), 418
periodogram() (in module cupyx.scipy.signal), 573
permutation() (cupy.random.RandomState method),

246
permutation() (in module cupy.random), 263
permute_dims() (in module cupy.array_api), 903
Philox4x3210 (class in cupy.random), 240
piecewise() (in module cupy), 152
PinnedMemory (class in cupy.cuda), 755
PinnedMemoryPointer (class in cupy.cuda), 759
PinnedMemoryPool (class in cupy.cuda), 768
pinv() (in module cupy.linalg), 186
place() (in module cupy), 165
place_poles() (in module cupyx.scipy.signal), 535
poch() (in module cupyx.scipy.special), 723
pointerGetAttributes() (in module

cupy.cuda.runtime), 809
points() (cupyx.scipy.signal.CZT method), 593
points() (cupyx.scipy.signal.ZoomFFT method), 595
poisson() (cupy.random.Generator method), 233
poisson() (cupy.random.RandomState method), 246
poisson() (in module cupy.random), 263
poles (cupyx.scipy.signal.dlti attribute), 550
poles (cupyx.scipy.signal.lti attribute), 539
poles (cupyx.scipy.signal.StateSpace attribute), 541
poles (cupyx.scipy.signal.TransferFunction attribute),

543
poles (cupyx.scipy.signal.ZerosPolesGain attribute), 544
poly() (in module cupy), 223
poly1d (class in cupy), 221
polyadd() (in module cupy), 226
polycompanion() (in module

cupy.polynomial.polynomial), 218
polyfit() (in module cupy), 225
polygamma() (in module cupyx.scipy.special), 722
polymul() (in module cupy), 227
polysub() (in module cupy), 226
polyval() (in module cupy), 224
polyval() (in module cupy.polynomial.polynomial), 218

964 Index

CuPy Documentation, Release 13.0.0

polyvalfromroots() (in module
cupy.polynomial.polynomial), 219

polyvander() (in module cupy.polynomial.polynomial),
217

positive() (in module cupy), 79
positive() (in module cupy.array_api), 903
post_map_expr (cupy.ReductionKernel attribute), 816
pow() (in module cupy.array_api), 904
power() (cupy.random.Generator method), 233
power() (cupy.random.RandomState method), 246
power() (cupyx.scipy.sparse.coo_matrix method), 629
power() (cupyx.scipy.sparse.csc_matrix method), 639
power() (cupyx.scipy.sparse.csr_matrix method), 649
power() (cupyx.scipy.sparse.dia_matrix method), 657
power() (cupyx.scipy.sparse.spmatrix method), 663
power() (in module cupy), 79
power() (in module cupy.random), 264
PPoly (class in cupyx.scipy.interpolate), 366
preamble (cupy.ElementwiseKernel attribute), 814
preamble (cupy.ReductionKernel attribute), 816
preferred_shared_memory_carveout

(cupy.RawKernel attribute), 818
prefetch() (cupy.cuda.ManagedMemory method), 753
prewitt() (in module cupyx.scipy.ndimage), 419
print_report() (cupy.cuda.memory_hooks.LineProfileHook

method), 777
prod() (cupy.ndarray method), 64
prod() (cupyx.distributed.array.DistributedArray

method), 843
prod() (in module cupy), 199
profile() (in module cupyx.profiler), 745
profilerStart() (in module cupy.cuda.runtime), 811
profilerStop() (in module cupy.cuda.runtime), 811
pseudo_huber() (in module cupyx.scipy.special), 717
psi() (in module cupyx.scipy.special), 722
ptds (cupy.cuda.Stream attribute), 781
ptp() (cupy.ndarray method), 64
ptp() (cupyx.distributed.array.DistributedArray

method), 843
ptp() (in module cupy), 289
ptr (cupy.cuda.ManagedMemory attribute), 754
ptr (cupy.cuda.Memory attribute), 752
ptr (cupy.cuda.MemoryAsync attribute), 753
ptr (cupy.cuda.MemoryPointer attribute), 759
ptr (cupy.cuda.PinnedMemoryPointer attribute), 760
ptr (cupy.cuda.texture.ChannelFormatDescriptor at-

tribute), 789
ptr (cupy.cuda.texture.CUDAarray attribute), 790
ptr (cupy.cuda.texture.ResourceDescriptor attribute),

792
ptr (cupy.cuda.texture.SurfaceObject attribute), 795
ptr (cupy.cuda.texture.TextureDescriptor attribute), 793
ptr (cupy.cuda.texture.TextureObject attribute), 794
ptr (cupy.cuda.UnownedMemory attribute), 755

ptx_version (cupy.RawKernel attribute), 819
pulse_compression() (in module cupyx.signal), 742
put() (cupy.ndarray method), 64
put() (cupyx.distributed.array.DistributedArray

method), 843
put() (in module cupy), 166
putmask() (in module cupy), 166
PythonFunctionAllocator (class in cupy.cuda), 769

Q
qmf() (in module cupyx.scipy.signal), 562
qr() (in module cupy.linalg), 178
qspline1d() (in module cupyx.scipy.signal), 464
qspline1d_eval() (in module cupyx.scipy.signal), 466
qspline2d() (in module cupyx.scipy.signal), 465
quantile() (in module cupy), 291

R
r (cupy.poly1d attribute), 223
r_ (in module cupy), 153
rad2deg() (cupyx.scipy.sparse.coo_matrix method), 629
rad2deg() (cupyx.scipy.sparse.csc_matrix method), 639
rad2deg() (cupyx.scipy.sparse.csr_matrix method), 650
rad2deg() (cupyx.scipy.sparse.dia_matrix method), 657
rad2deg() (in module cupy), 88
radian() (in module cupyx.scipy.special), 730
radians() (in module cupy), 87
rand() (cupy.random.RandomState method), 246
rand() (in module cupy.random), 264
rand() (in module cupyx.scipy.sparse), 672
randint() (cupy.random.RandomState method), 246
randint() (in module cupy.random), 265
randn() (cupy.random.RandomState method), 247
randn() (in module cupy.random), 265
random() (cupy.random.Generator method), 234
random() (in module cupy.random), 266
random() (in module cupyx.scipy.sparse), 673
random_integers() (in module cupy.random), 267
random_raw() (cupy.random.BitGenerator method), 237
random_raw() (cupy.random.MRG32k3a method), 239
random_raw() (cupy.random.Philox4x3210 method),

240
random_raw() (cupy.random.XORWOW method), 238
random_sample() (cupy.random.RandomState method),

247
random_sample() (in module cupy.random), 267
RandomState (class in cupy.random), 242
ranf() (in module cupy.random), 267
range (in module cupyx.jit), 826
RangePop() (in module cupy.cuda.nvtx), 796
RangePush() (in module cupy.cuda.nvtx), 795
RangePushC() (in module cupy.cuda.nvtx), 796
rank_filter() (in module cupyx.scipy.ndimage), 419

Index 965

CuPy Documentation, Release 13.0.0

rank_id() (cupy.cuda.nccl.NcclCommunicator
method), 798

ravel() (cupy.ndarray method), 64
ravel() (cupyx.distributed.array.DistributedArray

method), 844
ravel() (in module cupy), 114
ravel_multi_index() (in module cupy), 158
RawKernel (class in cupy), 816
rawkernel() (in module cupyx.jit), 824
RawModule (class in cupy), 819
rayleigh() (cupy.random.RandomState method), 247
rayleigh() (in module cupy.random), 268
RBFInterpolator (class in cupyx.scipy.interpolate),

382
real (cupy.ndarray attribute), 69
real (cupyx.distributed.array.DistributedArray at-

tribute), 847
real() (in module cupy), 208
real_if_close() (in module cupy), 210
reciprocal() (in module cupy), 83
record() (cupy.cuda.Event method), 785
record() (cupy.cuda.ExternalStream method), 784
record() (cupy.cuda.Stream method), 780
recv() (cupy.cuda.nccl.NcclCommunicator method),

798
recv() (cupyx.distributed.NCCLBackend method), 838
reduce() (cupy.cuda.nccl.NcclCommunicator method),

798
reduce() (cupy.ufunc method), 74
reduce() (cupyx.distributed.NCCLBackend method),

838
reduce_dims (cupy.ElementwiseKernel attribute), 814
reduce_dims (cupy.ReductionKernel attribute), 816
reduce_expr (cupy.ReductionKernel attribute), 816
reduce_scatter() (cupyx.distributed.NCCLBackend

method), 838
reduce_type (cupy.ReductionKernel attribute), 816
reduceat() (cupy.ufunc method), 74
reduced_view() (cupy.ndarray method), 64
reduced_view() (cupyx.distributed.array.DistributedArray

method), 844
reduceScatter() (cupy.cuda.nccl.NcclCommunicator

method), 798
ReductionKernel (class in cupy), 814
RegularGridInterpolator (class in cu-

pyx.scipy.interpolate), 385
rel_entr() (in module cupyx.scipy.special), 717
remainder() (in module cupy), 79
remainder() (in module cupy.array_api), 904
repeat() (cupy.ndarray method), 64
repeat() (cupyx.distributed.array.DistributedArray

method), 844
repeat() (in module cupy), 128
require() (in module cupy), 122

resample() (in module cupyx.scipy.signal), 481
resample_poly() (in module cupyx.scipy.signal), 482
ResDesc (cupy.cuda.texture.SurfaceObject attribute),

795
ResDesc (cupy.cuda.texture.TextureObject attribute), 794
reshape() (cupy.ndarray method), 64
reshape() (cupyx.distributed.array.DistributedArray

method), 844
reshape() (cupyx.scipy.sparse.coo_matrix method), 629
reshape() (cupyx.scipy.sparse.csc_matrix method), 639
reshape() (cupyx.scipy.sparse.csr_matrix method), 650
reshape() (cupyx.scipy.sparse.dia_matrix method), 658
reshape() (cupyx.scipy.sparse.spmatrix method), 663
reshape() (in module cupy), 114
reshape() (in module cupy.array_api), 904
reshard() (cupyx.distributed.array.DistributedArray

method), 844
residue() (in module cupyx.scipy.signal), 504
residuez() (in module cupyx.scipy.signal), 506
resize() (in module cupy), 130
ResourceDescriptor (class in cupy.cuda.texture), 791
result_type() (in module cupy), 137
result_type() (in module cupy.array_api), 904
return_tuple (cupy.ElementwiseKernel attribute), 814
rfft() (in module cupy.fft), 141
rfft() (in module cupyx.scipy.fft), 323
rfft() (in module cupyx.scipy.fftpack), 345
rfft2() (in module cupy.fft), 142
rfft2() (in module cupyx.scipy.fft), 324
rfftfreq() (in module cupy.fft), 146
rfftfreq() (in module cupyx.scipy.fft), 339
rfftn() (in module cupy.fft), 143
rfftn() (in module cupyx.scipy.fft), 326
rgamma() (in module cupyx.scipy.special), 722
ricker() (in module cupyx.scipy.signal), 562
right_shift() (in module cupy), 89
rint() (cupyx.scipy.sparse.coo_matrix method), 629
rint() (cupyx.scipy.sparse.csc_matrix method), 639
rint() (cupyx.scipy.sparse.csr_matrix method), 650
rint() (cupyx.scipy.sparse.dia_matrix method), 658
rint() (in module cupy), 80
rmatmat() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
rmatvec() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
roll() (in module cupy), 133
roll() (in module cupy.array_api), 904
rollaxis() (in module cupy), 116
roots (cupy.poly1d attribute), 223
roots() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 365
roots() (cupyx.scipy.interpolate.CubicHermiteSpline

method), 356

966 Index

CuPy Documentation, Release 13.0.0

roots() (cupyx.scipy.interpolate.PchipInterpolator
method), 360

roots() (cupyx.scipy.interpolate.PPoly method), 369
roots() (in module cupy), 224
rot90() (in module cupy), 134
rotate() (in module cupyx.scipy.ndimage), 426
round() (cupy.ndarray method), 64
round() (cupyx.distributed.array.DistributedArray

method), 844
round() (in module cupy.array_api), 904
round() (in module cupyx.scipy.special), 731
round_() (in module cupy), 198
row_stack() (in module cupy), 125
rsqrt() (in module cupyx), 737
runtimeGetVersion() (in module cupy.cuda.runtime),

