

CuPy – NumPy-like API accelerated with CUDA

This is the CuPy [https://github.com/cupy/cupy] documentation.

	CuPy Overview

	Installation Guide

	CuPy Tutorial

	CuPy Reference Manual

	For CuPy Developers

	License

CuPy Overview

CuPy [https://github.com/cupy/cupy] is an implementation of NumPy-compatible multi-dimensional array on CUDA.
CuPy consists of cupy.ndarray, the core multi-dimensional array class,
and many functions on it. It supports a subset of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
interface.

The following is a brief overview of supported subset of NumPy interface:

	Basic indexing [http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html]
(indexing by ints, slices, newaxes, and Ellipsis)

	Most of Advanced indexing [https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing]
(except for some indexing patterns with boolean masks)

	Data types (dtypes): bool_, int8, int16, int32, int64, uint8, uint16, uint32, uint64, float16, float32, float64

	Most of the array creation routines [https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html] (empty, ones_like, diag, etc.)

	Most of the array manipulation routines [https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html] (reshape, rollaxis, concatenate, etc.)

	All operators with broadcasting [https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

	All universal functions [http://docs.scipy.org/doc/numpy/reference/ufuncs.html]
for elementwise operations (except those for complex numbers).

	Linear algebra functions [https://docs.scipy.org/doc/numpy/reference/routines.linalg.html], including product (dot, matmul, etc.) and decomposition (cholesky, svd, etc.), accelerated by cuBLAS [https://developer.nvidia.com/cublas].

	Reduction along axes (sum, max, argmax, etc.)

CuPy also includes the following features for performance:

	User-defined elementwise CUDA kernels

	User-defined reduction CUDA kernels

	Fusing CUDA kernels to optimize user-defined calculation

	Customizable memory allocator and memory pool

	cuDNN [https://developer.nvidia.com/cudnn] utilities

CuPy uses on-the-fly kernel synthesis: when a kernel call is required, it
compiles a kernel code optimized for the shapes and dtypes of given arguments,
sends it to the GPU device, and executes the kernel. The compiled code is
cached to $(HOME)/.cupy/kernel_cache directory (this cache path can be
overwritten by setting the CUPY_CACHE_DIR environment variable). It may
make things slower at the first kernel call, though this slow down will be
resolved at the second execution. CuPy also caches the kernel code sent to GPU
device within the process, which reduces the kernel transfer time on further
calls.

Installation Guide

	Recommended Environments

	Dependencies

	Install CuPy
	Install CuPy via pip

	Install CuPy from source

	When an error occurs...

	Install CuPy with CUDA

	Install CuPy with cuDNN and NCCL

	Install CuPy for developers

	Uninstall CuPy

	Upgrade CuPy

	Reinstall CuPy

	Run CuPy with Docker

	FAQ
	Warning message “cuDNN is not enabled” appears

Recommended Environments

We recommend these Linux distributions.

	Ubuntu [http://www.ubuntu.com/] 14.04/16.04 LTS 64bit

	CentOS [https://www.centos.org/] 7 64bit

The following versions of Python can be used: 2.7.6+, 3.4.3+, 3.5.1+, and 3.6.0+.

Note

We are testing CuPy automatically with Jenkins, where all the above recommended environments are tested.
We cannot guarantee that CuPy works on other environments including Windows and macOS (especially with CUDA support), even if CuPy looks running correctly.

CuPy is supported on Python 2.7.6+, 3.4.3+, 3.5.1+, 3.6.0+.
CuPy uses C++ compiler such as g++.
You need to install it before installing CuPy.
This is typical installation method for each platform:

Ubuntu 14.04
$ apt-get install g++

CentOS 7
$ yum install gcc-c++

If you use old setuptools, upgrade it:

$ pip install -U setuptools

Dependencies

Before installing CuPy, we recommend to upgrade setuptools if you are using an old one:

$ pip install -U setuptools

The following Python packages are required to install CuPy.
The latest version of each package will automatically be installed if missing.

	NumPy [http://www.numpy.org/] 1.9, 1.10, 1.11, 1.12

	Six [https://pythonhosted.org/six/] 1.9+

CUDA support

	CUDA [https://developer.nvidia.com/cuda-zone] 7.0, 7.5, 8.0

cuDNN support

	cuDNN [https://developer.nvidia.com/cudnn] v4, v5, v5.1, v6

NCCL support

	nccl [https://github.com/NVIDIA/nccl] v1.3+

Install CuPy

Install CuPy via pip

We recommend to install CuPy via pip:

$ pip install cupy

Note

All optional CUDA related libraries, cuDNN and NCCL, need to be installed before installing CuPy.
After you update these libraries, please reinstall CuPy because you need to compile and link to the newer version of them.

Install CuPy from source

The tarball of the source tree is available via pip download cupy or from the release notes page [https://github.com/pfnet/cupy/releases].
You can use setup.py to install CuPy from the tarball:

$ tar zxf cupy-x.x.x.tar.gz
$ cd cupy-x.x.x
$ python setup.py install

You can also install the development version of CuPy from a cloned Git repository:

$ git clone https://github.com/pfnet/cupy.git
$ cd cupy
$ python setup.py install

When an error occurs...

Use -vvvv option with pip command.
That shows all logs of installation.
It may help you:

$ pip install cupy -vvvv

Install CuPy with CUDA

You need to install CUDA Toolkit before installing CuPy.
If you have CUDA in a default directory or set CUDA_PATH correctly, CuPy installer finds CUDA automatically:

$ pip install cupy

Note

CuPy installer looks up CUDA_PATH environment variable first.
If it is empty, the installer looks for nvcc command from PATH environment variable and use its parent directory as the root directory of CUDA installation.
If nvcc command is also not found, the installer tries to use the default directory for Ubuntu /usr/local/cuda.

If you installed CUDA into a non-default directory, you need to specify the directory with CUDA_PATH environment variable:

$ CUDA_PATH=/opt/nvidia/cuda pip install cupy

Warning

If you want to use sudo to install CuPy, note that sudo command initializes all environment variables.
Please specify CUDA_PATH environment variable inside sudo like this:

$ sudo CUDA_PATH=/opt/nvidia/cuda pip install cupy

Install CuPy with cuDNN and NCCL

cuDNN is a library for Deep Neural Networks that NVIDIA provides.
NCCL is a library for collective multi-GPU communication.
CuPy can use cuDNN and NCCL.
If you want to enable these libraries, install them before installing CuPy.
We recommend you to install developer library of deb package of cuDNN and NCCL.

If you want to install tar-gz version of cuDNN, we recommend you to install it to CUDA directory.
For example if you uses Ubuntu Linux, copy .h files to include directory and .so files to lib64 directory:

$ cp /path/to/cudnn.h $CUDA_PATH/include
$ cp /path/to/libcudnn.so* $CUDA_PATH/lib64

The destination directories depend on your environment.

If you want to use cuDNN or NCCL installed in other directory, please use CFLAGS, LDFLAGS and LD_LIBRARY_PATH environment variables before installing CuPy:

export CFLAGS=-I/path/to/cudnn/include
export LDFLAGS=-L/path/to/cudnn/lib
export LD_LIBRARY_PATH=/path/to/cudnn/lib:$LD_LIBRARY_PATH

Install CuPy for developers

CuPy uses Cython (>=0.24).
Developers need to use Cython to regenerate C++ sources from pyx files.
We recommend to use pip with -e option for editable mode:

$ pip install -U cython
$ cd /path/to/cupy/source
$ pip install -e .

Users need not to install Cython as a distribution package of CuPy only contains generated sources.

Uninstall CuPy

Use pip to uninstall CuPy:

$ pip uninstall cupy

Note

When you upgrade Chainer, pip sometimes install the new version without removing the old one in site-packages.
In this case, pip uninstall only removes the latest one.
To ensure that Chainer is completely removed, run the above command repeatedly until pip returns an error.

Upgrade CuPy

Just use pip with -U option:

$ pip install -U cupy

Reinstall CuPy

If you want to reinstall CuPy, please uninstall CuPy and then install it.
We recommend to use --no-cache-dir option as pip sometimes uses cache:

$ pip uninstall cupy
$ pip install cupy --no-cache-dir

When you install CuPy without CUDA, and after that you want to use CUDA, please reinstall CuPy.
You need to reinstall CuPy when you want to upgrade CUDA.

Run CuPy with Docker

We are providing the official Docker image.
Use nvidia-docker [https://github.com/NVIDIA/nvidia-docker] command to run CuPy image with GPU.
You can login to the environment with bash, and run the Python interpreter:

$ nvidia-docker run -it cupy/cupy /bin/bash

Or run the interpreter directly:

$ nvidia-docker run -it cupy/cupy /usr/bin/python

FAQ

Warning message “cuDNN is not enabled” appears

You failed to build CuPy with cuDNN.
If you don’t need cuDNN, ignore this message.
Otherwise, retry to install CuPy with cuDNN.
-vvvv option helps you.
See Install CuPy with cuDNN and NCCL.

CuPy Tutorial

	Basics of CuPy

	Move arrays to a device

	Move array from a device to the host

	User-Defined Kernels

Basics of CuPy

In this section, you will learn about the following things:

	Basics of cupy.ndarray

	The concept of current device

	host-device and device-device array transfer

Basics of cupy.ndarray

CuPy is a GPU array backend that implements a subset of NumPy interface.
In the following code, cp is an abbreviation of cupy, as np is numpy as is customarily done:

>>> import numpy as np
>>> import cupy as cp

The cupy.ndarray class is in its core, which is a compatible GPU alternative of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

>>> x_gpu = cp.array([1, 2, 3])

x_gpu in the above example is an instance of cupy.ndarray.
You can see its creation of identical to NumPy‘s one, except that numpy is replaced with cupy.
The main difference of cupy.ndarray from numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] is that the content is allocated on the device memory.
Its data is allocated on the current device, which will be explained later.

Most of array manipulations are also do in the way similar to NumPy.
Take the Euclid norm (a.k.a L2 norm) for example.
NumPy has numpy.lina.g.norm to calculate it on CPU.

>>> x_cpu = np.array([1, 2, 3])
>>> l2_cpu = np.linalg.norm(x_cpu)

We can calculate it on GPU with CuPy in a similar way:

>>> x_gpu = cp.array([1, 2, 3])
>>> l2_gpu = cp.linalg.norm(x_gpu)

CuPy implements many functions on cupy.ndarray objects.
See the reference for the supported subset of NumPy API.
Understanding NumPy might help utilizing most features of CuPy.
So, we recommend you to read the NumPy documentation [http://docs.scipy.org/doc/numpy/index.html].