804
russellrao() (in module cupyx.scipy.spatial.distance),

699

S
sample() (in module cupy.random), 268
save() (in module cupy), 169
savetxt() (in module cupy), 171
savez() (in module cupy), 170
savez_compressed() (in module cupy), 170
savgol_coeffs() (in module cupyx.scipy.signal), 496
savgol_filter() (in module cupyx.scipy.signal), 474
sawtooth() (in module cupyx.scipy.signal), 557
scatter() (cupyx.distributed.NCCLBackend method),

838
scatter_add() (cupy.ndarray method), 65
scatter_add() (cupyx.distributed.array.DistributedArray

method), 844
scatter_add() (in module cupyx), 737
scatter_max() (cupy.ndarray method), 65
scatter_max() (cupyx.distributed.array.DistributedArray

method), 844
scatter_max() (in module cupyx), 738
scatter_min() (cupy.ndarray method), 65
scatter_min() (cupyx.distributed.array.DistributedArray

method), 844
scatter_min() (in module cupyx), 738
searchsorted() (cupy.ndarray method), 65
searchsorted() (cupyx.distributed.array.DistributedArray

method), 844
searchsorted() (in module cupy), 285
seed() (cupy.random.RandomState method), 247
seed() (in module cupy.random), 269
select() (in module cupy), 164
send() (cupy.cuda.nccl.NcclCommunicator method),

798
send() (cupyx.distributed.NCCLBackend method), 839
send_recv() (cupyx.distributed.NCCLBackend

method), 839

sepfir2d() (in module cupyx.scipy.signal), 461
set() (cupy.ndarray method), 65
set() (cupy.poly1d method), 222
set() (cupyx.distributed.array.DistributedArray

method), 844
set_allocator() (in module cupy.cuda), 762
set_cufft_callbacks (class in cupy.fft.config), 147
set_cufft_gpus() (in module cupy.fft.config), 149
set_limit() (cupy.cuda.MemoryAsyncPool method),

767
set_limit() (cupy.cuda.MemoryPool method), 764
set_pinned_memory_allocator() (in module

cupy.cuda), 762
set_random_state() (in module cupy.random), 275
set_shape() (cupyx.scipy.sparse.coo_matrix method),

629
set_shape() (cupyx.scipy.sparse.csc_matrix method),

639
set_shape() (cupyx.scipy.sparse.csr_matrix method),

650
set_shape() (cupyx.scipy.sparse.dia_matrix method),

658
set_shape() (cupyx.scipy.sparse.spmatrix method), 664
set_yi() (cupyx.scipy.interpolate.BarycentricInterpolator

method), 349
setDevice() (in module cupy.cuda.runtime), 805
setdiag() (cupyx.scipy.sparse.coo_matrix method), 629
setdiag() (cupyx.scipy.sparse.csc_matrix method), 639
setdiag() (cupyx.scipy.sparse.csr_matrix method), 650
setdiag() (cupyx.scipy.sparse.dia_matrix method), 658
setdiag() (cupyx.scipy.sparse.spmatrix method), 664
setdiff1d() (in module cupy), 277
setxor1d() (in module cupy), 278
shape (cupy.array_api._array_object.Array attribute),

909
shape (cupy.broadcast attribute), 119
shape (cupy.ndarray attribute), 69
shape (cupyx.distributed.array.DistributedArray at-

tribute), 848
shape (cupyx.scipy.sparse.coo_matrix attribute), 633
shape (cupyx.scipy.sparse.csc_matrix attribute), 644
shape (cupyx.scipy.sparse.csr_matrix attribute), 654
shape (cupyx.scipy.sparse.dia_matrix attribute), 660
shape (cupyx.scipy.sparse.spmatrix attribute), 665
shape() (in module cupy), 113
shared_memory (in module cupyx.jit), 827
shared_size_bytes (cupy.RawKernel attribute), 819
shares_memory() (in module cupy), 212
shfl_down_sync (in module cupyx.jit), 827
shfl_sync (in module cupyx.jit), 827
shfl_up_sync (in module cupyx.jit), 827
shfl_xor_sync (in module cupyx.jit), 827
shift() (in module cupyx.scipy.ndimage), 427
show_config() (in module cupy), 212

Index 967

CuPy Documentation, Release 13.0.0

show_plan_cache_info() (in module cupy.fft.config),
150

shuffle() (cupy.random.RandomState method), 247
shuffle() (in module cupy.random), 269
sign() (cupyx.scipy.sparse.coo_matrix method), 629
sign() (cupyx.scipy.sparse.csc_matrix method), 640
sign() (cupyx.scipy.sparse.csr_matrix method), 650
sign() (cupyx.scipy.sparse.dia_matrix method), 658
sign() (in module cupy), 80
sign() (in module cupy.array_api), 904
signbit() (in module cupy), 94
sin() (cupyx.scipy.sparse.coo_matrix method), 629
sin() (cupyx.scipy.sparse.csc_matrix method), 640
sin() (cupyx.scipy.sparse.csr_matrix method), 650
sin() (cupyx.scipy.sparse.dia_matrix method), 658
sin() (in module cupy), 84
sin() (in module cupy.array_api), 904
sinc() (in module cupy), 206
sinc() (in module cupyx.scipy.special), 733
sindg() (in module cupyx.scipy.special), 730
sinh() (cupyx.scipy.sparse.coo_matrix method), 630
sinh() (cupyx.scipy.sparse.csc_matrix method), 640
sinh() (cupyx.scipy.sparse.csr_matrix method), 650
sinh() (cupyx.scipy.sparse.dia_matrix method), 658
sinh() (in module cupy), 86
sinh() (in module cupy.array_api), 905
size (cupy.array_api._array_object.Array attribute),

909
size (cupy.broadcast attribute), 119
size (cupy.cuda.ManagedMemory attribute), 754
size (cupy.cuda.Memory attribute), 752
size (cupy.cuda.MemoryAsync attribute), 753
size (cupy.cuda.UnownedMemory attribute), 755
size (cupy.ndarray attribute), 69
size (cupyx.distributed.array.DistributedArray at-

tribute), 848
size (cupyx.scipy.sparse.coo_matrix attribute), 633
size (cupyx.scipy.sparse.csc_matrix attribute), 644
size (cupyx.scipy.sparse.csr_matrix attribute), 654
size (cupyx.scipy.sparse.dia_matrix attribute), 660
size (cupyx.scipy.sparse.spmatrix attribute), 665
size() (cupy.cuda.nccl.NcclCommunicator method),

798
size() (cupy.cuda.PinnedMemoryPointer method), 760
slogdet() (in module cupy.linalg), 182
sobel() (in module cupyx.scipy.ndimage), 420
softmax() (in module cupyx.scipy.special), 727
solve() (cupyx.scipy.interpolate.Akima1DInterpolator

method), 365
solve() (cupyx.scipy.interpolate.CubicHermiteSpline

method), 356
solve() (cupyx.scipy.interpolate.PchipInterpolator

method), 361
solve() (cupyx.scipy.interpolate.PPoly method), 370

solve() (cupyx.scipy.sparse.linalg.SuperLU method),
690

solve() (in module cupy.linalg), 183
solve_triangular() (in module cupyx.scipy.linalg),

393
sort() (cupy.ndarray method), 65
sort() (cupyx.distributed.array.DistributedArray

method), 844
sort() (in module cupy), 278
sort() (in module cupy.array_api), 905
sort_complex() (in module cupy), 280
sort_indices() (cupyx.scipy.sparse.csc_matrix

method), 640
sort_indices() (cupyx.scipy.sparse.csr_matrix

method), 650
sorted_indices() (cupyx.scipy.sparse.csc_matrix

method), 640
sorted_indices() (cupyx.scipy.sparse.csr_matrix

method), 650
sos2tf() (in module cupyx.scipy.signal), 534
sos2zpk() (in module cupyx.scipy.signal), 534
sosfilt() (in module cupyx.scipy.signal), 477
sosfilt_zi() (in module cupyx.scipy.signal), 477
sosfiltfilt() (in module cupyx.scipy.signal), 478
sosfreqz() (in module cupyx.scipy.signal), 491
spdiags() (in module cupyx.scipy.sparse), 669
spectrogram() (in module cupyx.scipy.signal), 578
sph_harm() (in module cupyx.scipy.special), 725
spherical_yn() (in module cupyx.scipy.special), 704
spilu() (in module cupyx.scipy.sparse.linalg), 689
splantider() (in module cupyx.scipy.interpolate), 381
splder() (in module cupyx.scipy.interpolate), 380
spline_filter() (in module cupyx.scipy.ndimage), 428
spline_filter() (in module cupyx.scipy.signal), 466
spline_filter1d() (in module cupyx.scipy.ndimage),

428
split() (in module cupy), 126
splu() (in module cupyx.scipy.sparse.linalg), 689
spmatrix (class in cupyx.scipy.sparse), 661
spsolve() (in module cupyx.scipy.sparse.linalg), 679
spsolve_triangular() (in module cu-

pyx.scipy.sparse.linalg), 679
sqeuclidean() (in module cu-

pyx.scipy.spatial.distance), 699
sqrt() (cupyx.scipy.sparse.coo_matrix method), 630
sqrt() (cupyx.scipy.sparse.csc_matrix method), 640
sqrt() (cupyx.scipy.sparse.csr_matrix method), 650
sqrt() (cupyx.scipy.sparse.dia_matrix method), 658
sqrt() (in module cupy), 83
sqrt() (in module cupy.array_api), 905
square() (in module cupy), 83
square() (in module cupy.array_api), 905
square() (in module cupyx.scipy.signal), 557
squeeze() (cupy.ndarray method), 65

968 Index

CuPy Documentation, Release 13.0.0

squeeze() (cupyx.distributed.array.DistributedArray
method), 844

squeeze() (in module cupy), 120
squeeze() (in module cupy.array_api), 905
ss2tf() (in module cupyx.scipy.signal), 533
ss2zpk() (in module cupyx.scipy.signal), 533
stack() (in module cupy), 123
stack() (in module cupy.array_api), 905
standard_cauchy() (cupy.random.RandomState

method), 247
standard_cauchy() (in module cupy.random), 269
standard_deviation() (in module cu-

pyx.scipy.ndimage), 437
standard_exponential() (cupy.random.Generator

method), 234
standard_exponential() (cupy.random.RandomState

method), 248
standard_exponential() (in module cupy.random),

270
standard_gamma() (cupy.random.Generator method),

235
standard_gamma() (cupy.random.RandomState

method), 248
standard_gamma() (in module cupy.random), 270
standard_normal() (cupy.random.Generator method),

235
standard_normal() (cupy.random.RandomState

method), 248
standard_normal() (in module cupy.random), 271
standard_t() (cupy.random.RandomState method), 248
standard_t() (in module cupy.random), 271
state() (cupy.random.MRG32k3a method), 239
state() (cupy.random.Philox4x3210 method), 241
state() (cupy.random.XORWOW method), 238
StateSpace (class in cupyx.scipy.signal), 539
std() (cupy.ndarray method), 66
std() (cupyx.distributed.array.DistributedArray

method), 844
std() (in module cupy), 293
step() (cupyx.scipy.signal.dlti method), 549
step() (cupyx.scipy.signal.lti method), 538
step() (in module cupyx.scipy.signal), 546
stft() (in module cupyx.scipy.signal), 582
stop() (cupyx.distributed.NCCLBackend method), 839
Stream (class in cupy.cuda), 778
stream_ref (cupy.cuda.MemoryAsync attribute), 753
streamAddCallback() (in module cupy.cuda.runtime),

810
streamCreate() (in module cupy.cuda.runtime), 809
streamCreateWithFlags() (in module

cupy.cuda.runtime), 809
streamDestroy() (in module cupy.cuda.runtime), 809
streamQuery() (in module cupy.cuda.runtime), 810

streamSynchronize() (in module cupy.cuda.runtime),
809

streamWaitEvent() (in module cupy.cuda.runtime),
810

strides (cupy.ndarray attribute), 69
strides (cupyx.distributed.array.DistributedArray at-

tribute), 848
subtract() (in module cupy), 76
subtract() (in module cupy.array_api), 905
sum() (cupy.ndarray method), 66
sum() (cupyx.distributed.array.DistributedArray

method), 844
sum() (cupyx.scipy.sparse.coo_matrix method), 630
sum() (cupyx.scipy.sparse.csc_matrix method), 640
sum() (cupyx.scipy.sparse.csr_matrix method), 650
sum() (cupyx.scipy.sparse.dia_matrix method), 658
sum() (cupyx.scipy.sparse.spmatrix method), 664
sum() (in module cupy), 200
sum_duplicates() (cupyx.scipy.sparse.coo_matrix

method), 630
sum_duplicates() (cupyx.scipy.sparse.csc_matrix

method), 640
sum_duplicates() (cupyx.scipy.sparse.csr_matrix

method), 651
sum_labels() (in module cupyx.scipy.ndimage), 437
SuperLU (class in cupyx.scipy.sparse.linalg), 690
SurfaceObject (class in cupy.cuda.texture), 794
svd() (in module cupy.linalg), 179
svds() (in module cupyx.scipy.sparse.linalg), 688
swapaxes() (cupy.ndarray method), 66
swapaxes() (cupyx.distributed.array.DistributedArray

method), 845
swapaxes() (in module cupy), 116
symiirorder1() (in module cupyx.scipy.signal), 469
symiirorder2() (in module cupyx.scipy.signal), 470
sync (in module cupyx.jit.cg), 832
synchronize() (cupy.cuda.Device method), 747
synchronize() (cupy.cuda.Event method), 785
synchronize() (cupy.cuda.ExternalStream method),

784
synchronize() (cupy.cuda.Stream method), 781
syncthreads (in module cupyx.jit), 827
syncwarp (in module cupyx.jit), 827

T
T (cupy.array_api._array_object.Array attribute), 909
T (cupy.ndarray attribute), 68
T (cupyx.distributed.array.DistributedArray attribute),

846
T (cupyx.scipy.sparse.coo_matrix attribute), 633
T (cupyx.scipy.sparse.csc_matrix attribute), 643
T (cupyx.scipy.sparse.csr_matrix attribute), 653
T (cupyx.scipy.sparse.dia_matrix attribute), 660

Index 969

CuPy Documentation, Release 13.0.0

T (cupyx.scipy.sparse.linalg.LinearOperator attribute),
678

T (cupyx.scipy.sparse.spmatrix attribute), 665
take() (cupy.ndarray method), 66
take() (cupyx.distributed.array.DistributedArray

method), 845
take() (in module cupy), 162
take() (in module cupy.array_api), 905
take_along_axis() (in module cupy), 162
tan() (cupyx.scipy.sparse.coo_matrix method), 631
tan() (cupyx.scipy.sparse.csc_matrix method), 641
tan() (cupyx.scipy.sparse.csr_matrix method), 651
tan() (cupyx.scipy.sparse.dia_matrix method), 659
tan() (in module cupy), 85
tan() (in module cupy.array_api), 906
tandg() (in module cupyx.scipy.special), 730
tanh() (cupyx.scipy.sparse.coo_matrix method), 631
tanh() (cupyx.scipy.sparse.csc_matrix method), 641
tanh() (cupyx.scipy.sparse.csr_matrix method), 651
tanh() (cupyx.scipy.sparse.dia_matrix method), 659
tanh() (in module cupy), 86
tanh() (in module cupy.array_api), 906
taylor() (in module cupyx.scipy.signal.windows), 621
tck (cupyx.scipy.interpolate.BSpline attribute), 379
tensordot() (in module cupy), 175
tensorinv() (in module cupy.linalg), 186
tensorsolve() (in module cupy.linalg), 184
TexDesc (cupy.cuda.texture.TextureObject attribute), 794
TextureDescriptor (class in cupy.cuda.texture), 792
TextureObject (class in cupy.cuda.texture), 793
tf2sos() (in module cupyx.scipy.signal), 532
tf2ss() (in module cupyx.scipy.signal), 532
tf2zpk() (in module cupyx.scipy.signal), 531
this_grid (in module cupyx.jit.cg), 832
this_thread_block (in module cupyx.jit.cg), 832
threadIdx (in module cupyx.jit), 824
tile() (in module cupy), 128
time_range (class in cupyx.profiler), 744
to_device() (cupy.array_api._array_object.Array

method), 908
to_discrete() (cupyx.scipy.signal.lti method), 538
to_ss() (cupyx.scipy.signal.StateSpace method), 540
to_ss() (cupyx.scipy.signal.TransferFunction method),

542
to_ss() (cupyx.scipy.signal.ZerosPolesGain method),

544
to_tf() (cupyx.scipy.signal.StateSpace method), 540
to_tf() (cupyx.scipy.signal.TransferFunction method),

542
to_tf() (cupyx.scipy.signal.ZerosPolesGain method),

544
to_zpk() (cupyx.scipy.signal.StateSpace method), 540
to_zpk() (cupyx.scipy.signal.TransferFunction method),

542

to_zpk() (cupyx.scipy.signal.ZerosPolesGain method),
544

toarray() (cupyx.scipy.sparse.coo_matrix method), 631
toarray() (cupyx.scipy.sparse.csc_matrix method), 641
toarray() (cupyx.scipy.sparse.csr_matrix method), 651
toarray() (cupyx.scipy.sparse.dia_matrix method), 659
toarray() (cupyx.scipy.sparse.spmatrix method), 664
tobsr() (cupyx.scipy.sparse.coo_matrix method), 631
tobsr() (cupyx.scipy.sparse.csc_matrix method), 641
tobsr() (cupyx.scipy.sparse.csr_matrix method), 651
tobsr() (cupyx.scipy.sparse.dia_matrix method), 659
tobsr() (cupyx.scipy.sparse.spmatrix method), 664
tobytes() (cupy.ndarray method), 67
tobytes() (cupyx.distributed.array.DistributedArray

method), 845
tocoo() (cupyx.scipy.sparse.coo_matrix method), 631
tocoo() (cupyx.scipy.sparse.csc_matrix method), 641
tocoo() (cupyx.scipy.sparse.csr_matrix method), 651
tocoo() (cupyx.scipy.sparse.dia_matrix method), 659
tocoo() (cupyx.scipy.sparse.spmatrix method), 664
tocsc() (cupyx.scipy.sparse.coo_matrix method), 631
tocsc() (cupyx.scipy.sparse.csc_matrix method), 641
tocsc() (cupyx.scipy.sparse.csr_matrix method), 652
tocsc() (cupyx.scipy.sparse.dia_matrix method), 659
tocsc() (cupyx.scipy.sparse.spmatrix method), 664
tocsr() (cupyx.scipy.sparse.coo_matrix method), 631
tocsr() (cupyx.scipy.sparse.csc_matrix method), 642
tocsr() (cupyx.scipy.sparse.csr_matrix method), 652
tocsr() (cupyx.scipy.sparse.dia_matrix method), 659
tocsr() (cupyx.scipy.sparse.spmatrix method), 664
todense() (cupyx.scipy.sparse.coo_matrix method), 632
todense() (cupyx.scipy.sparse.csc_matrix method), 642
todense() (cupyx.scipy.sparse.csr_matrix method), 652
todense() (cupyx.scipy.sparse.dia_matrix method), 659
todense() (cupyx.scipy.sparse.spmatrix method), 664
todia() (cupyx.scipy.sparse.coo_matrix method), 632
todia() (cupyx.scipy.sparse.csc_matrix method), 642
todia() (cupyx.scipy.sparse.csr_matrix method), 652
todia() (cupyx.scipy.sparse.dia_matrix method), 659
todia() (cupyx.scipy.sparse.spmatrix method), 664
toDlpack() (cupy.ndarray method), 66
toDlpack() (cupyx.distributed.array.DistributedArray

method), 845
todok() (cupyx.scipy.sparse.coo_matrix method), 632
todok() (cupyx.scipy.sparse.csc_matrix method), 642
todok() (cupyx.scipy.sparse.csr_matrix method), 652
todok() (cupyx.scipy.sparse.dia_matrix method), 659
todok() (cupyx.scipy.sparse.spmatrix method), 665
toeplitz() (in module cupyx.scipy.linalg), 404
tofile() (cupy.ndarray method), 67
tofile() (cupyx.distributed.array.DistributedArray

method), 845
tolil() (cupyx.scipy.sparse.coo_matrix method), 632
tolil() (cupyx.scipy.sparse.csc_matrix method), 642

970 Index

CuPy Documentation, Release 13.0.0

tolil() (cupyx.scipy.sparse.csr_matrix method), 652
tolil() (cupyx.scipy.sparse.dia_matrix method), 659
tolil() (cupyx.scipy.sparse.spmatrix method), 665
tolist() (cupy.ndarray method), 67
tolist() (cupyx.distributed.array.DistributedArray

method), 845
tomaxint() (cupy.random.RandomState method), 248
total_bytes() (cupy.cuda.MemoryAsyncPool method),

767
total_bytes() (cupy.cuda.MemoryPool method), 764
trace() (cupy.ndarray method), 67
trace() (cupyx.distributed.array.DistributedArray

method), 845
trace() (in module cupy), 183
TransferFunction (class in cupyx.scipy.signal), 541
transpose() (cupy.ndarray method), 67
transpose() (cupyx.distributed.array.DistributedArray

method), 845
transpose() (cupyx.scipy.sparse.coo_matrix method),

632
transpose() (cupyx.scipy.sparse.csc_matrix method),

642
transpose() (cupyx.scipy.sparse.csr_matrix method),

652
transpose() (cupyx.scipy.sparse.dia_matrix method),

660
transpose() (cupyx.scipy.sparse.linalg.LinearOperator

method), 677
transpose() (cupyx.scipy.sparse.spmatrix method), 665
transpose() (in module cupy), 116
trapz() (in module cupy), 205
tri() (in module cupy), 111
tri() (in module cupyx.scipy.linalg), 404
triang() (in module cupyx.scipy.signal.windows), 622
triangular() (cupy.random.RandomState method), 248
triangular() (in module cupy.random), 272
tril() (in module cupy), 111
tril() (in module cupy.array_api), 906
tril() (in module cupyx.scipy.linalg), 393
tril() (in module cupyx.scipy.sparse), 669
tril_indices() (in module cupy), 156
tril_indices_from() (in module cupy), 156
trim_mean() (in module cupyx.scipy.stats), 733
trim_zeros() (in module cupy), 131
trimcoef() (in module cupy.polynomial.polyutils), 221
trimseq() (in module cupy.polynomial.polyutils), 220
triu() (in module cupy), 112
triu() (in module cupy.array_api), 906
triu() (in module cupyx.scipy.linalg), 394
triu() (in module cupyx.scipy.sparse), 670
triu_indices() (in module cupy), 156
triu_indices_from() (in module cupy), 157
true_divide() (in module cupy), 78
trunc() (cupyx.scipy.sparse.coo_matrix method), 632

trunc() (cupyx.scipy.sparse.csc_matrix method), 642
trunc() (cupyx.scipy.sparse.csr_matrix method), 653
trunc() (cupyx.scipy.sparse.dia_matrix method), 660
trunc() (in module cupy), 96
trunc() (in module cupy.array_api), 906
tukey() (in module cupyx.scipy.signal.windows), 623
types (cupy.ufunc attribute), 75

U
ufunc (class in cupy), 73
uniform() (cupy.random.Generator method), 235
uniform() (cupy.random.RandomState method), 249
uniform() (in module cupy.random), 272
uniform_filter() (in module cupyx.scipy.ndimage),

421
uniform_filter1d() (in module cupyx.scipy.ndimage),

421
union1d() (in module cupy), 188
unique() (in module cupy), 130
unique_all() (in module cupy.array_api), 906
unique_inverse() (in module cupy.array_api), 906
unique_roots() (in module cupyx.scipy.signal), 504
unique_values() (in module cupy.array_api), 906
unit_impulse() (in module cupyx.scipy.signal), 558
UnownedMemory (class in cupy.cuda), 754
unpackbits() (in module cupy), 135
unravel_index() (in module cupy), 159
unwrap() (in module cupy), 197
upfirdn() (in module cupyx.scipy.signal), 484
upload() (cupy.cuda.Graph method), 787
use() (cupy.cuda.Device method), 747
use() (cupy.cuda.ExternalStream method), 784
use() (cupy.cuda.Stream method), 781
used_bytes() (cupy.cuda.MemoryAsyncPool method),