Current Device

CuPy has a concept of the current device, which is the default device on which
the allocation, manipulation, calculation etc. of arrays are taken place.
Suppose the ID of current device is 0.
The following code allocates array contents on GPU 0.

>>> x_on_gpu0 = cp.array([1, 2, 3, 4, 5])

The current device can be changed by cupy.cuda.Device.use() as follows:

>>> x_on_gpu0 = cp.array([1, 2, 3, 4, 5])
>>> cp.cuda.Device(1).use()
>>> x_on_gpu1 = cp.array([1, 2, 3, 4, 5])

If you switch the current GPU temporarily, with statement comes in handy.

>>> with cp.cuda.Device(1):
... x_on_gpu1 = cp.array([1, 2, 3, 4, 5])
>>> x_on_gpu0 = cp.array([1, 2, 3, 4, 5])

Most operations of CuPy is done on the current device.
Be careful that if processing of an array on a non-current device will cause an error:

>>> with cp.cuda.Device(0):
... x_on_gpu0 = cp.array([1, 2, 3, 4, 5])
>>> with cp.cuda.Device(1):
... x_on_gpu0 * 2 # raises error
Traceback (most recent call last):
...
ValueError: Array device must be same as the current device: array device = 0 while current = 1

cupy.ndarray.device attribute indicates the device on which the array is allocated.

>>> with cp.cuda.Device(1):
... x = cp.array([1, 2, 3, 4, 5])
>>> x.device
<CUDA Device 1>

Note

If the environment has only one device, such explicit device switching is not needed.

Data Transfer

Move arrays to a device

cupy.asarray() can be used to move a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], a list, or any object
that can be passed to numpy.array() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array] to the current device:

>>> x_cpu = np.array([1, 2, 3])
>>> x_gpu = cp.asarray(x_cpu) # move the data to the current device.

cupy.asarray() can accept cupy.ndarray, which means we can
transfer the array between devices with this function.

>>> with cp.cuda.Device(0):
... x_gpu_0 = cp.ndarray([1, 2, 3]) # create an array in GPU 0
>>> with cp.cuda.Device(1):
... x_gpu_1 = cp.asarray(x_gpu_0) # move the array to GPU 1

Note

cupy.asarray() does not copy the input array if possible.
So, if you put an array of the current device, it returns the input object itself.

If we do copy the array in this situation, you can use cupy.array() with copy=True.
Actually cupy.asarray() is equivalent to cupy.array(arr, dtype, copy=False).

Move array from a device to the host

Moving a device array to the host can be done by cupy.asnumpy() as follows:

>>> x_gpu = cp.array([1, 2, 3]) # create an array in the current device
>>> x_cpu = cp.asnumpy(x_gpu) # move the array to the host.

We can also use cupy.ndarray.get():

>>> x_cpu = x_gpu.get()

Note

If you work with Chainer, you can also use to_cpu() and
to_gpu() to move arrays back and forth between
a device and a host, or between different devices.
Note that to_gpu() has device option to specify
the device which arrays are transferred.

How to write CPU/GPU agnostic code

The compatibility of CuPy with NumPy enables us to write CPU/GPU generic code.
It can be made easy by the cupy.get_array_module() function.
This function returns the numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy] or cupy module based on arguments.
A CPU/GPU generic function is defined using it like follows:

>>> # Stable implementation of log(1 + exp(x))
>>> def softplus(x):
... xp = cp.get_array_module(x)
... return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

User-Defined Kernels

CuPy provides easy ways to define two types of CUDA kernels: elementwise kernels and reduction kernels.
We first describe how to define and call elementwise kernels, and then describe how to define and call reduction kernels.

Basics of elementwise kernels

An elementwise kernel can be defined by the ElementwiseKernel class.
The instance of this class defines a CUDA kernel which can be invoked by the __call__ method of this instance.

A definition of an elementwise kernel consists of four parts: an input argument list, an output argument list, a loop body code, and the kernel name.
For example, a kernel that computes a squared difference \(f(x, y) = (x - y)^2\) is defined as follows:

>>> squared_diff = cp.ElementwiseKernel(
... 'float32 x, float32 y',
... 'float32 z',
... 'z = (x - y) * (x - y)',
... 'squared_diff')

The argument lists consist of comma-separated argument definitions.
Each argument definition consists of a type specifier and an argument name.
Names of NumPy data types can be used as type specifiers.

Note

n, i, and names starting with an underscore _ are reserved for the internal use.

The above kernel can be called on either scalars or arrays with broadcasting:

>>> x = cp.arange(10, dtype=np.float32).reshape(2, 5)
>>> y = cp.arange(5, dtype=np.float32)
>>> squared_diff(x, y)
array([[0., 0., 0., 0., 0.],
 [25., 25., 25., 25., 25.]], dtype=float32)
>>> squared_diff(x, 5)
array([[25., 16., 9., 4., 1.],
 [0., 1., 4., 9., 16.]], dtype=float32)

Output arguments can be explicitly specified (next to the input arguments):

>>> z = cp.empty((2, 5), dtype=np.float32)
>>> squared_diff(x, y, z)
array([[0., 0., 0., 0., 0.],
 [25., 25., 25., 25., 25.]], dtype=float32)

Type-generic kernels

If a type specifier is one character, then it is treated as a type placeholder.
It can be used to define a type-generic kernels.
For example, the above squared_diff kernel can be made type-generic as follows:

>>> squared_diff_generic = cp.ElementwiseKernel(
... 'T x, T y',
... 'T z',
... 'z = (x - y) * (x - y)',
... 'squared_diff_generic')

Type placeholders of a same character in the kernel definition indicate the same type.
The actual type of these placeholders is determined by the actual argument type.
The ElementwiseKernel class first checks the output arguments and then the input arguments to determine the actual type.
If no output arguments are given on the kernel invocation, then only the input arguments are used to determine the type.

The type placeholder can be used in the loop body code:

>>> squared_diff_generic = cp.ElementwiseKernel(
... 'T x, T y',
... 'T z',
... '''
... T diff = x - y;
... z = diff * diff;
... ''',
... 'squared_diff_generic')

More than one type placeholder can be used in a kernel definition.
For example, the above kernel can be further made generic over multiple arguments:

>>> squared_diff_super_generic = cp.ElementwiseKernel(
... 'X x, Y y',
... 'Z z',
... 'z = (x - y) * (x - y)',
... 'squared_diff_super_generic')

Note that this kernel requires the output argument explicitly specified, because the type Z cannot be automatically determined from the input arguments.

Raw argument specifiers

The ElementwiseKernel class does the indexing with broadcasting automatically, which is useful to define most elementwise computations.
On the other hand, we sometimes want to write a kernel with manual indexing for some arguments.
We can tell the ElementwiseKernel class to use manual indexing by adding the raw keyword preceding the type specifier.

We can use the special variable i and method _ind.size() for the manual indexing.
i indicates the index within the loop.
_ind.size() indicates total number of elements to apply the elementwise operation.
Note that it represents the size after broadcast operation.

For example, a kernel that adds two vectors with reversing one of them can be written as follows:

>>> add_reverse = cp.ElementwiseKernel(
... 'T x, raw T y', 'T z',
... 'z = x + y[_ind.size() - i - 1]',
... 'add_reverse')

(Note that this is an artificial example and you can write such operation just by z = x + y[::-1] without defining a new kernel).
A raw argument can be used like an array.
The indexing operator y[_ind.size() - i - 1] involves an indexing computation on y, so y can be arbitrarily shaped and strode.

Note that raw arguments are not involved in the broadcasting.
If you want to mark all arguments as raw, you must specify the size argument on invocation, which defines the value of _ind.size().

Reduction kernels

Reduction kernels can be defined by the ReductionKernel class.
We can use it by defining four parts of the kernel code:

	Identity value: This value is used for the initial value of reduction.

	Mapping expression: It is used for the pre-processing of each element to be reduced.

	Reduction expression: It is an operator to reduce the multiple mapped values.
The special variables a and b are used for its operands.

	Post mapping expression: It is used to transform the resulting reduced values.
The special variable a is used as its input.
Output should be written to the output parameter.

ReductionKernel class automatically inserts other code fragments that are required for an efficient and flexible reduction implementation.

For example, L2 norm along specified axes can be written as follows:

>>> l2norm_kernel = cp.ReductionKernel(
... 'T x', # input params
... 'T y', # output params
... 'x * x', # map
... 'a + b', # reduce
... 'y = sqrt(a)', # post-reduction map
... '0', # identity value
... 'l2norm' # kernel name
...)
>>> x = cp.arange(10, dtype='f').reshape(2, 5)
>>> l2norm_kernel(x, axis=1)
array([5.47722578, 15.96871948], dtype=float32)

Note

raw specifier is restricted for usages that the axes to be reduced are put at the head of the shape.
It means, if you want to use raw specifier for at least one argument, the axis argument must be 0 or a contiguous increasing sequence of integers starting from 0, like (0, 1), (0, 1, 2), etc.

CuPy Reference Manual

This is the official reference of CuPy, a multi-dimensional array on CUDA with a subset of NumPy interface.

Indices and tables

	Index

	Module Index

Reference

	Multi-Dimensional Array (ndarray)
	cupy.ndarray

	Code compatibility features

	Conversion to/from NumPy arrays

	Universal Functions (ufunc)
	Ufunc class

	Available ufuncs

	ufunc.at

	Routines
	Array Creation Routines

	Array Manipulation Routines

	Repeating part of arrays along axis

	Rearranging elements

	Binary Operations

	Indexing Routines

	Input and Output

	Linear Algebra

	Logic Functions

	Mathematical Functions

	Padding

	Random Sampling (cupy.random)

	Sorting, Searching, and Counting

	Statistics

	External Functions

	NumPy-CuPy Generic Code Support
	cupy.get_array_module

	Low-Level CUDA Support
	Device management

	Memory management

	Streams and events

	Profiler

	Kernel binary memoization
	cupy.memoize

	cupy.clear_memo

	Custom kernels
	cupy.ElementwiseKernel

	cupy.ReductionKernel

	Testing Modules
	Standard Assertions

	NumPy-CuPy Consistency Check

	Parameterized dtype Test

	Parameterized order Test

	Profiling
	time range

	Environment variables
	For install

	Difference between CuPy and NumPy
	Cast behavior from float to integer

	Random methods support dtype argument

	Out-of-bounds indices

	Duplicate values in indices

Multi-Dimensional Array (ndarray)

cupy.ndarray is the CuPy counterpart of NumPy numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].
It provides an intuitive interface for a fixed-size multidimensional array which resides
in a CUDA device.

For the basic concept of ndarrays, please refer to the NumPy documentation [https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html].

	cupy.ndarray
	Multi-dimensional array on a CUDA device.

Code compatibility features

cupy.ndarray is designed to be interchangeable with numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] in terms of code compatibility as much as possible.
But occasionally, you will need to know whether the arrays you’re handling are cupy.ndarray or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].
One example is when invoking module-level functions such as cupy.sum() or numpy.sum().
In such situations, cupy.get_array_module() can be used.

	cupy.get_array_module
	Returns the array module for arguments.

Conversion to/from NumPy arrays

cupy.ndarray and numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] are not implicitly convertible to each other.
That means, NumPy functions cannot take cupy.ndarrays as inputs, and vice versa.

	To convert numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] to cupy.ndarray, use cupy.array() or cupy.asarray().

	To convert cupy.ndarray to numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], use cupy.asnumpy() or cupy.ndarray.get().

Note that converting between cupy.ndarray and numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] incurs data transfer between
the host (CPU) device and the GPU device, which is costly in terms of performance.

	cupy.array
	Creates an array on the current device.

	cupy.asarray
	Converts an object to array.

	cupy.asnumpy
	Returns an array on the host memory from an arbitrary source array.

cupy.ndarray

	
class cupy.ndarray

	Multi-dimensional array on a CUDA device.

This class implements a subset of methods of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].
The difference is that this class allocates the array content on the
current GPU device.

	Parameters:	
	shape (tuple of ints) – Length of axes.

	dtype – Data type. It must be an argument of numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype].

	memptr (cupy.cuda.MemoryPointer) – Pointer to the array content head.

	strides (tuple of ints) – The strides for axes.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.

	Variables:	
	base (None [https://docs.python.org/3/library/constants.html#None] or cupy.ndarray) – Base array from which this array is
created as a view.

	data (cupy.cuda.MemoryPointer) – Pointer to the array content head.

	dtype (numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – Dtype object of element type.

See also

Data type objects (dtype) [http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html]

	size (int [https://docs.python.org/3/library/functions.html#int]) – Number of elements this array holds.

This is equivalent to product over the shape tuple.

See also

numpy.ndarray.size [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size]

Methods

	
__copy__()

	

	
all()

	

	
any()

	

	
argmax()

	Returns the indices of the maximum along a given axis.

See also

cupy.argmax() for full documentation,
numpy.ndarray.argmax() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.argmax.html#numpy.ndarray.argmax]

	
argmin()

	Returns the indices of the minimum along a given axis.

See also

cupy.argmin() for full documentation,
numpy.ndarray.argmin() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.argmin.html#numpy.ndarray.argmin]

	
astype()

	Casts the array to given data type.

	Parameters:	
	dtype – Type specifier.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If it is False and no cast happens, then this method
returns the array itself. Otherwise, a copy is returned.

	Returns:	If copy is False and no cast is required, then the array itself
is returned. Otherwise, it returns a (possibly casted) copy of the
array.

Note

This method currently does not support order, casting, and
subok arguments.

See also

numpy.ndarray.astype() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype]

	
choose()

	

	
clip()

	Returns an array with values limited to [a_min, a_max].

See also

cupy.clip() for full documentation,
numpy.ndarray.clip() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.clip.html#numpy.ndarray.clip]

	
copy()

	Returns a copy of the array.

	Parameters:	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order. This function currently does not
support order ‘A’ and ‘K’.

See also

cupy.copy() for full documentation,
numpy.ndarray.copy() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy]

	
diagonal()

	Returns a view of the specified diagonals.

See also

cupy.diagonal() for full documentation,
numpy.ndarray.diagonal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.diagonal.html#numpy.ndarray.diagonal]

	
dot()

	Returns the dot product with given array.

See also

cupy.dot() for full documentation,
numpy.ndarray.dot() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.dot.html#numpy.ndarray.dot]

	
dump()

	Dumps a pickle of the array to a file.

Dumped file can be read back to cupy.ndarray by
cupy.load().

	
dumps()

	Dumps a pickle of the array to a string.

	
fill()

	Fills the array with a scalar value.

	Parameters:	value – A scalar value to fill the array content.

See also

numpy.ndarray.fill() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.fill.html#numpy.ndarray.fill]

	
flatten()

	Returns a copy of the array flatten into one dimension.

It currently supports C-order only.

	Returns:	A copy of the array with one dimension.

	Return type:	cupy.ndarray

See also

numpy.ndarray.flatten() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten]

	
get()

	Returns a copy of the array on host memory.

	Parameters:	stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the
copy runs asynchronously. Otherwise, the copy is synchronous.

	Returns:	Copy of the array on host memory.

	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
max()

	Returns the maximum along a given axis.

See also

cupy.amax() for full documentation,
numpy.ndarray.max() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max]

	
mean()

	Returns the mean along a given axis.

See also

cupy.mean() for full documentation,
numpy.ndarray.mean() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean]

	
min()

	Returns the minimum along a given axis.

See also

cupy.amin() for full documentation,
numpy.ndarray.min() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min]

	
nonzero()

	Return the indices of the elements that are non-zero.

Returned Array is containing the indices of the non-zero elements
in that dimension.

	Returns:	Indices of elements that are non-zero.

	Return type:	tuple of arrays

See also

numpy.nonzero() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.nonzero.html#numpy.nonzero]

	
prod()

	Returns the product along a given axis.

See also

cupy.prod() for full documentation,
numpy.ndarray.prod() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.prod.html#numpy.ndarray.prod]

	
ravel()

	Returns an array flattened into one dimension.

See also

cupy.ravel() for full documentation,
numpy.ndarray.ravel() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel]

	
reduced_view()

	Returns a view of the array with minimum number of dimensions.

	Parameters:	dtype – Data type specifier. If it is given, then the memory
sequence is reinterpreted as the new type.

	Returns:	A view of the array with reduced dimensions.

	Return type:	cupy.ndarray

	
repeat()

	Returns an array with repeated arrays along an axis.

See also

cupy.repeat() for full documentation,
numpy.ndarray.repeat() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.repeat.html#numpy.ndarray.repeat]

	
reshape()

	Returns an array of a different shape and the same content.

See also

cupy.reshape() for full documentation,
numpy.ndarray.reshape() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape]

	
scatter_add()

	Adds given values to specified elements of an array.

See also

cupy.scatter_add() for full documentation.

	
set()

	Copies an array on the host memory to cupy.ndarray.

	Parameters:	
	arr (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The source array on the host memory.

	stream (cupy.cuda.Stream) – CUDA stream object. If it is given, the
copy runs asynchronously. Otherwise, the copy is synchronous.

	
sort()

	Sort an array, in-place with a stable sorting algorithm.

Note

For its implementation reason, ndarray.sort currently supports
only arrays with their rank of one and their own data, and does not
support axis, kind and order parameters that
numpy.ndarray.sort does support.

See also

cupy.sort() for full documentation,
numpy.ndarray.sort() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.sort.html#numpy.ndarray.sort]

	
squeeze()

	Returns a view with size-one axes removed.

See also

cupy.squeeze() for full documentation,
numpy.ndarray.squeeze() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.squeeze.html#numpy.ndarray.squeeze]

	
std()

	Returns the standard deviation along a given axis.

See also

cupy.std() for full documentation,
numpy.ndarray.std() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.std.html#numpy.ndarray.std]

	
sum()

	Returns the sum along a given axis.

See also

cupy.sum() for full documentation,
numpy.ndarray.sum() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.sum.html#numpy.ndarray.sum]

	
swapaxes()

	Returns a view of the array with two axes swapped.

See also

cupy.swapaxes() for full documentation,
numpy.ndarray.swapaxes() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.swapaxes.html#numpy.ndarray.swapaxes]

	
take()

	Returns an array of elements at given indices along the axis.

See also

cupy.take() for full documentation,
numpy.ndarray.take() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.take.html#numpy.ndarray.take]

	
tofile()

	Writes the array to a file.

See also

numpy.ndarray.tolist() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist]

	
tolist()

	Converts the array to a (possibly nested) Python list.

	Returns:	The possibly nested Python list of array elements.

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

See also

numpy.ndarray.tolist() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist]

	
trace()

	Returns the sum along diagonals of the array.

See also

cupy.trace() for full documentation,
numpy.ndarray.trace() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.trace.html#numpy.ndarray.trace]

	
transpose()

	Returns a view of the array with axes permuted.

See also

cupy.transpose() for full documentation,
numpy.ndarray.reshape() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape]

	
var()

	Returns the variance along a given axis.

See also

cupy.var() for full documentation,
numpy.ndarray.var() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.var.html#numpy.ndarray.var]

	
view()

	Returns a view of the array.

	Parameters:	dtype – If this is different from the data type of the array, the
returned view reinterpret the memory sequence as an array of
this type.

	Returns:	A view of the array. A reference to the original
array is stored at the base attribute.

	Return type:	cupy.ndarray

See also

numpy.ndarray.view() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.view.html#numpy.ndarray.view]

Attributes

	
T

	Shape-reversed view of the array.

If ndim < 2, then this is just a reference to the array itself.

	
base

	

	
cstruct

	C representation of the array.

This property is used for sending an array to CUDA kernels. The type of
returned C structure is different for different dtypes and ndims. The
definition of C type is written in cupy/carray.cuh.

	
data

	

	
device

	CUDA device on which this array resides.

	
dtype

	

	
flags

	Object containing memory-layout information.

It only contains c_contiguous, f_contiguous, and owndata
attributes. All of these are read-only. Accessing by indexes is also
supported.

See also

numpy.ndarray.flags [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags]

	
itemsize

	Size of each element in bytes.

See also

numpy.ndarray.itemsize [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.itemsize.html#numpy.ndarray.itemsize]

	
nbytes

	Size of whole elements in bytes.

It does not count skips between elements.