767
used_bytes() (cupy.cuda.MemoryPool method), 765
using_allocator() (in module cupy.cuda), 762

V
value_indices() (in module cupyx.scipy.ndimage), 438
values (cupy.broadcast attribute), 119
vander() (in module cupy), 112
var() (cupy.ndarray method), 67
var() (cupyx.distributed.array.DistributedArray

method), 845
var() (in module cupy), 294
variable (cupy.poly1d attribute), 223
variance() (in module cupyx.scipy.ndimage), 439
vdot() (in module cupy), 174
vectorize (class in cupy), 151
vectorstrength() (in module cupyx.scipy.signal), 582
view() (cupy.ndarray method), 67
view() (cupyx.distributed.array.DistributedArray

method), 845

Index 971

CuPy Documentation, Release 13.0.0

vonmises() (cupy.random.RandomState method), 249
vonmises() (in module cupy.random), 273
vsplit() (in module cupy), 127
vstack() (in module cupy), 124
vstack() (in module cupyx.scipy.sparse), 672

W
wait (in module cupyx.jit.cg), 833
wait_event() (cupy.cuda.ExternalStream method), 784
wait_event() (cupy.cuda.Stream method), 781
wait_prior (in module cupyx.jit.cg), 833
wald() (cupy.random.RandomState method), 249
wald() (in module cupy.random), 273
warpsize (in module cupyx.jit), 826
weibull() (cupy.random.RandomState method), 249
weibull() (in module cupy.random), 274
welch() (in module cupyx.scipy.signal), 574
where() (in module cupy), 154
where() (in module cupy.array_api), 907
white_tophat() (in module cupyx.scipy.ndimage), 454
who() (in module cupy), 213
width (cupy.cuda.texture.CUDAarray attribute), 790
wiener() (in module cupyx.scipy.signal), 469

X
x (cupyx.scipy.interpolate.Akima1DInterpolator at-

tribute), 366
x (cupyx.scipy.interpolate.BPoly attribute), 375
x (cupyx.scipy.interpolate.CubicHermiteSpline attribute),

357
x (cupyx.scipy.interpolate.PchipInterpolator attribute),

362
x (cupyx.scipy.interpolate.PPoly attribute), 371
xlog1py() (in module cupyx.scipy.special), 732
xlogy() (in module cupyx.scipy.special), 731
XORWOW (class in cupy.random), 238

Y
y0() (in module cupyx.scipy.special), 703
y1() (in module cupyx.scipy.special), 703
yn() (in module cupyx.scipy.special), 703

Z
zeros (cupyx.scipy.signal.dlti attribute), 550
zeros (cupyx.scipy.signal.lti attribute), 539
zeros (cupyx.scipy.signal.StateSpace attribute), 541
zeros (cupyx.scipy.signal.TransferFunction attribute),

543
zeros (cupyx.scipy.signal.ZerosPolesGain attribute), 544
zeros() (in module cupy), 102
zeros() (in module cupy.array_api), 907
zeros_like() (in module cupy), 102
zeros_like() (in module cupy.array_api), 907

zeros_like_pinned() (in module cupyx), 740
zeros_pinned() (in module cupyx), 740
ZerosPolesGain (class in cupyx.scipy.signal), 543
zeta() (in module cupyx.scipy.special), 728
zetac() (in module cupyx.scipy.special), 728
zipf() (cupy.random.RandomState method), 249
zipf() (in module cupy.random), 274
zmap() (in module cupyx.scipy.stats), 735
zoom() (in module cupyx.scipy.ndimage), 429
zoom_fft() (in module cupyx.scipy.signal), 591
ZoomFFT (class in cupyx.scipy.signal), 594
zpk2sos() (in module cupyx.scipy.signal), 530
zpk2ss() (in module cupyx.scipy.signal), 530
zpk2tf() (in module cupyx.scipy.signal), 529
zscore() (in module cupyx.scipy.stats), 736

972 Index

	Overview
	Project Goal

	Installation
	Requirements
	Python Dependencies
	Additional CUDA Libraries

	Installing CuPy
	Installing CuPy from PyPI
	Installing CuPy from Conda-Forge
	Installing CuPy from Source

	Uninstalling CuPy
	Upgrading CuPy
	Reinstalling CuPy
	Using CuPy inside Docker
	FAQ
	pip fails to install CuPy
	Installing cuDNN and NCCL
	Working with Custom CUDA Installation
	CuPy always raises cupy.cuda.compiler.CompileException
	Build fails on Ubuntu 16.04, CentOS 6 or 7

	Using CuPy on AMD GPU (experimental)
	Requirements
	Environment Variables
	Docker
	Installing Binary Packages
	Building CuPy for ROCm From Source
	Limitations

	User Guide
	Basics of CuPy
	Basics of cupy.ndarray
	Current Device
	Current Stream
	Data Transfer
	Move arrays to a device
	Move array from a device to the host

	Memory management
	How to write CPU/GPU agnostic code

	User-Defined Kernels
	Basics of elementwise kernels
	Type-generic kernels
	Raw argument specifiers
	Texture memory
	Reduction kernels
	Raw kernels
	Kernel arguments
	Custom user types
	Raw modules
	Kernel fusion
	JIT kernel definition
	Basic Usage
	Basic Design
	Typing rule
	Limitations

	Accessing CUDA Functionalities
	Streams and Events
	CUDA Driver and Runtime API

	Fast Fourier Transform with CuPy
	SciPy FFT backend
	User-managed FFT plans
	FFT plan cache
	FFT callbacks
	Multi-GPU FFT
	Half-precision FFT

	Memory Management
	Memory Pool Operations
	Limiting GPU Memory Usage
	Changing Memory Pool

	Performance Best Practices
	Benchmarking
	One-Time Overheads
	Context Initialization
	Kernel Compilation

	In-depth profiling
	Use CUB/cuTENSOR backends for reduction and other routines
	Overlapping work using streams
	Use JIT compiler
	Prefer float32 over float64

	Interoperability
	NumPy
	Numba
	mpi4py
	PyTorch
	Using custom kernels in PyTorch

	RMM
	DLPack
	DLPack data exchange protocol

	Device Memory Pointers
	Import
	Export

	CUDA Stream Pointers
	Import
	Export

	Differences between CuPy and NumPy
	Cast behavior from float to integer
	Random methods support dtype argument
	Out-of-bounds indices
	Duplicate values in indices
	Zero-dimensional array
	Reduction methods
	Type promotion

	Matrix type (numpy.matrix)
	Data types
	Universal Functions only work with CuPy array or scalar
	Random seed arrays are hashed to scalars
	NaN (not-a-number) handling
	Contiguity / Strides

	API Compatibility Policy
	Versioning and Backward Compatibilities
	Processes to Break Backward Compatibilities
	Deprecation, Dropping, and Its Preparation
	API Changes and Its Preparation

	Supported Backward Compatibility
	Documented Interface
	Undocumented behaviors
	Documentation Error
	Object Attributes and Properties
	Functions and Methods
	Exceptions and Warnings

	Installation Compatibility

	API Reference
	The N-dimensional array (ndarray)
	cupy.ndarray
	Conversion to/from NumPy arrays
	cupy.array
	cupy.asarray
	cupy.asnumpy

	Code compatibility features
	cupy.get_array_module
	cupyx.scipy.get_array_module

	Universal functions (cupy.ufunc)
	ufunc
	cupy.ufunc
	Methods

	Available ufuncs
	Math operations
	cupy.add
	cupy.subtract
	cupy.multiply
	cupy.matmul
	cupy.divide
	cupy.logaddexp
	cupy.logaddexp2
	cupy.true_divide
	cupy.floor_divide
	cupy.negative
	cupy.positive
	cupy.power
	cupy.float_power
	cupy.remainder
	cupy.mod
	cupy.fmod
	cupy.divmod
	cupy.absolute
	cupy.fabs
	cupy.rint
	cupy.sign
	cupy.heaviside
	cupy.conj
	cupy.conjugate
	cupy.exp
	cupy.exp2
	cupy.log
	cupy.log2
	cupy.log10
	cupy.expm1
	cupy.log1p
	cupy.sqrt
	cupy.square
	cupy.cbrt
	cupy.reciprocal
	cupy.gcd
	cupy.lcm

	Trigonometric functions
	cupy.sin
	cupy.cos
	cupy.tan
	cupy.arcsin
	cupy.arccos
	cupy.arctan
	cupy.arctan2
	cupy.hypot
	cupy.sinh
	cupy.cosh
	cupy.tanh
	cupy.arcsinh
	cupy.arccosh
	cupy.arctanh
	cupy.degrees
	cupy.radians
	cupy.deg2rad
	cupy.rad2deg

	Bit-twiddling functions
	cupy.bitwise_and
	cupy.bitwise_or
	cupy.bitwise_xor
	cupy.invert
	cupy.left_shift
	cupy.right_shift

	Comparison functions
	cupy.greater
	cupy.greater_equal
	cupy.less
	cupy.less_equal
	cupy.not_equal
	cupy.equal
	cupy.logical_and
	cupy.logical_or
	cupy.logical_xor
	cupy.logical_not
	cupy.maximum
	cupy.minimum
	cupy.fmax
	cupy.fmin

	Floating functions
	cupy.isfinite
	cupy.isinf
	cupy.isnan
	cupy.signbit
	cupy.copysign
	cupy.nextafter
	cupy.modf
	cupy.ldexp
	cupy.frexp
	cupy.floor
	cupy.ceil
	cupy.trunc

	Generalized Universal Functions
	cupyx.GeneralizedUFunc

	Routines (NumPy)
	Array creation routines
	Ones and zeros
	cupy.empty
	cupy.empty_like
	cupy.eye
	cupy.identity
	cupy.ones
	cupy.ones_like
	cupy.zeros
	cupy.zeros_like
	cupy.full
	cupy.full_like

	From existing data
	cupy.asanyarray
	cupy.ascontiguousarray
	cupy.copy
	cupy.frombuffer
	cupy.fromfile
	cupy.fromfunction
	cupy.fromiter
	cupy.fromstring
	cupy.loadtxt

	Numerical ranges
	cupy.arange
	cupy.linspace
	cupy.logspace
	cupy.meshgrid
	cupy.mgrid
	cupy.ogrid

	Building matrices
	cupy.diag
	cupy.diagflat
	cupy.tri
	cupy.tril
	cupy.triu
	cupy.vander

	Array manipulation routines
	Basic operations
	cupy.copyto
	cupy.shape

	Changing array shape
	cupy.reshape
	cupy.ravel

	Transpose-like operations
	cupy.moveaxis
	cupy.rollaxis
	cupy.swapaxes
	cupy.transpose

	Changing number of dimensions
	cupy.atleast_1d
	cupy.atleast_2d
	cupy.atleast_3d
	cupy.broadcast
	cupy.broadcast_to
	cupy.broadcast_arrays
	cupy.expand_dims
	cupy.squeeze

	Changing kind of array
	cupy.asfarray
	cupy.asfortranarray
	cupy.asarray_chkfinite
	cupy.require

	Joining arrays
	cupy.concatenate
	cupy.stack
	cupy.vstack
	cupy.hstack
	cupy.dstack
	cupy.column_stack
	cupy.row_stack

	Splitting arrays
	cupy.split
	cupy.array_split
	cupy.dsplit
	cupy.hsplit
	cupy.vsplit

	Tiling arrays
	cupy.tile
	cupy.repeat

	Adding and removing elements
	cupy.delete
	cupy.append
	cupy.resize
	cupy.unique
	cupy.trim_zeros

	Rearranging elements
	cupy.flip
	cupy.fliplr
	cupy.flipud
	cupy.roll
	cupy.rot90

	Binary operations
	Elementwise bit operations
	Bit packing
	cupy.packbits
	cupy.unpackbits