See also

numpy.ndarray.nbytes [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes]

	
ndim

	Number of dimensions.

a.ndim is equivalent to len(a.shape).

See also

numpy.ndarray.ndim [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim]

	
shape

	Lengths of axes.

Setter of this property involves reshaping without copy. If the array
cannot be reshaped without copy, it raises an exception.

	
size

	

	
strides

	Strides of axes in bytes.

See also

numpy.ndarray.strides [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides]

cupy.get_array_module

	
cupy.get_array_module(*args)

	Returns the array module for arguments.

This function is used to implement CPU/GPU generic code. If at least one of
the arguments is a cupy.ndarray object, the cupy module is
returned.

	Parameters:	args – Values to determine whether NumPy or CuPy should be used.

	Returns:	cupy or numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy] is returned based on the types of
the arguments.

	Return type:	module

Example

A NumPy/CuPy generic function can be written as follows

>>> def softplus(x):
... xp = cupy.get_array_module(x)
... return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

cupy.array

	
cupy.array(obj, dtype=None, copy=True, ndmin=0)

	Creates an array on the current device.

This function currently does not support the order and subok
options.

	Parameters:	
	obj – cupy.ndarray object or any other object that can be
passed to numpy.array() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array].

	dtype – Data type specifier.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, this function returns obj if possible.
Otherwise this function always returns a new array.

	ndmin (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of dimensions. Ones are inserted to the
head of the shape if needed.

	Returns:	An array on the current device.

	Return type:	cupy.ndarray

See also

numpy.array() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]

cupy.asarray

	
cupy.asarray(a, dtype=None)

	Converts an object to array.

This is equivalent to array(a, dtype, copy=False).
This function currently does not support the order option.

	Parameters:	
	a – The source object.

	dtype – Data type specifier. It is inferred from the input by default.

	Returns:	An array on the current device. If a is already on
the device, no copy is performed.

	Return type:	cupy.ndarray

See also

numpy.asarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html#numpy.asarray]

cupy.asnumpy

	
cupy.asnumpy(a, stream=None)

	Returns an array on the host memory from an arbitrary source array.

	Parameters:	
	a – Arbitrary object that can be converted to numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

	stream (cupy.cuda.Stream) – CUDA stream object. If it is specified, then
the device-to-host copy runs asynchronously. Otherwise, the copy is
synchronous. Note that if a is not a cupy.ndarray
object, then this argument has no effect.

	Returns:	Converted array on the host memory.

	Return type:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

Universal Functions (ufunc)

CuPy provides universal functions (a.k.a. ufuncs) to support various elementwise operations.
CuPy’s ufunc supports following features of NumPy’s one:

	Broadcasting

	Output type determination

	Casting rules

CuPy’s ufunc currently does not provide methods such as reduce, accumulate, reduceat, outer, and at.

Ufunc class

	cupy.ufunc
	Universal function.

Available ufuncs

Math operations

	cupy.add
	Adds two arrays elementwise.

	cupy.subtract
	Subtracts arguments elementwise.

	cupy.multiply
	Multiplies two arrays elementwise.

	cupy.divide
	Elementwise true division (i.e.

	cupy.logaddexp
	Computes log(exp(x1) + exp(x2)) elementwise.

	cupy.logaddexp2
	Computes log2(exp2(x1) + exp2(x2)) elementwise.

	cupy.true_divide
	Elementwise true division (i.e.

	cupy.floor_divide
	Elementwise floor division (i.e.

	cupy.negative
	Takes numerical negative elementwise.

	cupy.power
	Computes x1 ** x2 elementwise.

	cupy.remainder
	Computes the remainder of Python division elementwise.

	cupy.mod
	Computes the remainder of Python division elementwise.

	cupy.fmod
	Computes the remainder of C division elementwise.

	cupy.absolute
	Elementwise absolute value function.

	cupy.rint
	Rounds each element of an array to the nearest integer.

	cupy.sign
	Elementwise sign function.

	cupy.exp
	Elementwise exponential function.

	cupy.exp2
	Elementwise exponentiation with base 2.

	cupy.log
	Elementwise natural logarithm function.

	cupy.log2
	Elementwise binary logarithm function.

	cupy.log10
	Elementwise common logarithm function.

	cupy.expm1
	Computes exp(x) - 1 elementwise.

	cupy.log1p
	Computes log(1 + x) elementwise.

	cupy.sqrt
	

	cupy.square
	Elementwise square function.

	cupy.reciprocal
	Computes 1 / x elementwise.

Trigonometric functions

	cupy.sin
	Elementwise sine function.

	cupy.cos
	Elementwise cosine function.

	cupy.tan
	Elementwise tangent function.

	cupy.arcsin
	Elementwise inverse-sine function (a.k.a.

	cupy.arccos
	Elementwise inverse-cosine function (a.k.a.

	cupy.arctan
	Elementwise inverse-tangent function (a.k.a.

	cupy.arctan2
	Elementwise inverse-tangent of the ratio of two arrays.

	cupy.hypot
	Computes the hypoteneous of orthogonal vectors of given length.

	cupy.sinh
	Elementwise hyperbolic sine function.

	cupy.cosh
	Elementwise hyperbolic cosine function.

	cupy.tanh
	Elementwise hyperbolic tangent function.

	cupy.arcsinh
	Elementwise inverse of hyperbolic sine function.

	cupy.arccosh
	Elementwise inverse of hyperbolic cosine function.

	cupy.arctanh
	Elementwise inverse of hyperbolic tangent function.

	cupy.deg2rad
	Converts angles from degrees to radians elementwise.

	cupy.rad2deg
	Converts angles from radians to degrees elementwise.

Bit-twiddling functions

	cupy.bitwise_and
	Computes the bitwise AND of two arrays elementwise.

	cupy.bitwise_or
	Computes the bitwise OR of two arrays elementwise.

	cupy.bitwise_xor
	Computes the bitwise XOR of two arrays elementwise.

	cupy.invert
	Computes the bitwise NOT of an array elementwise.

	cupy.left_shift
	Shifts the bits of each integer element to the left.

	cupy.right_shift
	Shifts the bits of each integer element to the right.

Comparison functions

	cupy.greater
	Tests elementwise if x1 > x2.

	cupy.greater_equal
	Tests elementwise if x1 >= x2.

	cupy.less
	Tests elementwise if x1 < x2.

	cupy.less_equal
	Tests elementwise if x1 <= x2.

	cupy.not_equal
	Tests elementwise if x1 != x2.

	cupy.equal
	Tests elementwise if x1 == x2.

	cupy.logical_and
	Computes the logical AND of two arrays.

	cupy.logical_or
	Computes the logical OR of two arrays.

	cupy.logical_xor
	Computes the logical XOR of two arrays.

	cupy.logical_not
	Computes the logical NOT of an array.

	cupy.maximum
	Takes the maximum of two arrays elementwise.

	cupy.minimum
	Takes the minimum of two arrays elementwise.

	cupy.fmax
	Takes the maximum of two arrays elementwise.

	cupy.fmin
	Takes the minimum of two arrays elementwise.

Floating point values

	cupy.isfinite
	Tests finiteness elementwise.

	cupy.isinf
	Tests if each element is the positive or negative infinity.

	cupy.isnan
	Tests if each element is a NaN.

	cupy.signbit
	Tests elementwise if the sign bit is set (i.e.

	cupy.copysign
	Returns the first argument with the sign bit of the second elementwise.

	cupy.nextafter
	Computes the nearest neighbor float values towards the second argument.

	cupy.modf
	Extracts the fractional and integral parts of an array elementwise.

	cupy.ldexp
	Computes x1 * 2 ** x2 elementwise.

	cupy.frexp
	Decomposes each element to mantissa and two’s exponent.

	cupy.fmod
	Computes the remainder of C division elementwise.

	cupy.floor
	Rounds each element of an array to its floor integer.

	cupy.ceil
	Rounds each element of an array to its ceiling integer.

	cupy.trunc
	Rounds each element of an array towards zero.

ufunc.at

Currently, CuPy does not support at for ufuncs in general.
However, cupy.scatter_add() can substitute add.at as both behave identically.

cupy.ufunc

	
class cupy.ufunc

	Universal function.

	Variables:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the universal function.

	nin (int [https://docs.python.org/3/library/functions.html#int]) – Number of input arguments.

	nout (int [https://docs.python.org/3/library/functions.html#int]) – Number of output arguments.

	nargs (int [https://docs.python.org/3/library/functions.html#int]) – Number of all arguments.

Methods

	
__call__()

	Applies the universal function to arguments elementwise.

	Parameters:	
	args – Input arguments. Each of them can be a cupy.ndarray
object or a scalar. The output arguments can be omitted or be
specified by the out argument.

	out (cupy.ndarray) – Output array. It outputs to new arrays
default.

	dtype – Data type specifier.

	Returns:	Output array or a tuple of output arrays.

Attributes

	
types

	A list of type signatures.

Each type signature is represented by type character codes of inputs
and outputs separated by ‘->’.

cupy.add

	
cupy.add = <ufunc 'cupy_add'>

	Adds two arrays elementwise.

See also

numpy.add [https://docs.scipy.org/doc/numpy/reference/generated/numpy.add.html#numpy.add]

cupy.subtract

	
cupy.subtract = <ufunc 'cupy_subtract'>

	Subtracts arguments elementwise.

See also

numpy.subtract [https://docs.scipy.org/doc/numpy/reference/generated/numpy.subtract.html#numpy.subtract]

cupy.multiply

	
cupy.multiply = <ufunc 'cupy_multiply'>

	Multiplies two arrays elementwise.

See also

numpy.multiply [https://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html#numpy.multiply]

cupy.divide

	
cupy.divide = <ufunc 'cupy_true_divide'>

	Elementwise true division (i.e. division as floating values).

See also

numpy.true_divide [https://docs.scipy.org/doc/numpy/reference/generated/numpy.true_divide.html#numpy.true_divide]

cupy.logaddexp

	
cupy.logaddexp = <ufunc 'cupy_logaddexp'>

	Computes log(exp(x1) + exp(x2)) elementwise.

See also

numpy.logaddexp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp.html#numpy.logaddexp]

cupy.logaddexp2

	
cupy.logaddexp2 = <ufunc 'cupy_logaddexp2'>

	Computes log2(exp2(x1) + exp2(x2)) elementwise.

See also

numpy.logaddexp2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp2.html#numpy.logaddexp2]

cupy.true_divide

	
cupy.true_divide = <ufunc 'cupy_true_divide'>

	Elementwise true division (i.e. division as floating values).

See also

numpy.true_divide [https://docs.scipy.org/doc/numpy/reference/generated/numpy.true_divide.html#numpy.true_divide]

cupy.floor_divide

	
cupy.floor_divide = <ufunc 'cupy_floor_divide'>

	Elementwise floor division (i.e. integer quotient).

See also

numpy.floor_divide [https://docs.scipy.org/doc/numpy/reference/generated/numpy.floor_divide.html#numpy.floor_divide]

cupy.negative

	
cupy.negative = <ufunc 'cupy_negative'>

	Takes numerical negative elementwise.

See also

numpy.negative [https://docs.scipy.org/doc/numpy/reference/generated/numpy.negative.html#numpy.negative]

cupy.power

	
cupy.power = <ufunc 'cupy_power'>

	Computes x1 ** x2 elementwise.

See also

numpy.power [https://docs.scipy.org/doc/numpy/reference/generated/numpy.power.html#numpy.power]

cupy.remainder

	
cupy.remainder = <ufunc 'cupy_remainder'>

	Computes the remainder of Python division elementwise.

See also

numpy.remainder [https://docs.scipy.org/doc/numpy/reference/generated/numpy.remainder.html#numpy.remainder]

cupy.mod

	
cupy.mod = <ufunc 'cupy_remainder'>

	Computes the remainder of Python division elementwise.

See also

numpy.remainder [https://docs.scipy.org/doc/numpy/reference/generated/numpy.remainder.html#numpy.remainder]

cupy.fmod

	
cupy.fmod = <ufunc 'cupy_fmod'>

	Computes the remainder of C division elementwise.

See also

numpy.fmod [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fmod.html#numpy.fmod]

cupy.absolute

	
cupy.absolute = <ufunc 'cupy_absolute'>

	Elementwise absolute value function.

See also

numpy.absolute [https://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html#numpy.absolute]

cupy.rint

	
cupy.rint = <ufunc 'cupy_rint'>

	Rounds each element of an array to the nearest integer.

See also

numpy.rint [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rint.html#numpy.rint]

cupy.sign

	
cupy.sign = <ufunc 'cupy_sign'>

	Elementwise sign function.

It returns -1, 0, or 1 depending on the sign of the input.

See also

numpy.sign [https://docs.scipy.org/doc/numpy/reference/generated/numpy.sign.html#numpy.sign]

cupy.exp

	
cupy.exp = <ufunc 'cupy_exp'>

	Elementwise exponential function.

See also

numpy.exp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html#numpy.exp]

cupy.exp2

	
cupy.exp2 = <ufunc 'cupy_exp2'>

	Elementwise exponentiation with base 2.

See also

numpy.exp2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp2.html#numpy.exp2]

cupy.log

	
cupy.log = <ufunc 'cupy_log'>

	Elementwise natural logarithm function.

See also

numpy.log [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html#numpy.log]

cupy.log2

	
cupy.log2 = <ufunc 'cupy_log2'>

	Elementwise binary logarithm function.

See also

numpy.log2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log2.html#numpy.log2]

cupy.log10

	
cupy.log10 = <ufunc 'cupy_log10'>

	Elementwise common logarithm function.

See also

numpy.log10 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log10.html#numpy.log10]

cupy.expm1

	
cupy.expm1 = <ufunc 'cupy_expm1'>

	Computes exp(x) - 1 elementwise.

See also

numpy.expm1 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.expm1.html#numpy.expm1]

cupy.log1p

	
cupy.log1p = <ufunc 'cupy_log1p'>

	Computes log(1 + x) elementwise.

See also

numpy.log1p [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log1p.html#numpy.log1p]

cupy.sqrt

	
cupy.sqrt = <ufunc 'cupy_sqrt'>

	

cupy.square

	
cupy.square = <ufunc 'cupy_square'>

	Elementwise square function.

See also

numpy.square [https://docs.scipy.org/doc/numpy/reference/generated/numpy.square.html#numpy.square]

cupy.reciprocal

	
cupy.reciprocal = <ufunc 'cupy_reciprocal'>

	Computes 1 / x elementwise.

See also

numpy.reciprocal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.reciprocal.html#numpy.reciprocal]

cupy.sin

	
cupy.sin = <ufunc 'cupy_sin'>

	Elementwise sine function.

See also

numpy.sin [https://docs.scipy.org/doc/numpy/reference/generated/numpy.sin.html#numpy.sin]

cupy.cos

	
cupy.cos = <ufunc 'cupy_cos'>

	Elementwise cosine function.

See also

numpy.cos [https://docs.scipy.org/doc/numpy/reference/generated/numpy.cos.html#numpy.cos]

cupy.tan

	
cupy.tan = <ufunc 'cupy_tan'>

	Elementwise tangent function.

See also

numpy.tan [https://docs.scipy.org/doc/numpy/reference/generated/numpy.tan.html#numpy.tan]

cupy.arcsin

	
cupy.arcsin = <ufunc 'cupy_arcsin'>

	Elementwise inverse-sine function (a.k.a. arcsine function).

See also

numpy.arcsin [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsin.html#numpy.arcsin]

cupy.arccos

	
cupy.arccos = <ufunc 'cupy_arccos'>

	Elementwise inverse-cosine function (a.k.a. arccosine function).

See also

numpy.arccos [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arccos.html#numpy.arccos]

cupy.arctan

	
cupy.arctan = <ufunc 'cupy_arctan'>

	Elementwise inverse-tangent function (a.k.a. arctangent function).

See also

numpy.arctan [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan.html#numpy.arctan]

cupy.arctan2

	
cupy.arctan2 = <ufunc 'cupy_arctan2'>

	Elementwise inverse-tangent of the ratio of two arrays.

See also

numpy.arctan2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan2.html#numpy.arctan2]

cupy.hypot

	
cupy.hypot = <ufunc 'cupy_hypot'>

	Computes the hypoteneous of orthogonal vectors of given length.

This is equivalent to sqrt(x1 **2 + x2 ** 2), while this function is
more efficient.

See also

numpy.hypot [https://docs.scipy.org/doc/numpy/reference/generated/numpy.hypot.html#numpy.hypot]

cupy.sinh

	
cupy.sinh = <ufunc 'cupy_sinh'>

	Elementwise hyperbolic sine function.

See also

numpy.sinh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.sinh.html#numpy.sinh]

cupy.cosh

	
cupy.cosh = <ufunc 'cupy_cosh'>

	Elementwise hyperbolic cosine function.

See also

numpy.cosh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.cosh.html#numpy.cosh]

cupy.tanh

	
cupy.tanh = <ufunc 'cupy_tanh'>

	Elementwise hyperbolic tangent function.

See also

numpy.tanh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.tanh.html#numpy.tanh]

cupy.arcsinh

	
cupy.arcsinh = <ufunc 'cupy_arcsinh'>

	Elementwise inverse of hyperbolic sine function.

See also

numpy.arcsinh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsinh.html#numpy.arcsinh]

cupy.arccosh

	
cupy.arccosh = <ufunc 'cupy_arccosh'>

	Elementwise inverse of hyperbolic cosine function.

See also

numpy.arccosh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arccosh.html#numpy.arccosh]

cupy.arctanh

	
cupy.arctanh = <ufunc 'cupy_arctanh'>

	Elementwise inverse of hyperbolic tangent function.

See also

numpy.arctanh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctanh.html#numpy.arctanh]

cupy.deg2rad

	
cupy.deg2rad = <ufunc 'cupy_deg2rad'>

	Converts angles from degrees to radians elementwise.

See also

numpy.deg2rad [https://docs.scipy.org/doc/numpy/reference/generated/numpy.deg2rad.html#numpy.deg2rad], numpy.radians [https://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html#numpy.radians]

cupy.rad2deg

	
cupy.rad2deg = <ufunc 'cupy_rad2deg'>

	Converts angles from radians to degrees elementwise.

See also

numpy.rad2deg [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rad2deg.html#numpy.rad2deg], numpy.degrees [https://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html#numpy.degrees]

cupy.bitwise_and

	
cupy.bitwise_and = <ufunc 'cupy_bitwise_and'>

	Computes the bitwise AND of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_and [https://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_and.html#numpy.bitwise_and]

cupy.bitwise_or

	
cupy.bitwise_or = <ufunc 'cupy_bitwise_or'>

	Computes the bitwise OR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_or [https://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_or.html#numpy.bitwise_or]

cupy.bitwise_xor

	
cupy.bitwise_xor = <ufunc 'cupy_bitwise_xor'>

	Computes the bitwise XOR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_xor [https://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_xor.html#numpy.bitwise_xor]

cupy.invert

	
cupy.invert = <ufunc 'cupy_invert'>

	Computes the bitwise NOT of an array elementwise.

Only integer and boolean arrays are handled.

See also

numpy.invert [https://docs.scipy.org/doc/numpy/reference/generated/numpy.invert.html#numpy.invert]

cupy.left_shift

	
cupy.left_shift = <ufunc 'cupy_left_shift'>

	Shifts the bits of each integer element to the left.

Only integer arrays are handled.

See also

numpy.left_shift [https://docs.scipy.org/doc/numpy/reference/generated/numpy.left_shift.html#numpy.left_shift]

cupy.right_shift

	
cupy.right_shift = <ufunc 'cupy_right_shift'>

	Shifts the bits of each integer element to the right.

Only integer arrays are handled

See also

numpy.right_shift [https://docs.scipy.org/doc/numpy/reference/generated/numpy.right_shift.html#numpy.right_shift]

cupy.greater

	
cupy.greater = <ufunc 'cupy_greater'>

	Tests elementwise if x1 > x2.

See also

numpy.greater [https://docs.scipy.org/doc/numpy/reference/generated/numpy.greater.html#numpy.greater]

cupy.greater_equal

	
cupy.greater_equal = <ufunc 'cupy_greater_equal'>

	Tests elementwise if x1 >= x2.

See also

numpy.greater_equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.greater_equal.html#numpy.greater_equal]

cupy.less

	
cupy.less = <ufunc 'cupy_less'>

	Tests elementwise if x1 < x2.

See also

numpy.less [https://docs.scipy.org/doc/numpy/reference/generated/numpy.less.html#numpy.less]

cupy.less_equal

	
cupy.less_equal = <ufunc 'cupy_less_equal'>

	Tests elementwise if x1 <= x2.