	Output formatting
	cupy.binary_repr

	Data type routines
	cupy.can_cast
	cupy.min_scalar_type
	cupy.result_type
	cupy.common_type
	Creating data types
	Data type information
	Data type testing
	Miscellaneous

	Discrete Fourier Transform (cupy.fft)
	Standard FFTs
	cupy.fft.fft
	cupy.fft.ifft
	cupy.fft.fft2
	cupy.fft.ifft2
	cupy.fft.fftn
	cupy.fft.ifftn

	Real FFTs
	cupy.fft.rfft
	cupy.fft.irfft
	cupy.fft.rfft2
	cupy.fft.irfft2
	cupy.fft.rfftn
	cupy.fft.irfftn

	Hermitian FFTs
	cupy.fft.hfft
	cupy.fft.ihfft

	Helper routines
	cupy.fft.fftfreq
	cupy.fft.rfftfreq
	cupy.fft.fftshift
	cupy.fft.ifftshift

	CuPy-specific APIs
	cupy.fft.config.set_cufft_callbacks
	cupy.fft.config.set_cufft_gpus
	cupy.fft.config.get_plan_cache
	cupy.fft.config.show_plan_cache_info

	Normalization
	Code compatibility features
	Multi-GPU FFT

	Functional programming
	cupy.apply_along_axis
	cupy.vectorize
	cupy.piecewise

	Indexing routines
	Generating index arrays
	cupy.c_
	cupy.r_
	cupy.nonzero
	cupy.where
	cupy.indices
	cupy.mask_indices
	cupy.tril_indices
	cupy.tril_indices_from
	cupy.triu_indices
	cupy.triu_indices_from
	cupy.ix_
	cupy.ravel_multi_index
	cupy.unravel_index
	cupy.diag_indices
	cupy.diag_indices_from

	Indexing-like operations
	cupy.take
	cupy.take_along_axis
	cupy.choose
	cupy.compress
	cupy.diagonal
	cupy.select
	cupy.lib.stride_tricks.as_strided

	Inserting data into arrays
	cupy.place
	cupy.put
	cupy.putmask
	cupy.fill_diagonal

	Iterating over arrays
	cupy.flatiter

	Input and output
	NumPy binary files (NPY, NPZ)
	cupy.load
	cupy.save
	cupy.savez
	cupy.savez_compressed

	Text files
	cupy.savetxt
	cupy.genfromtxt

	String formatting
	cupy.array2string
	cupy.array_repr
	cupy.array_str
	cupy.format_float_positional
	cupy.format_float_scientific

	Base-n representations
	cupy.base_repr

	Linear algebra (cupy.linalg)
	Matrix and vector products
	cupy.dot
	cupy.vdot
	cupy.inner
	cupy.outer
	cupy.tensordot
	cupy.einsum
	cupy.linalg.matrix_power
	cupy.kron

	Decompositions
	cupy.linalg.cholesky
	cupy.linalg.qr
	cupy.linalg.svd

	Matrix eigenvalues
	cupy.linalg.eigh
	cupy.linalg.eigvalsh

	Norms and other numbers
	cupy.linalg.norm
	cupy.linalg.det
	cupy.linalg.matrix_rank
	cupy.linalg.slogdet
	cupy.trace

	Solving equations and inverting matrices
	cupy.linalg.solve
	cupy.linalg.tensorsolve
	cupy.linalg.lstsq
	cupy.linalg.inv
	cupy.linalg.pinv
	cupy.linalg.tensorinv

	Logic functions
	Truth value testing
	cupy.all
	cupy.any
	cupy.union1d

	Array contents
	cupy.isneginf
	cupy.isposinf

	Array type testing
	cupy.iscomplex
	cupy.iscomplexobj
	cupy.isfortran
	cupy.isreal
	cupy.isrealobj
	cupy.isscalar

	Logic operations
	Comparison
	cupy.allclose
	cupy.isclose
	cupy.array_equal
	cupy.array_equiv

	Mathematical functions
	Trigonometric functions
	cupy.unwrap

	Hyperbolic functions
	Rounding
	cupy.around
	cupy.round_
	cupy.fix

	Sums, products, differences
	cupy.prod
	cupy.sum
	cupy.nanprod
	cupy.nansum
	cupy.cumprod
	cupy.cumsum
	cupy.nancumprod
	cupy.nancumsum
	cupy.diff
	cupy.gradient
	cupy.ediff1d
	cupy.cross
	cupy.trapz

	Exponents and logarithms
	Other special functions
	cupy.i0
	cupy.sinc

	Floating point routines
	Rational routines
	Arithmetic operations
	Handling complex numbers
	cupy.angle
	cupy.real
	cupy.imag

	Miscellaneous
	cupy.convolve
	cupy.clip
	cupy.nan_to_num
	cupy.real_if_close
	cupy.interp

	Miscellaneous routines
	Memory ranges
	cupy.byte_bounds
	cupy.shares_memory
	cupy.may_share_memory

	Utility
	cupy.show_config

	Matlab-like Functions
	cupy.who

	Padding arrays
	cupy.pad

	Polynomials
	Power Series (cupy.polynomial.polynomial)
	Misc Functions
	cupy.polynomial.polynomial.polyvander
	cupy.polynomial.polynomial.polycompanion
	cupy.polynomial.polynomial.polyval
	cupy.polynomial.polynomial.polyvalfromroots

	Polyutils
	Functions
	cupy.polynomial.polyutils.as_series
	cupy.polynomial.polyutils.trimseq
	cupy.polynomial.polyutils.trimcoef

	Poly1d
	Basics
	cupy.poly1d
	cupy.poly
	cupy.polyval
	cupy.roots

	Fitting
	cupy.polyfit

	Arithmetic
	cupy.polyadd
	cupy.polysub
	cupy.polymul

	Random sampling (cupy.random)
	New Random Generator API
	Random Generator
	cupy.random.default_rng
	cupy.random.Generator

	Bit Generators
	cupy.random.BitGenerator
	cupy.random.XORWOW
	cupy.random.MRG32k3a
	cupy.random.Philox4x3210

	Legacy Random Generation
	cupy.random.RandomState
	Functions in cupy.random
	cupy.random.beta
	cupy.random.binomial
	cupy.random.bytes
	cupy.random.chisquare
	cupy.random.choice
	cupy.random.dirichlet
	cupy.random.exponential
	cupy.random.f
	cupy.random.gamma
	cupy.random.geometric
	cupy.random.gumbel
	cupy.random.hypergeometric
	cupy.random.laplace
	cupy.random.logistic
	cupy.random.lognormal
	cupy.random.logseries
	cupy.random.multinomial
	cupy.random.multivariate_normal
	cupy.random.negative_binomial
	cupy.random.noncentral_chisquare
	cupy.random.noncentral_f
	cupy.random.normal
	cupy.random.pareto
	cupy.random.permutation
	cupy.random.poisson
	cupy.random.power
	cupy.random.rand
	cupy.random.randint
	cupy.random.randn
	cupy.random.random
	cupy.random.random_integers
	cupy.random.random_sample
	cupy.random.ranf
	cupy.random.rayleigh
	cupy.random.sample
	cupy.random.seed
	cupy.random.shuffle
	cupy.random.standard_cauchy
	cupy.random.standard_exponential
	cupy.random.standard_gamma
	cupy.random.standard_normal
	cupy.random.standard_t
	cupy.random.triangular
	cupy.random.uniform
	cupy.random.vonmises
	cupy.random.wald
	cupy.random.weibull
	cupy.random.zipf
	cupy.random.get_random_state
	cupy.random.set_random_state

	Set routines
	Making proper sets
	Boolean operations
	cupy.in1d
	cupy.intersect1d
	cupy.isin
	cupy.setdiff1d
	cupy.setxor1d

	Sorting, searching, and counting
	Sorting
	cupy.sort
	cupy.lexsort
	cupy.argsort
	cupy.msort
	cupy.sort_complex
	cupy.partition
	cupy.argpartition

	Searching
	cupy.argmax
	cupy.nanargmax
	cupy.argmin
	cupy.nanargmin
	cupy.argwhere
	cupy.flatnonzero
	cupy.searchsorted
	cupy.extract

	Counting
	cupy.count_nonzero

	Statistics
	Order statistics
	cupy.amin
	cupy.amax
	cupy.nanmin
	cupy.nanmax
	cupy.ptp
	cupy.percentile
	cupy.quantile

	Averages and variances
	cupy.median
	cupy.average
	cupy.mean
	cupy.std
	cupy.var
	cupy.nanmedian
	cupy.nanmean
	cupy.nanstd
	cupy.nanvar

	Correlations
	cupy.corrcoef
	cupy.correlate
	cupy.cov

	Histograms
	cupy.histogram
	cupy.histogram2d
	cupy.histogramdd
	cupy.bincount
	cupy.digitize

	Test support (cupy.testing)
	Asserts
	cupy.testing.assert_array_almost_equal
	cupy.testing.assert_allclose
	cupy.testing.assert_array_almost_equal_nulp
	cupy.testing.assert_array_max_ulp
	cupy.testing.assert_array_equal
	cupy.testing.assert_array_less

	CuPy-specific APIs
	Asserts
	cupy.testing.assert_array_list_equal

	NumPy-CuPy Consistency Check
	cupy.testing.numpy_cupy_allclose
	cupy.testing.numpy_cupy_array_almost_equal
	cupy.testing.numpy_cupy_array_almost_equal_nulp
	cupy.testing.numpy_cupy_array_max_ulp
	cupy.testing.numpy_cupy_array_equal
	cupy.testing.numpy_cupy_array_list_equal
	cupy.testing.numpy_cupy_array_less

	Parameterized dtype Test
	cupy.testing.for_dtypes
	cupy.testing.for_all_dtypes
	cupy.testing.for_float_dtypes
	cupy.testing.for_signed_dtypes
	cupy.testing.for_unsigned_dtypes
	cupy.testing.for_int_dtypes
	cupy.testing.for_complex_dtypes
	cupy.testing.for_dtypes_combination
	cupy.testing.for_all_dtypes_combination
	cupy.testing.for_signed_dtypes_combination
	cupy.testing.for_unsigned_dtypes_combination
	cupy.testing.for_int_dtypes_combination

	Parameterized order Test
	cupy.testing.for_orders
	cupy.testing.for_CF_orders

	Window functions
	Various windows
	cupy.bartlett
	cupy.blackman
	cupy.hamming
	cupy.hanning
	cupy.kaiser

	Routines (SciPy)
	Discrete Fourier transforms (cupyx.scipy.fft)
	Fast Fourier Transforms (FFTs)
	cupyx.scipy.fft.fft
	cupyx.scipy.fft.ifft
	cupyx.scipy.fft.fft2
	cupyx.scipy.fft.ifft2
	cupyx.scipy.fft.fftn
	cupyx.scipy.fft.ifftn
	cupyx.scipy.fft.rfft
	cupyx.scipy.fft.irfft
	cupyx.scipy.fft.rfft2
	cupyx.scipy.fft.irfft2
	cupyx.scipy.fft.rfftn
	cupyx.scipy.fft.irfftn
	cupyx.scipy.fft.hfft
	cupyx.scipy.fft.ihfft
	cupyx.scipy.fft.hfft2
	cupyx.scipy.fft.ihfft2
	cupyx.scipy.fft.hfftn
	cupyx.scipy.fft.ihfftn

	Discrete Cosine and Sine Transforms (DST and DCT)
	cupyx.scipy.fft.dct
	cupyx.scipy.fft.idct
	cupyx.scipy.fft.dctn
	cupyx.scipy.fft.idctn
	cupyx.scipy.fft.dst
	cupyx.scipy.fft.idst
	cupyx.scipy.fft.dstn
	cupyx.scipy.fft.idstn

	Fast Hankel Transforms
	cupyx.scipy.fft.fht
	cupyx.scipy.fft.ifht

	Helper functions
	cupyx.scipy.fft.fftshift
	cupyx.scipy.fft.ifftshift
	cupyx.scipy.fft.fftfreq
	cupyx.scipy.fft.rfftfreq
	cupyx.scipy.fft.next_fast_len