See also

numpy.less_equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.less_equal.html#numpy.less_equal]

cupy.not_equal

	
cupy.not_equal = <ufunc 'cupy_not_equal'>

	Tests elementwise if x1 != x2.

See also

numpy.equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.equal.html#numpy.equal]

cupy.equal

	
cupy.equal = <ufunc 'cupy_equal'>

	Tests elementwise if x1 == x2.

See also

numpy.equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.equal.html#numpy.equal]

cupy.logical_and

	
cupy.logical_and = <ufunc 'cupy_logical_and'>

	Computes the logical AND of two arrays.

See also

numpy.logical_and [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_and.html#numpy.logical_and]

cupy.logical_or

	
cupy.logical_or = <ufunc 'cupy_logical_or'>

	Computes the logical OR of two arrays.

See also

numpy.logical_or [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_or.html#numpy.logical_or]

cupy.logical_xor

	
cupy.logical_xor = <ufunc 'cupy_logical_xor'>

	Computes the logical XOR of two arrays.

See also

numpy.logical_xor [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_xor.html#numpy.logical_xor]

cupy.logical_not

	
cupy.logical_not = <ufunc 'cupy_logical_not'>

	Computes the logical NOT of an array.

See also

numpy.logical_not [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_not.html#numpy.logical_not]

cupy.maximum

	
cupy.maximum = <ufunc 'cupy_maximum'>

	Takes the maximum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also

numpy.maximum [https://docs.scipy.org/doc/numpy/reference/generated/numpy.maximum.html#numpy.maximum]

cupy.minimum

	
cupy.minimum = <ufunc 'cupy_minimum'>

	Takes the minimum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also

numpy.minimum [https://docs.scipy.org/doc/numpy/reference/generated/numpy.minimum.html#numpy.minimum]

cupy.fmax

	
cupy.fmax = <ufunc 'cupy_fmax'>

	Takes the maximum of two arrays elementwise.

If NaN appears, it returns the other operand.

See also

numpy.fmax [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fmax.html#numpy.fmax]

cupy.fmin

	
cupy.fmin = <ufunc 'cupy_fmin'>

	Takes the minimum of two arrays elementwise.

If NaN appears, it returns the other operand.

See also

numpy.fmin [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fmin.html#numpy.fmin]

cupy.isfinite

	
cupy.isfinite = <ufunc 'cupy_isfinite'>

	Tests finiteness elementwise.

Each element of returned array is True only if the corresponding
element of the input is finite (i.e. not an infinity nor NaN).

See also

numpy.isfinite [https://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html#numpy.isfinite]

cupy.isinf

	
cupy.isinf = <ufunc 'cupy_isinf'>

	Tests if each element is the positive or negative infinity.

See also

numpy.isinf [https://docs.scipy.org/doc/numpy/reference/generated/numpy.isinf.html#numpy.isinf]

cupy.isnan

	
cupy.isnan = <ufunc 'cupy_isnan'>

	Tests if each element is a NaN.

See also

numpy.isnan [https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html#numpy.isnan]

cupy.signbit

	
cupy.signbit = <ufunc 'cupy_signbit'>

	Tests elementwise if the sign bit is set (i.e. less than zero).

See also

numpy.signbit [https://docs.scipy.org/doc/numpy/reference/generated/numpy.signbit.html#numpy.signbit]

cupy.copysign

	
cupy.copysign = <ufunc 'cupy_copysign'>

	Returns the first argument with the sign bit of the second elementwise.

See also

numpy.copysign [https://docs.scipy.org/doc/numpy/reference/generated/numpy.copysign.html#numpy.copysign]

cupy.nextafter

	
cupy.nextafter = <ufunc 'cupy_nextafter'>

	Computes the nearest neighbor float values towards the second argument.

See also

numpy.nextafter [https://docs.scipy.org/doc/numpy/reference/generated/numpy.nextafter.html#numpy.nextafter]

cupy.modf

	
cupy.modf = <ufunc 'cupy_modf'>

	Extracts the fractional and integral parts of an array elementwise.

This ufunc returns two arrays.

See also

numpy.modf [https://docs.scipy.org/doc/numpy/reference/generated/numpy.modf.html#numpy.modf]

cupy.ldexp

	
cupy.ldexp = <ufunc 'cupy_ldexp'>

	Computes x1 * 2 ** x2 elementwise.

See also

numpy.ldexp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ldexp.html#numpy.ldexp]

cupy.frexp

	
cupy.frexp = <ufunc 'cupy_frexp'>

	Decomposes each element to mantissa and two’s exponent.

This ufunc outputs two arrays of the input dtype and the int dtype.

See also

numpy.frexp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.frexp.html#numpy.frexp]

cupy.fmod

	
cupy.fmod = <ufunc 'cupy_fmod'>

	Computes the remainder of C division elementwise.

See also

numpy.fmod [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fmod.html#numpy.fmod]

cupy.floor

	
cupy.floor = <ufunc 'cupy_floor'>

	Rounds each element of an array to its floor integer.

See also

numpy.floor [https://docs.scipy.org/doc/numpy/reference/generated/numpy.floor.html#numpy.floor]

cupy.ceil

	
cupy.ceil = <ufunc 'cupy_ceil'>

	Rounds each element of an array to its ceiling integer.

See also

numpy.ceil [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ceil.html#numpy.ceil]

cupy.trunc

	
cupy.trunc = <ufunc 'cupy_trunc'>

	Rounds each element of an array towards zero.

See also

numpy.trunc [https://docs.scipy.org/doc/numpy/reference/generated/numpy.trunc.html#numpy.trunc]

Routines

The following pages describe NumPy-compatible routines.
These functions cover a subset of
NumPy routines [http://docs.scipy.org/doc/numpy/reference/routines.html].

	Array Creation Routines
	Basic creation routines

	Creation from other data

	Numerical ranges

	Matrix creation

	Array Manipulation Routines
	Basic manipulations

	Shape manipulation

	Transposition

	Edit dimensionalities

	Changing kind of array

	Joining arrays along axis

	Splitting arrays along axis

	Repeating part of arrays along axis
	cupy.tile

	cupy.repeat

	Rearranging elements
	cupy.flip

	cupy.fliplr

	cupy.flipud

	cupy.reshape

	cupy.roll

	cupy.rot90

	Binary Operations
	Elementwise bit operations

	Bit packing

	Output formatting

	Indexing Routines
	cupy.c

	cupy.r

	cupy.nonzero

	cupy.where

	cupy.ix

	cupy.take

	cupy.choose

	cupy.diag

	cupy.diagonal

	cupy.fill_diagonal

	Input and Output
	NPZ files

	String formatting

	Base-n representations

	Linear Algebra
	Matrix and vector products

	Decompositions

	Norms etc.

	Logic Functions
	Truth value testing

	Infinities and NaNs

	Array type testing

	Logic operations

	Comparison operations

	Mathematical Functions
	Trigonometric functions

	Hyperbolic functions

	Rounding

	Sums and products

	Exponential and logarithm functions

	Floating point manipulations

	Arithmetic operations

	Miscellaneous

	Padding
	cupy.pad

	Random Sampling (cupy.random)
	Sample random data

	Distributions

	Random number generator

	Sorting, Searching, and Counting
	cupy.sort

	cupy.argmax

	cupy.argmin

	cupy.count_nonzero

	cupy.nonzero

	cupy.flatnonzero

	cupy.where

	Statistics
	Order statistics

	Means and variances

	Histograms

	External Functions
	cupy.scatter_add

Array Creation Routines

Basic creation routines

	cupy.empty
	Returns an array without initializing the elements.

	cupy.empty_like
	Returns a new array with same shape and dtype of a given array.

	cupy.eye
	Returns a 2-D array with ones on the diagonals and zeros elsewhere.

	cupy.identity
	Returns a 2-D identity array.

	cupy.ones
	Returns a new array of given shape and dtype, filled with ones.

	cupy.ones_like
	Returns an array of ones with same shape and dtype as a given array.

	cupy.zeros
	Returns a new array of given shape and dtype, filled with zeros.

	cupy.zeros_like
	Returns an array of zeros with same shape and dtype as a given array.

	cupy.full
	Returns a new array of given shape and dtype, filled with a given value.

	cupy.full_like
	Returns a full array with same shape and dtype as a given array.

Creation from other data

	cupy.array
	Creates an array on the current device.

	cupy.asarray
	Converts an object to array.

	cupy.asanyarray
	Converts an object to array.

	cupy.ascontiguousarray
	Returns a C-contiguous array.

	cupy.copy
	

Numerical ranges

	cupy.arange
	Returns an array with evenly spaced values within a given interval.

	cupy.linspace
	Returns an array with evenly-spaced values within a given interval.

	cupy.logspace
	Returns an array with evenly-spaced values on a log-scale.

	cupy.meshgrid
	Return coordinate matrices from coordinate vectors.

Matrix creation

	cupy.diag
	Returns a diagonal or a diagonal array.

	cupy.diagflat
	Creates a diagonal array from the flattened input.

cupy.empty

	
cupy.empty(shape, dtype=<class 'float'>, order='C')

	Returns an array without initializing the elements.

	Parameters:	
	shape (tuple of ints) – Dimensionalities of the array.

	dtype – Data type specifier.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.

	Returns:	A new array with elements not initialized.

	Return type:	cupy.ndarray

See also

numpy.empty() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty]

cupy.empty_like

	
cupy.empty_like(a, dtype=None)

	Returns a new array with same shape and dtype of a given array.

This function currently does not support order and subok options.

	Parameters:	
	a (cupy.ndarray) – Base array.

	dtype – Data type specifier. The data type of a is used by default.

	Returns:	A new array with same shape and dtype of a with
elements not initialized.

	Return type:	cupy.ndarray

See also

numpy.empty_like() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.empty_like.html#numpy.empty_like]

cupy.eye

	
cupy.eye(N, M=None, k=0, dtype=<class 'float'>)

	Returns a 2-D array with ones on the diagonals and zeros elsewhere.

	Parameters:	
	N (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows.

	M (int [https://docs.python.org/3/library/functions.html#int]) – Number of columns. M == N by default.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Index of the diagonal. Zero indicates the main diagonal,
a positive index an upper diagonal, and a negative index a lower
diagonal.

	dtype – Data type specifier.