	Code compatibility features

	Legacy discrete fourier transforms (cupyx.scipy.fftpack)
	Fast Fourier Transforms (FFTs)
	cupyx.scipy.fftpack.fft
	cupyx.scipy.fftpack.ifft
	cupyx.scipy.fftpack.fft2
	cupyx.scipy.fftpack.ifft2
	cupyx.scipy.fftpack.fftn
	cupyx.scipy.fftpack.ifftn
	cupyx.scipy.fftpack.rfft
	cupyx.scipy.fftpack.irfft
	cupyx.scipy.fftpack.get_fft_plan

	Code compatibility features

	Interpolation (cupyx.scipy.interpolate)
	Univariate interpolation
	cupyx.scipy.interpolate.BarycentricInterpolator
	cupyx.scipy.interpolate.KroghInterpolator
	cupyx.scipy.interpolate.barycentric_interpolate
	cupyx.scipy.interpolate.krogh_interpolate
	cupyx.scipy.interpolate.pchip_interpolate
	cupyx.scipy.interpolate.CubicHermiteSpline
	cupyx.scipy.interpolate.PchipInterpolator
	cupyx.scipy.interpolate.Akima1DInterpolator
	cupyx.scipy.interpolate.PPoly
	cupyx.scipy.interpolate.BPoly

	1-D Splines
	cupyx.scipy.interpolate.BSpline
	cupyx.scipy.interpolate.make_interp_spline
	cupyx.scipy.interpolate.splder
	cupyx.scipy.interpolate.splantider

	Multivariate interpolation
	cupyx.scipy.interpolate.RBFInterpolator
	cupyx.scipy.interpolate.interpn
	cupyx.scipy.interpolate.RegularGridInterpolator
	cupyx.scipy.interpolate.NdPPoly

	Linear algebra (cupyx.scipy.linalg)
	Basics
	cupyx.scipy.linalg.solve_triangular
	cupyx.scipy.linalg.tril
	cupyx.scipy.linalg.triu

	Matrix Functions
	cupyx.scipy.linalg.expm

	Decompositions
	cupyx.scipy.linalg.lu
	cupyx.scipy.linalg.lu_factor
	cupyx.scipy.linalg.lu_solve

	Special Matrices
	cupyx.scipy.linalg.block_diag
	cupyx.scipy.linalg.circulant
	cupyx.scipy.linalg.companion
	cupyx.scipy.linalg.convolution_matrix
	cupyx.scipy.linalg.dft
	cupyx.scipy.linalg.fiedler
	cupyx.scipy.linalg.fiedler_companion
	cupyx.scipy.linalg.hadamard
	cupyx.scipy.linalg.hankel
	cupyx.scipy.linalg.helmert
	cupyx.scipy.linalg.hilbert
	cupyx.scipy.linalg.kron
	cupyx.scipy.linalg.leslie
	cupyx.scipy.linalg.toeplitz
	cupyx.scipy.linalg.tri

	Multidimensional image processing (cupyx.scipy.ndimage)
	Filters
	cupyx.scipy.ndimage.convolve
	cupyx.scipy.ndimage.convolve1d
	cupyx.scipy.ndimage.correlate
	cupyx.scipy.ndimage.correlate1d
	cupyx.scipy.ndimage.gaussian_filter
	cupyx.scipy.ndimage.gaussian_filter1d
	cupyx.scipy.ndimage.gaussian_gradient_magnitude
	cupyx.scipy.ndimage.gaussian_laplace
	cupyx.scipy.ndimage.generic_filter
	cupyx.scipy.ndimage.generic_filter1d
	cupyx.scipy.ndimage.generic_gradient_magnitude
	cupyx.scipy.ndimage.generic_laplace
	cupyx.scipy.ndimage.laplace
	cupyx.scipy.ndimage.maximum_filter
	cupyx.scipy.ndimage.maximum_filter1d
	cupyx.scipy.ndimage.median_filter
	cupyx.scipy.ndimage.minimum_filter
	cupyx.scipy.ndimage.minimum_filter1d
	cupyx.scipy.ndimage.percentile_filter
	cupyx.scipy.ndimage.prewitt
	cupyx.scipy.ndimage.rank_filter
	cupyx.scipy.ndimage.sobel
	cupyx.scipy.ndimage.uniform_filter
	cupyx.scipy.ndimage.uniform_filter1d

	Fourier filters
	cupyx.scipy.ndimage.fourier_ellipsoid
	cupyx.scipy.ndimage.fourier_gaussian
	cupyx.scipy.ndimage.fourier_shift
	cupyx.scipy.ndimage.fourier_uniform

	Interpolation
	cupyx.scipy.ndimage.affine_transform
	cupyx.scipy.ndimage.map_coordinates
	cupyx.scipy.ndimage.rotate
	cupyx.scipy.ndimage.shift
	cupyx.scipy.ndimage.spline_filter
	cupyx.scipy.ndimage.spline_filter1d
	cupyx.scipy.ndimage.zoom

	Measurements
	cupyx.scipy.ndimage.center_of_mass
	cupyx.scipy.ndimage.extrema
	cupyx.scipy.ndimage.histogram
	cupyx.scipy.ndimage.label
	cupyx.scipy.ndimage.labeled_comprehension
	cupyx.scipy.ndimage.maximum
	cupyx.scipy.ndimage.maximum_position
	cupyx.scipy.ndimage.mean
	cupyx.scipy.ndimage.median
	cupyx.scipy.ndimage.minimum
	cupyx.scipy.ndimage.minimum_position
	cupyx.scipy.ndimage.standard_deviation
	cupyx.scipy.ndimage.sum_labels
	cupyx.scipy.ndimage.value_indices
	cupyx.scipy.ndimage.variance

	Morphology
	cupyx.scipy.ndimage.binary_closing
	cupyx.scipy.ndimage.binary_dilation
	cupyx.scipy.ndimage.binary_erosion
	cupyx.scipy.ndimage.binary_fill_holes
	cupyx.scipy.ndimage.binary_hit_or_miss
	cupyx.scipy.ndimage.binary_opening
	cupyx.scipy.ndimage.binary_propagation
	cupyx.scipy.ndimage.black_tophat
	cupyx.scipy.ndimage.distance_transform_edt
	cupyx.scipy.ndimage.generate_binary_structure
	cupyx.scipy.ndimage.grey_closing
	cupyx.scipy.ndimage.grey_dilation
	cupyx.scipy.ndimage.grey_erosion
	cupyx.scipy.ndimage.grey_opening
	cupyx.scipy.ndimage.iterate_structure
	cupyx.scipy.ndimage.morphological_gradient
	cupyx.scipy.ndimage.morphological_laplace
	cupyx.scipy.ndimage.white_tophat

	OpenCV mode

	Signal processing (cupyx.scipy.signal)
	Convolution
	cupyx.scipy.signal.convolve
	cupyx.scipy.signal.correlate
	cupyx.scipy.signal.fftconvolve
	cupyx.scipy.signal.oaconvolve
	cupyx.scipy.signal.convolve2d
	cupyx.scipy.signal.correlate2d
	cupyx.scipy.signal.sepfir2d
	cupyx.scipy.signal.choose_conv_method
	cupyx.scipy.signal.correlation_lags

	B-Splines
	cupyx.scipy.signal.gauss_spline
	cupyx.scipy.signal.cspline1d
	cupyx.scipy.signal.qspline1d
	cupyx.scipy.signal.cspline2d
	cupyx.scipy.signal.qspline2d
	cupyx.scipy.signal.cspline1d_eval
	cupyx.scipy.signal.qspline1d_eval
	cupyx.scipy.signal.spline_filter

	Filtering
	cupyx.scipy.signal.order_filter
	cupyx.scipy.signal.medfilt
	cupyx.scipy.signal.medfilt2d
	cupyx.scipy.signal.wiener
	cupyx.scipy.signal.symiirorder1
	cupyx.scipy.signal.symiirorder2
	cupyx.scipy.signal.lfilter
	cupyx.scipy.signal.lfiltic
	cupyx.scipy.signal.lfilter_zi
	cupyx.scipy.signal.filtfilt
	cupyx.scipy.signal.savgol_filter
	cupyx.scipy.signal.deconvolve
	cupyx.scipy.signal.sosfilt
	cupyx.scipy.signal.sosfilt_zi
	cupyx.scipy.signal.sosfiltfilt
	cupyx.scipy.signal.hilbert
	cupyx.scipy.signal.hilbert2
	cupyx.scipy.signal.decimate
	cupyx.scipy.signal.detrend
	cupyx.scipy.signal.resample
	cupyx.scipy.signal.resample_poly
	cupyx.scipy.signal.upfirdn

	Filter design
	cupyx.scipy.signal.bilinear
	cupyx.scipy.signal.bilinear_zpk
	cupyx.scipy.signal.findfreqs
	cupyx.scipy.signal.freqs
	cupyx.scipy.signal.freqs_zpk
	cupyx.scipy.signal.freqz
	cupyx.scipy.signal.freqz_zpk
	cupyx.scipy.signal.sosfreqz
	cupyx.scipy.signal.firwin
	cupyx.scipy.signal.firwin2
	cupyx.scipy.signal.firls
	cupyx.scipy.signal.minimum_phase
	cupyx.scipy.signal.savgol_coeffs
	cupyx.scipy.signal.gammatone
	cupyx.scipy.signal.group_delay
	cupyx.scipy.signal.iirdesign
	cupyx.scipy.signal.iirfilter
	cupyx.scipy.signal.kaiser_atten
	cupyx.scipy.signal.kaiser_beta
	cupyx.scipy.signal.kaiserord
	cupyx.scipy.signal.unique_roots
	cupyx.scipy.signal.residue
	cupyx.scipy.signal.residuez
	cupyx.scipy.signal.invres
	cupyx.scipy.signal.invresz
	cupyx.scipy.signal.BadCoefficients

	Matlab-style IIR filter design
	cupyx.scipy.signal.butter
	cupyx.scipy.signal.buttord
	cupyx.scipy.signal.ellip
	cupyx.scipy.signal.ellipord
	cupyx.scipy.signal.cheby1
	cupyx.scipy.signal.cheb1ord
	cupyx.scipy.signal.cheby2
	cupyx.scipy.signal.cheb2ord
	cupyx.scipy.signal.iircomb
	cupyx.scipy.signal.iirnotch
	cupyx.scipy.signal.iirpeak

	Low-level filter design functions
	cupyx.scipy.signal.abcd_normalize
	cupyx.scipy.signal.band_stop_obj
	cupyx.scipy.signal.buttap
	cupyx.scipy.signal.cheb1ap
	cupyx.scipy.signal.cheb2ap
	cupyx.scipy.signal.ellipap
	cupyx.scipy.signal.lp2bp
	cupyx.scipy.signal.lp2bp_zpk
	cupyx.scipy.signal.lp2bs
	cupyx.scipy.signal.lp2bs_zpk
	cupyx.scipy.signal.lp2hp
	cupyx.scipy.signal.lp2hp_zpk
	cupyx.scipy.signal.lp2lp
	cupyx.scipy.signal.lp2lp_zpk
	cupyx.scipy.signal.normalize

	LTI representations
	cupyx.scipy.signal.zpk2tf
	cupyx.scipy.signal.zpk2sos
	cupyx.scipy.signal.zpk2ss
	cupyx.scipy.signal.tf2zpk
	cupyx.scipy.signal.tf2sos
	cupyx.scipy.signal.tf2ss
	cupyx.scipy.signal.ss2tf
	cupyx.scipy.signal.ss2zpk
	cupyx.scipy.signal.sos2tf
	cupyx.scipy.signal.sos2zpk
	cupyx.scipy.signal.cont2discrete
	cupyx.scipy.signal.place_poles

	Continuous-time linear systems
	cupyx.scipy.signal.lti
	cupyx.scipy.signal.StateSpace
	cupyx.scipy.signal.TransferFunction
	cupyx.scipy.signal.ZerosPolesGain
	cupyx.scipy.signal.lsim
	cupyx.scipy.signal.impulse
	cupyx.scipy.signal.step
	cupyx.scipy.signal.freqresp
	cupyx.scipy.signal.bode

	Discrete-time linear systems
	cupyx.scipy.signal.dlti
	cupyx.scipy.signal.dlsim
	cupyx.scipy.signal.dimpulse
	cupyx.scipy.signal.dstep
	cupyx.scipy.signal.dfreqresp
	cupyx.scipy.signal.dbode

	Waveforms
	cupyx.scipy.signal.chirp
	cupyx.scipy.signal.gausspulse
	cupyx.scipy.signal.max_len_seq
	cupyx.scipy.signal.sawtooth
	cupyx.scipy.signal.square
	cupyx.scipy.signal.unit_impulse

	Window functions
	cupyx.scipy.signal.get_window

	Wavelets
	cupyx.scipy.signal.morlet
	cupyx.scipy.signal.qmf
	cupyx.scipy.signal.ricker
	cupyx.scipy.signal.morlet2
	cupyx.scipy.signal.cwt

	Peak finding
	cupyx.scipy.signal.argrelmin
	cupyx.scipy.signal.argrelmax
	cupyx.scipy.signal.argrelextrema
	cupyx.scipy.signal.find_peaks
	cupyx.scipy.signal.peak_prominences
	cupyx.scipy.signal.peak_widths

	Spectral analysis
	cupyx.scipy.signal.periodogram
	cupyx.scipy.signal.welch
	cupyx.scipy.signal.csd
	cupyx.scipy.signal.coherence
	cupyx.scipy.signal.spectrogram
	cupyx.scipy.signal.lombscargle
	cupyx.scipy.signal.vectorstrength
	cupyx.scipy.signal.stft
	cupyx.scipy.signal.istft
	cupyx.scipy.signal.check_COLA
	cupyx.scipy.signal.check_NOLA

	Chirp Z-transform and Zoom FFT
	cupyx.scipy.signal.czt
	cupyx.scipy.signal.zoom_fft
	cupyx.scipy.signal.CZT
	cupyx.scipy.signal.ZoomFFT
	cupyx.scipy.signal.czt_points

	Signal processing windows (cupyx.scipy.signal.windows)
	cupyx.scipy.signal.windows.get_window
	cupyx.scipy.signal.windows.barthann
	cupyx.scipy.signal.windows.bartlett
	cupyx.scipy.signal.windows.blackman
	cupyx.scipy.signal.windows.blackmanharris
	cupyx.scipy.signal.windows.bohman
	cupyx.scipy.signal.windows.boxcar
	cupyx.scipy.signal.windows.chebwin
	cupyx.scipy.signal.windows.cosine
	cupyx.scipy.signal.windows.exponential
	cupyx.scipy.signal.windows.flattop
	cupyx.scipy.signal.windows.gaussian
	cupyx.scipy.signal.windows.general_cosine
	cupyx.scipy.signal.windows.general_gaussian
	cupyx.scipy.signal.windows.general_hamming
	cupyx.scipy.signal.windows.hamming
	cupyx.scipy.signal.windows.hann
	cupyx.scipy.signal.windows.kaiser
	cupyx.scipy.signal.windows.nuttall
	cupyx.scipy.signal.windows.parzen
	cupyx.scipy.signal.windows.taylor
	cupyx.scipy.signal.windows.triang
	cupyx.scipy.signal.windows.tukey

	Sparse matrices (cupyx.scipy.sparse)
	Conversion to/from SciPy sparse matrices
	Conversion to/from CuPy ndarrays
	Contents
	Sparse matrix classes
	cupyx.scipy.sparse.coo_matrix
	cupyx.scipy.sparse.csc_matrix
	cupyx.scipy.sparse.csr_matrix
	cupyx.scipy.sparse.dia_matrix
	cupyx.scipy.sparse.spmatrix

	Functions
	cupyx.scipy.sparse.eye
	cupyx.scipy.sparse.identity
	cupyx.scipy.sparse.kron
	cupyx.scipy.sparse.kronsum
	cupyx.scipy.sparse.diags
	cupyx.scipy.sparse.spdiags
	cupyx.scipy.sparse.tril
	cupyx.scipy.sparse.triu
	cupyx.scipy.sparse.bmat
	cupyx.scipy.sparse.hstack
	cupyx.scipy.sparse.vstack
	cupyx.scipy.sparse.rand
	cupyx.scipy.sparse.random
	cupyx.scipy.sparse.find
	cupyx.scipy.sparse.issparse
	cupyx.scipy.sparse.isspmatrix
	cupyx.scipy.sparse.isspmatrix_csc
	cupyx.scipy.sparse.isspmatrix_csr
	cupyx.scipy.sparse.isspmatrix_coo
	cupyx.scipy.sparse.isspmatrix_dia

	Submodules
	Exceptions

	Sparse linear algebra (cupyx.scipy.sparse.linalg)
	Abstract linear operators
	cupyx.scipy.sparse.linalg.LinearOperator
	cupyx.scipy.sparse.linalg.aslinearoperator

	Matrix norms
	cupyx.scipy.sparse.linalg.norm

	Solving linear problems
	cupyx.scipy.sparse.linalg.spsolve
	cupyx.scipy.sparse.linalg.spsolve_triangular
	cupyx.scipy.sparse.linalg.factorized
	cupyx.scipy.sparse.linalg.cg
	cupyx.scipy.sparse.linalg.gmres
	cupyx.scipy.sparse.linalg.cgs
	cupyx.scipy.sparse.linalg.minres
	cupyx.scipy.sparse.linalg.lsqr
	cupyx.scipy.sparse.linalg.lsmr

	Matrix factorizations
	cupyx.scipy.sparse.linalg.eigsh
	cupyx.scipy.sparse.linalg.lobpcg
	cupyx.scipy.sparse.linalg.svds
	cupyx.scipy.sparse.linalg.splu
	cupyx.scipy.sparse.linalg.spilu
	cupyx.scipy.sparse.linalg.SuperLU

	Compressed sparse graph routines (cupyx.scipy.sparse.csgraph)
	Contents
	cupyx.scipy.sparse.csgraph.connected_components

	Spatial algorithms and data structures (cupyx.scipy.spatial)
	Functions
	cupyx.scipy.spatial.distance_matrix

	Distance computations (cupyx.scipy.spatial.distance)
	Distance matrix computations
	cupyx.scipy.spatial.distance.pdist
	cupyx.scipy.spatial.distance.cdist
	cupyx.scipy.spatial.distance.distance_matrix

	Distance functions
	cupyx.scipy.spatial.distance.minkowski
	cupyx.scipy.spatial.distance.canberra
	cupyx.scipy.spatial.distance.chebyshev
	cupyx.scipy.spatial.distance.cityblock
	cupyx.scipy.spatial.distance.correlation
	cupyx.scipy.spatial.distance.cosine
	cupyx.scipy.spatial.distance.hamming
	cupyx.scipy.spatial.distance.euclidean
	cupyx.scipy.spatial.distance.jensenshannon
	cupyx.scipy.spatial.distance.russellrao
	cupyx.scipy.spatial.distance.sqeuclidean
	cupyx.scipy.spatial.distance.hellinger
	cupyx.scipy.spatial.distance.kl_divergence

	Special functions (cupyx.scipy.special)
	Bessel functions
	cupyx.scipy.special.j0
	cupyx.scipy.special.j1
	cupyx.scipy.special.k0
	cupyx.scipy.special.k0e
	cupyx.scipy.special.k1
	cupyx.scipy.special.k1e
	cupyx.scipy.special.y0
	cupyx.scipy.special.y1
	cupyx.scipy.special.yn
	cupyx.scipy.special.i0
	cupyx.scipy.special.i0e
	cupyx.scipy.special.i1
	cupyx.scipy.special.i1e
	cupyx.scipy.special.spherical_yn

	Raw statistical functions
	cupyx.scipy.special.bdtr
	cupyx.scipy.special.bdtrc
	cupyx.scipy.special.bdtri
	cupyx.scipy.special.btdtr
	cupyx.scipy.special.btdtri
	cupyx.scipy.special.fdtr
	cupyx.scipy.special.fdtrc
	cupyx.scipy.special.fdtri
	cupyx.scipy.special.gdtr
	cupyx.scipy.special.gdtrc
	cupyx.scipy.special.nbdtr
	cupyx.scipy.special.nbdtrc
	cupyx.scipy.special.nbdtri
	cupyx.scipy.special.pdtr
	cupyx.scipy.special.pdtrc
	cupyx.scipy.special.pdtri
	cupyx.scipy.special.chdtr
	cupyx.scipy.special.chdtrc
	cupyx.scipy.special.chdtri
	cupyx.scipy.special.ndtr
	cupyx.scipy.special.log_ndtr
	cupyx.scipy.special.ndtri
	cupyx.scipy.special.logit
	cupyx.scipy.special.expit
	cupyx.scipy.special.log_expit
	cupyx.scipy.special.boxcox
	cupyx.scipy.special.boxcox1p
	cupyx.scipy.special.inv_boxcox
	cupyx.scipy.special.inv_boxcox1p

	Information Theory functions
	cupyx.scipy.special.entr
	cupyx.scipy.special.rel_entr
	cupyx.scipy.special.kl_div
	cupyx.scipy.special.huber
	cupyx.scipy.special.pseudo_huber

	Gamma and related functions
	cupyx.scipy.special.gamma
	cupyx.scipy.special.gammaln
	cupyx.scipy.special.loggamma
	cupyx.scipy.special.gammainc
	cupyx.scipy.special.gammaincinv
	cupyx.scipy.special.gammaincc
	cupyx.scipy.special.gammainccinv
	cupyx.scipy.special.beta
	cupyx.scipy.special.betaln
	cupyx.scipy.special.betainc
	cupyx.scipy.special.betaincinv
	cupyx.scipy.special.psi
	cupyx.scipy.special.rgamma
	cupyx.scipy.special.polygamma
	cupyx.scipy.special.multigammaln
	cupyx.scipy.special.digamma
	cupyx.scipy.special.poch

	Elliptic integrals
	Error function and Fresnel integrals
	cupyx.scipy.special.erf
	cupyx.scipy.special.erfc
	cupyx.scipy.special.erfcx
	cupyx.scipy.special.erfinv
	cupyx.scipy.special.erfcinv

	Legendre functions
	cupyx.scipy.special.lpmv
	cupyx.scipy.special.sph_harm

	Other special functions
	cupyx.scipy.special.exp1
	cupyx.scipy.special.expi
	cupyx.scipy.special.expn
	cupyx.scipy.special.exprel
	cupyx.scipy.special.softmax
	cupyx.scipy.special.log_softmax
	cupyx.scipy.special.zeta
	cupyx.scipy.special.zetac

	Convenience functions
	cupyx.scipy.special.cbrt
	cupyx.scipy.special.exp10
	cupyx.scipy.special.exp2
	cupyx.scipy.special.radian
	cupyx.scipy.special.cosdg
	cupyx.scipy.special.sindg
	cupyx.scipy.special.tandg
	cupyx.scipy.special.cotdg
	cupyx.scipy.special.log1p
	cupyx.scipy.special.expm1
	cupyx.scipy.special.cosm1
	cupyx.scipy.special.round
	cupyx.scipy.special.xlogy
	cupyx.scipy.special.xlog1py
	cupyx.scipy.special.logsumexp
	cupyx.scipy.special.sinc

	Statistical functions (cupyx.scipy.stats)
	Summary statistics
	cupyx.scipy.stats.trim_mean
	cupyx.scipy.stats.entropy

	Other statistical functionality
	cupyx.scipy.stats.boxcox_llf
	cupyx.scipy.stats.zmap
	cupyx.scipy.stats.zscore

	CuPy-specific functions
	cupyx.rsqrt
	cupyx.scatter_add
	cupyx.scatter_max
	cupyx.scatter_min
	cupyx.empty_pinned
	cupyx.empty_like_pinned
	cupyx.zeros_pinned
	cupyx.zeros_like_pinned
	non-SciPy compat Signal API
	cupyx.signal.convolve1d3o
	cupyx.signal.pulse_compression

	Profiling utilities
	cupyx.profiler.benchmark
	cupyx.profiler.time_range
	cupyx.profiler.profile

	DLPack utilities
	cupy.from_dlpack

	Automatic Kernel Parameters Optimizations (cupyx.optimizing)
	cupyx.optimizing.optimize