	Returns:	A 2-D array with given diagonals filled with ones and
zeros elsewhere.

	Return type:	cupy.ndarray

See also

numpy.eye() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html#numpy.eye]

cupy.identity

	
cupy.identity(n, dtype=<class 'float'>)

	Returns a 2-D identity array.

It is equivalent to eye(n, n, dtype).

	Parameters:	
	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows and columns.

	dtype – Data type specifier.

	Returns:	A 2-D identity array.

	Return type:	cupy.ndarray

See also

numpy.identity() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.identity.html#numpy.identity]

cupy.ones

	
cupy.ones(shape, dtype=<class 'float'>)

	Returns a new array of given shape and dtype, filled with ones.

This function currently does not support order option.

	Parameters:	
	shape (tuple of ints) – Dimensionalities of the array.

	dtype – Data type specifier.

	Returns:	An array filled with ones.

	Return type:	cupy.ndarray

See also

numpy.ones() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html#numpy.ones]

cupy.ones_like

	
cupy.ones_like(a, dtype=None)

	Returns an array of ones with same shape and dtype as a given array.

This function currently does not support order and subok options.

	Parameters:	
	a (cupy.ndarray) – Base array.

	dtype – Data type specifier. The dtype of a is used by default.

	Returns:	An array filled with ones.

	Return type:	cupy.ndarray

See also

numpy.ones_like() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ones_like.html#numpy.ones_like]

cupy.zeros

	
cupy.zeros(shape, dtype=<class 'float'>, order='C')

	Returns a new array of given shape and dtype, filled with zeros.

	Parameters:	
	shape (tuple of ints) – Dimensionalities of the array.

	dtype – Data type specifier.

	order ({'C', 'F'}) – Row-major (C-style) or column-major
(Fortran-style) order.

	Returns:	An array filled with ones.

	Return type:	cupy.ndarray

See also

numpy.zeros() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html#numpy.zeros]

cupy.zeros_like

	
cupy.zeros_like(a, dtype=None)

	Returns an array of zeros with same shape and dtype as a given array.

This function currently does not support order and subok options.

	Parameters:	
	a (cupy.ndarray) – Base array.

	dtype – Data type specifier. The dtype of a is used by default.

	Returns:	An array filled with ones.

	Return type:	cupy.ndarray

See also

numpy.zeros_like() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros_like.html#numpy.zeros_like]

cupy.full

	
cupy.full(shape, fill_value, dtype=None)

	Returns a new array of given shape and dtype, filled with a given value.

This function currently does not support order option.

	Parameters:	
	shape (tuple of ints) – Dimensionalities of the array.

	fill_value – A scalar value to fill a new array.

	dtype – Data type specifier.

	Returns:	An array filled with fill_value.

	Return type:	cupy.ndarray

See also

numpy.full() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html#numpy.full]

cupy.full_like

	
cupy.full_like(a, fill_value, dtype=None)

	Returns a full array with same shape and dtype as a given array.

This function currently does not support order and subok options.

	Parameters:	
	a (cupy.ndarray) – Base array.

	fill_value – A scalar value to fill a new array.

	dtype – Data type specifier. The dtype of a is used by default.

	Returns:	An array filled with fill_value.

	Return type:	cupy.ndarray

See also

numpy.full_like() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.full_like.html#numpy.full_like]

cupy.array

	
cupy.array(obj, dtype=None, copy=True, ndmin=0)

	Creates an array on the current device.

This function currently does not support the order and subok
options.

	Parameters:	
	obj – cupy.ndarray object or any other object that can be
passed to numpy.array() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array].

	dtype – Data type specifier.

	copy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, this function returns obj if possible.
Otherwise this function always returns a new array.

	ndmin (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of dimensions. Ones are inserted to the
head of the shape if needed.

	Returns:	An array on the current device.

	Return type:	cupy.ndarray

See also

numpy.array() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]

cupy.asarray

	
cupy.asarray(a, dtype=None)

	Converts an object to array.

This is equivalent to array(a, dtype, copy=False).
This function currently does not support the order option.

	Parameters:	
	a – The source object.

	dtype – Data type specifier. It is inferred from the input by default.

	Returns:	An array on the current device. If a is already on
the device, no copy is performed.

	Return type:	cupy.ndarray

See also

numpy.asarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html#numpy.asarray]

cupy.asanyarray

	
cupy.asanyarray(a, dtype=None)

	Converts an object to array.

This is currently equivalent to asarray(), since there is no
subclass of ndarray in CuPy. Note that the original
numpy.asanyarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asanyarray.html#numpy.asanyarray] returns the input array as is if it is an instance
of a subtype of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

See also

cupy.asarray(), numpy.asanyarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asanyarray.html#numpy.asanyarray]

cupy.ascontiguousarray

	
cupy.ascontiguousarray(a, dtype=None)

	Returns a C-contiguous array.

	Parameters:	
	a (cupy.ndarray) – Source array.

	dtype – Data type specifier.

	Returns:	If no copy is required, it returns a. Otherwise, it
returns a copy of a.

	Return type:	cupy.ndarray

See also

numpy.ascontiguousarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray]

cupy.copy

	
cupy.copy(*args, **kwargs)

	

cupy.arange

	
cupy.arange(start, stop=None, step=1, dtype=None)

	Returns an array with evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop). The first
three arguments are mapped like the range built-in function, i.e. start
and step are optional.

	Parameters:	
	start – Start of the interval.

	stop – End of the interval.

	step – Step width between each pair of consecutive values.

	dtype – Data type specifier. It is inferred from other arguments by
default.

	Returns:	The 1-D array of range values.

	Return type:	cupy.ndarray

See also

numpy.arange() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html#numpy.arange]

cupy.linspace

	
cupy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

	Returns an array with evenly-spaced values within a given interval.

Instead of specifying the step width like cupy.arange(), this
function requires the total number of elements specified.

	Parameters:	
	start – Start of the interval.

	stop – End of the interval.

	num – Number of elements.

	endpoint (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the stop value is included as the last
element. Otherwise, the stop value is omitted.

	retstep (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this function returns (array, step).
Otherwise, it returns only the array.

	dtype – Data type specifier. It is inferred from the start and stop
arguments by default.

	Returns:	The 1-D array of ranged values.

	Return type:	cupy.ndarray

cupy.logspace

	
cupy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)

	Returns an array with evenly-spaced values on a log-scale.

Instead of specifying the step width like cupy.arange(), this
function requires the total number of elements specified.

	Parameters:	
	start – Start of the interval.

	stop – End of the interval.

	num – Number of elements.

	endpoint (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the stop value is included as the last
element. Otherwise, the stop value is omitted.

	base (float [https://docs.python.org/3/library/functions.html#float]) – Base of the log space. The step sizes between the
elements on a log-scale are the same as base.

	dtype – Data type specifier. It is inferred from the start and stop
arguments by default.

	Returns:	The 1-D array of ranged values.

	Return type:	cupy.ndarray

cupy.meshgrid

	
cupy.meshgrid(*xi, **kwargs)

	Return coordinate matrices from coordinate vectors.

Given one-dimensional coordinate arrays x1, x2, ..., xn, this function
makes N-D grids.

For one-dimensional arrays x1, x2, ..., xn with lengths Ni = len(xi),
this function returns (N1, N2, N3, ..., Nn) shaped arrays
if indexing=’ij’ or (N2, N1, N3, ..., Nn) shaped arrays
if indexing=’xy’.

Unlike NumPy, CuPy currently only supports 1-D arrays as inputs.
Also, CuPy does not support sparse option yet.

	Parameters:	
	xi (tuple of ndarrays) – 1-D arrays representing the coordinates
of a grid.

	indexing ({'xy', 'ij'}, optional) – Cartesian (‘xy’, default) or
matrix (‘ij’) indexing of output.

	copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, a view
into the original arrays are returned. Default is True.

	Returns:	list of cupy.ndarray

See also

numpy.meshgrid() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.html#numpy.meshgrid]

cupy.diag

	
cupy.diag(v, k=0)

	Returns a diagonal or a diagonal array.

	Parameters:	
	v (array-like) – Array or array-like object.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Index of diagonals. Zero indicates the main diagonal, a
positive value an upper diagonal, and a negative value a lower
diagonal.

	Returns:	If v indicates a 1-D array, then it returns a 2-D
array with the specified diagonal filled by v. If v indicates a
2-D array, then it returns the specified diagonal of v. In latter
case, if v is a cupy.ndarray object, then its view is
returned.

	Return type:	cupy.ndarray

See also

numpy.diag() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.diag.html#numpy.diag]

cupy.diagflat

	
cupy.diagflat(v, k=0)

	Creates a diagonal array from the flattened input.

	Parameters:	
	v (array-like) – Array or array-like object.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Index of diagonals. See cupy.diag() for detail.

	Returns:	A 2-D diagonal array with the diagonal copied from v.

	Return type:	cupy.ndarray

Array Manipulation Routines

Basic manipulations

	cupy.copyto
	Copies values from one array to another with broadcasting.

Shape manipulation

	cupy.reshape
	Returns an array with new shape and same elements.

	cupy.ravel
	Returns a flattened array.

Transposition

	cupy.rollaxis
	Moves the specified axis backwards to the given place.

	cupy.swapaxes
	Swaps the two axes.

	cupy.transpose
	Permutes the dimensions of an array.

Edit dimensionalities

	cupy.atleast_1d
	Converts arrays to arrays with dimensions >= 1.

	cupy.atleast_2d
	Converts arrays to arrays with dimensions >= 2.

	cupy.atleast_3d
	Converts arrays to arrays with dimensions >= 3.

	cupy.broadcast
	Object that performs broadcasting.

	cupy.broadcast_arrays
	Broadcasts given arrays.

	cupy.broadcast_to
	Broadcast an array to a given shape.

	cupy.expand_dims
	Expands given arrays.

	cupy.squeeze
	Removes size-one axes from the shape of an array.

Changing kind of array

	cupy.asarray
	Converts an object to array.

	cupy.asanyarray
	Converts an object to array.

	cupy.asfortranarray
	Return an array laid out in Fortran order in memory.

	cupy.ascontiguousarray
	Returns a C-contiguous array.