	Low-level CUDA support
	Device management
	cupy.cuda.Device

	Memory management
	cupy.get_default_memory_pool
	cupy.get_default_pinned_memory_pool
	cupy.cuda.Memory
	cupy.cuda.MemoryAsync
	cupy.cuda.ManagedMemory
	cupy.cuda.UnownedMemory
	cupy.cuda.PinnedMemory
	cupy.cuda.MemoryPointer
	cupy.cuda.PinnedMemoryPointer
	cupy.cuda.malloc_managed
	cupy.cuda.malloc_async
	cupy.cuda.alloc
	cupy.cuda.alloc_pinned_memory
	cupy.cuda.get_allocator
	cupy.cuda.set_allocator
	cupy.cuda.using_allocator
	cupy.cuda.set_pinned_memory_allocator
	cupy.cuda.MemoryPool
	cupy.cuda.MemoryAsyncPool
	cupy.cuda.PinnedMemoryPool
	cupy.cuda.PythonFunctionAllocator
	cupy.cuda.CFunctionAllocator

	Memory hook
	cupy.cuda.MemoryHook
	cupy.cuda.memory_hooks.DebugPrintHook
	cupy.cuda.memory_hooks.LineProfileHook

	Streams and events
	cupy.cuda.Stream
	cupy.cuda.ExternalStream
	cupy.cuda.get_current_stream
	cupy.cuda.Event
	cupy.cuda.get_elapsed_time

	Graphs
	cupy.cuda.Graph

	Texture and surface memory
	cupy.cuda.texture.ChannelFormatDescriptor
	cupy.cuda.texture.CUDAarray
	cupy.cuda.texture.ResourceDescriptor
	cupy.cuda.texture.TextureDescriptor
	cupy.cuda.texture.TextureObject
	cupy.cuda.texture.SurfaceObject

	NVTX
	cupy.cuda.nvtx.Mark
	cupy.cuda.nvtx.MarkC
	cupy.cuda.nvtx.RangePush
	cupy.cuda.nvtx.RangePushC
	cupy.cuda.nvtx.RangePop

	NCCL
	cupy.cuda.nccl.NcclCommunicator
	cupy.cuda.nccl.get_build_version
	cupy.cuda.nccl.get_version
	cupy.cuda.nccl.get_unique_id
	cupy.cuda.nccl.groupStart
	cupy.cuda.nccl.groupEnd

	Version
	cupy.cuda.get_local_runtime_version

	Runtime API
	cupy.cuda.runtime.driverGetVersion
	cupy.cuda.runtime.runtimeGetVersion
	cupy.cuda.runtime.getDevice
	cupy.cuda.runtime.getDeviceProperties
	cupy.cuda.runtime.deviceGetAttribute
	cupy.cuda.runtime.deviceGetByPCIBusId
	cupy.cuda.runtime.deviceGetPCIBusId
	cupy.cuda.runtime.deviceGetDefaultMemPool
	cupy.cuda.runtime.deviceGetMemPool
	cupy.cuda.runtime.deviceSetMemPool
	cupy.cuda.runtime.memPoolCreate
	cupy.cuda.runtime.memPoolDestroy
	cupy.cuda.runtime.memPoolTrimTo
	cupy.cuda.runtime.getDeviceCount
	cupy.cuda.runtime.setDevice
	cupy.cuda.runtime.deviceSynchronize
	cupy.cuda.runtime.deviceCanAccessPeer
	cupy.cuda.runtime.deviceEnablePeerAccess
	cupy.cuda.runtime.deviceGetLimit
	cupy.cuda.runtime.deviceSetLimit
	cupy.cuda.runtime.malloc
	cupy.cuda.runtime.mallocManaged
	cupy.cuda.runtime.malloc3DArray
	cupy.cuda.runtime.mallocArray
	cupy.cuda.runtime.mallocAsync
	cupy.cuda.runtime.mallocFromPoolAsync
	cupy.cuda.runtime.hostAlloc
	cupy.cuda.runtime.hostRegister
	cupy.cuda.runtime.hostUnregister
	cupy.cuda.runtime.free
	cupy.cuda.runtime.freeHost
	cupy.cuda.runtime.freeArray
	cupy.cuda.runtime.freeAsync
	cupy.cuda.runtime.memGetInfo
	cupy.cuda.runtime.memcpy
	cupy.cuda.runtime.memcpyAsync
	cupy.cuda.runtime.memcpyPeer
	cupy.cuda.runtime.memcpyPeerAsync
	cupy.cuda.runtime.memcpy2D
	cupy.cuda.runtime.memcpy2DAsync
	cupy.cuda.runtime.memcpy2DFromArray
	cupy.cuda.runtime.memcpy2DFromArrayAsync
	cupy.cuda.runtime.memcpy2DToArray
	cupy.cuda.runtime.memcpy2DToArrayAsync
	cupy.cuda.runtime.memcpy3D
	cupy.cuda.runtime.memcpy3DAsync
	cupy.cuda.runtime.memset
	cupy.cuda.runtime.memsetAsync
	cupy.cuda.runtime.memPrefetchAsync
	cupy.cuda.runtime.memAdvise
	cupy.cuda.runtime.pointerGetAttributes
	cupy.cuda.runtime.streamCreate
	cupy.cuda.runtime.streamCreateWithFlags
	cupy.cuda.runtime.streamDestroy
	cupy.cuda.runtime.streamSynchronize
	cupy.cuda.runtime.streamAddCallback
	cupy.cuda.runtime.streamQuery
	cupy.cuda.runtime.streamWaitEvent
	cupy.cuda.runtime.launchHostFunc
	cupy.cuda.runtime.eventCreate
	cupy.cuda.runtime.eventCreateWithFlags
	cupy.cuda.runtime.eventDestroy
	cupy.cuda.runtime.eventElapsedTime
	cupy.cuda.runtime.eventQuery
	cupy.cuda.runtime.eventRecord
	cupy.cuda.runtime.eventSynchronize
	cupy.cuda.runtime.ipcGetMemHandle
	cupy.cuda.runtime.ipcOpenMemHandle
	cupy.cuda.runtime.ipcCloseMemHandle
	cupy.cuda.runtime.ipcGetEventHandle
	cupy.cuda.runtime.ipcOpenEventHandle
	cupy.cuda.runtime.profilerStart
	cupy.cuda.runtime.profilerStop

	Custom kernels
	cupy.ElementwiseKernel
	cupy.ReductionKernel
	cupy.RawKernel
	cupy.RawModule
	cupy.fuse
	JIT kernel definition
	cupyx.jit.rawkernel
	cupyx.jit.threadIdx
	cupyx.jit.blockDim
	cupyx.jit.blockIdx
	cupyx.jit.gridDim
	cupyx.jit.grid
	cupyx.jit.gridsize
	cupyx.jit.laneid
	cupyx.jit.warpsize
	cupyx.jit.range
	cupyx.jit.syncthreads
	cupyx.jit.syncwarp
	cupyx.jit.shfl_sync
	cupyx.jit.shfl_up_sync
	cupyx.jit.shfl_down_sync
	cupyx.jit.shfl_xor_sync
	cupyx.jit.shared_memory
	cupyx.jit.atomic_add
	cupyx.jit.atomic_sub
	cupyx.jit.atomic_exch
	cupyx.jit.atomic_min
	cupyx.jit.atomic_max
	cupyx.jit.atomic_inc
	cupyx.jit.atomic_dec
	cupyx.jit.atomic_cas
	cupyx.jit.atomic_and
	cupyx.jit.atomic_or
	cupyx.jit.atomic_xor
	cupyx.jit.cg.this_grid
	cupyx.jit.cg.this_thread_block
	cupyx.jit.cg.sync
	cupyx.jit.cg.memcpy_async
	cupyx.jit.cg.wait
	cupyx.jit.cg.wait_prior
	cupyx.jit._interface._JitRawKernel

	Kernel binary memoization
	cupy.memoize
	cupy.clear_memo

	Distributed
	Communication between processes
	cupyx.distributed.init_process_group
	cupyx.distributed.NCCLBackend

	ndarray distributed across devices
	cupyx.distributed.array.distributed_array
	cupyx.distributed.array.DistributedArray
	cupyx.distributed.array.make_2d_index_map
	cupyx.distributed.array.matmul

	Environment variables
	For runtime
	For installation

	Comparison Table
	NumPy / CuPy APIs
	Module-Level
	Multi-Dimensional Array
	Linear Algebra
	Discrete Fourier Transform
	Random Sampling
	Polynomials
	Power Series
	Polyutils

	SciPy / CuPy APIs
	Discrete Fourier Transform
	Legacy Discrete Fourier Transform
	Interpolation
	Advanced Linear Algebra
	Multidimensional Image Processing
	Signal processing
	Sparse Matrices
	Sparse Linear Algebra
	Compressed sparse graph routines
	Special Functions
	Statistical Functions

	Python Array API Support
	Array API Functions
	Array API Compliant Object
	cupy.array_api._array_object.Array

	Contribution Guide
	Classification of Contributions
	Development Cycle
	Versioning
	Release Cycle
	Git Branches
	Feature Backport PRs

	Issues and Pull Requests
	How to Send a Pull Request

	Coding Guidelines
	Unit Testing
	How to Run Tests
	Test File and Directory Naming Conventions
	How to Write Tests

	Documentation
	Tips for Developers
	Install as Editable
	Use ccache
	Limit Architecture

	Upgrade Guide
	CuPy v13
	Modernized CCCL support and requirement
	Requirement Changes
	NumPy/SciPy Baseline API Update
	Change in cupy.asnumpy()/cupy.ndarray.get() Behavior
	Change in cupy.array()/cupy.asarray()/cupy.asanyarray() Behavior
	Removal of cupy-wheel package
	API Changes
	CUDA Runtime API is now statically linked
	Update of Docker Images

	CuPy v12
	Change in cupy.cuda.Device Behavior
	Deprecation of cupy.ndarray.scatter_{add,max,min}
	Requirement Changes
	Baseline API Update
	Update of Docker Images

	CuPy v11
	Unified Binary Package for CUDA 11.2+
	Requirement Changes
	CUB Enabled by Default
	Baseline API Update
	Update of Docker Images

	CuPy v10
	Dropping CUDA 9.2 / 10.0 / 10.1 Support
	Dropping NCCL v2.4 / v2.6 / v2.7 Support
	Dropping Python 3.6 Support
	Dropping NumPy 1.17 Support
	Change in cupy.cuda.Device Behavior
	Current device set via use() will not be honored by the with Device block

	Changes in cupy.cuda.Stream Behavior
	Stream is now managed per-device
	Current stream set via use() will not be restored when exiting with block
	Streams can now be shared between threads

	Big-Endian Arrays Automatically Converted to Little-Endian
	Baseline API Update
	API Changes
	Update of Docker Images

	CuPy v9
	Dropping Support of CUDA 9.0
	Dropping Support of cuDNN v7.5 and NCCL v2.3
	Dropping Support of NumPy 1.16 and SciPy 1.3
	Dropping Support of Python 3.5
	NCCL and cuDNN No Longer Included in Wheels
	cuTENSOR Enabled in Wheels
	cupy.cuda.{nccl,cudnn} Modules Needs Explicit Import
	Baseline API Update
	Update of Docker Images

	CuPy v8
	Dropping Support of CUDA 8.0 and 9.1
	Dropping Support of NumPy 1.15 and SciPy 1.2
	Update of Docker Images
	CUB Support and Compiler Requirement
	API Changes

	CuPy v7
	Dropping Support of Python 2.7 and 3.4

	CuPy v6
	Binary Packages Ignore LD_LIBRARY_PATH

	CuPy v5
	cupyx.scipy Namespace
	Dropped Support for CUDA 7.0 / 7.5
	Update of Docker Images

	CuPy v4
	Default Memory Pool
	Compute Capability
	CUDA Stream
	cupyx Namespace
	Update of Docker Images

	CuPy v2
	Changed Behavior of count_nonzero Function

	Compatibility Matrix

	License
	NumPy
	SciPy
	cuSignal

	Python Module Index
	Index