Joining arrays along axis

	cupy.concatenate
	Joins arrays along an axis.

	cupy.stack
	Stacks arrays along a new axis.

	cupy.column_stack
	Stacks 1-D and 2-D arrays as columns into a 2-D array.

	cupy.dstack
	Stacks arrays along the third axis.

	cupy.hstack
	Stacks arrays horizontally.

	cupy.vstack
	Stacks arrays vertically.

Splitting arrays along axis

	cupy.split
	Splits an array into multiple sub arrays along a given axis.

	cupy.array_split
	Splits an array into multiple sub arrays along a given axis.

	cupy.dsplit
	Splits an array into multiple sub arrays along the third axis.

	cupy.hsplit
	Splits an array into multiple sub arrays horizontally.

	cupy.vsplit
	Splits an array into multiple sub arrays along the first axis.

Repeating part of arrays along axis

	cupy.tile
	Construct an array by repeating A the number of times given by reps.

	cupy.repeat
	Repeat arrays along an axis.

Rearranging elements

	cupy.flip
	Reverse the order of elements in an array along the given axis.

	cupy.fliplr
	Flip array in the left/right direction.

	cupy.flipud
	Flip array in the up/down direction.

	cupy.reshape
	Returns an array with new shape and same elements.

	cupy.roll
	Roll array elements along a given axis.

	cupy.rot90
	Rotate an array by 90 degrees in the plane specified by axes.

cupy.copyto

	
cupy.copyto(dst, src, casting='same_kind', where=None)

	Copies values from one array to another with broadcasting.

This function can be called for arrays on different devices. In this case,
casting, where, and broadcasting is not supported, and an exception is
raised if these are used.

	Parameters:	
	dst (cupy.ndarray) – Target array.

	src (cupy.ndarray) – Source array.

	casting (str [https://docs.python.org/3/library/stdtypes.html#str]) – Casting rule. See numpy.can_cast() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.can_cast.html#numpy.can_cast] for detail.

	where (cupy.ndarray of bool) – If specified, this array acts as a mask,
and an element is copied only if the corresponding element of
where is True.

See also

numpy.copyto() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.copyto.html#numpy.copyto]

cupy.reshape

	
cupy.reshape(a, newshape)

	Returns an array with new shape and same elements.

It tries to return a view if possible, otherwise returns a copy.

This function currently does not support order option.

	Parameters:	
	a (cupy.ndarray) – Array to be reshaped.

	newshape (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The new shape of the array to return.
If it is an integer, then it is treated as a tuple of length one.
It should be compatible with a.size. One of the elements can be
-1, which is automatically replaced with the appropriate value to
make the shape compatible with a.size.

	Returns:	A reshaped view of a if possible, otherwise a copy.

	Return type:	cupy.ndarray

See also

numpy.reshape() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape]

cupy.ravel

	
cupy.ravel(a)

	Returns a flattened array.

It tries to return a view if possible, otherwise returns a copy.

This function currently does not support order option.

	Parameters:	a (cupy.ndarray) – Array to be flattened.

	Returns:	A flattened view of a if possible, otherwise a copy.

	Return type:	cupy.ndarray

See also

numpy.ravel() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html#numpy.ravel]

cupy.rollaxis

	
cupy.rollaxis(a, axis, start=0)

	Moves the specified axis backwards to the given place.

	Parameters:	
	a (cupy.ndarray) – Array to move the axis.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis to move.

	start (int [https://docs.python.org/3/library/functions.html#int]) – The place to which the axis is moved.

	Returns:	A view of a that the axis is moved to start.

	Return type:	cupy.ndarray

See also

numpy.rollaxis() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html#numpy.rollaxis]

cupy.swapaxes

	
cupy.swapaxes(a, axis1, axis2)

	Swaps the two axes.

	Parameters:	
	a (cupy.ndarray) – Array to swap the axes.

	axis1 (int [https://docs.python.org/3/library/functions.html#int]) – The first axis to swap.

	axis2 (int [https://docs.python.org/3/library/functions.html#int]) – The second axis to swap.

	Returns:	A view of a that the two axes are swapped.

	Return type:	cupy.ndarray

See also

numpy.swapaxes() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.swapaxes.html#numpy.swapaxes]

cupy.transpose

	
cupy.transpose(a, axes=None)

	Permutes the dimensions of an array.

	Parameters:	
	a (cupy.ndarray) – Array to permute the dimensions.

	axes (tuple of ints) – Permutation of the dimensions. This function
reverses the shape by default.

	Returns:	A view of a that the dimensions are permuted.

	Return type:	cupy.ndarray

See also

numpy.transpose() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html#numpy.transpose]

cupy.atleast_1d

	
cupy.atleast_1d(*arys)

	Converts arrays to arrays with dimensions >= 1.

	Parameters:	arys (tuple of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects. Only zero-dimensional array is
affected.

	Returns:	If there are only one input, then it returns its converted version.
Otherwise, it returns a list of converted arrays.

See also

numpy.atleast_1d() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.atleast_1d.html#numpy.atleast_1d]

cupy.atleast_2d

	
cupy.atleast_2d(*arys)

	Converts arrays to arrays with dimensions >= 2.

If an input array has dimensions less than two, then this function inserts
new axes at the head of dimensions to make it have two dimensions.

	Parameters:	arys (tuple of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects.

	Returns:	If there are only one input, then it returns its converted version.
Otherwise, it returns a list of converted arrays.

See also

numpy.atleast_2d() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.atleast_2d.html#numpy.atleast_2d]

cupy.atleast_3d

	
cupy.atleast_3d(*arys)

	Converts arrays to arrays with dimensions >= 3.

If an input array has dimensions less than three, then this function
inserts new axes to make it have three dimensions. The place of the new
axes are following:

	If its shape is (), then the shape of output is (1, 1, 1).

	If its shape is (N,), then the shape of output is (1, N, 1).

	If its shape is (M, N), then the shape of output is (M, N, 1).

	Otherwise, the output is the input array itself.

	Parameters:	arys (tuple of arrays) – Arrays to be converted. All arguments must be
cupy.ndarray objects.

	Returns:	If there are only one input, then it returns its converted version.
Otherwise, it returns a list of converted arrays.

See also

numpy.atleast_3d() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.atleast_3d.html#numpy.atleast_3d]

cupy.broadcast

	
class cupy.broadcast

	Object that performs broadcasting.

CuPy actually uses this class to support broadcasting in various
operations. Note that this class does not provide an iterator.

	Parameters:	arrays (tuple of arrays) – Arrays to be broadcasted.

	Variables:	
	shape (tuple of ints) – The broadcasted shape.

	nd (int [https://docs.python.org/3/library/functions.html#int]) – Number of dimensions of the broadcasted shape.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Total size of the broadcasted shape.

	values (list of arrays) – The broadcasted arrays.

See also

numpy.broadcast [https://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast.html#numpy.broadcast]

Methods

Attributes

	
nd

	

	
shape

	

	
size

	

	
values

	

cupy.broadcast_arrays

	
cupy.broadcast_arrays(*args)

	Broadcasts given arrays.

	Parameters:	args (tuple of arrays) – Arrays to broadcast for each other.

	Returns:	A list of broadcasted arrays.

	Return type:	list [https://docs.python.org/3/library/stdtypes.html#list]

See also

numpy.broadcast_arrays() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast_arrays.html#numpy.broadcast_arrays]

cupy.broadcast_to

	
cupy.broadcast_to(array, shape)

	Broadcast an array to a given shape.

	Parameters:	
	array (cupy.ndarray) – Array to broadcast.

	shape (tuple of int) – The shape of the desired array.

	Returns:	Broadcasted view.

	Return type:	cupy.ndarray

See also

numpy.broadcast_to() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to]

cupy.expand_dims

	
cupy.expand_dims(a, axis)

	Expands given arrays.

	Parameters:	
	a (cupy.ndarray) – Array to be expanded.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Position where new axis is to be inserted.

	Returns:	
	The number of dimensions is one greater than that of

	the input array.

	Return type:	cupy.ndarray

See also

numpy.expand_dims() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.expand_dims.html#numpy.expand_dims]

cupy.squeeze

	
cupy.squeeze(a, axis=None)

	Removes size-one axes from the shape of an array.

	Parameters:	
	a (cupy.ndarray) – Array to be reshaped.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – Axes to be removed. This function removes
all size-one axes by default. If one of the specified axes is not
of size one, an exception is raised.

	Returns:	An array without (specified) size-one axes.

	Return type:	cupy.ndarray

See also

numpy.squeeze() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.squeeze.html#numpy.squeeze]

cupy.asarray

	
cupy.asarray(a, dtype=None)

	Converts an object to array.

This is equivalent to array(a, dtype, copy=False).
This function currently does not support the order option.

	Parameters:	
	a – The source object.

	dtype – Data type specifier. It is inferred from the input by default.

	Returns:	An array on the current device. If a is already on
the device, no copy is performed.

	Return type:	cupy.ndarray

See also

numpy.asarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asarray.html#numpy.asarray]

cupy.asanyarray

	
cupy.asanyarray(a, dtype=None)

	Converts an object to array.

This is currently equivalent to asarray(), since there is no
subclass of ndarray in CuPy. Note that the original
numpy.asanyarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asanyarray.html#numpy.asanyarray] returns the input array as is if it is an instance
of a subtype of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

See also

cupy.asarray(), numpy.asanyarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asanyarray.html#numpy.asanyarray]

cupy.asfortranarray

	
cupy.asfortranarray(a, dtype=None)

	Return an array laid out in Fortran order in memory.

	Parameters:	
	a (ndarray) – The input array.

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str] or dtype object, optional) – By default, the data-type is
inferred from the input data.

	Returns:	The input a in Fortran, or column-major, order.

	Return type:	ndarray

See also

numpy.asfortranarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.asfortranarray.html#numpy.asfortranarray]

cupy.ascontiguousarray

	
cupy.ascontiguousarray(a, dtype=None)

	Returns a C-contiguous array.

	Parameters:	
	a (cupy.ndarray) – Source array.

	dtype – Data type specifier.

	Returns:	If no copy is required, it returns a. Otherwise, it
returns a copy of a.

	Return type:	cupy.ndarray

See also

numpy.ascontiguousarray() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ascontiguousarray.html#numpy.ascontiguousarray]

cupy.concatenate

	
cupy.concatenate(tup, axis=0)

	Joins arrays along an axis.

	Parameters:	
	tup (sequence of arrays) – Arrays to be joined. All of these should have
same dimensionalities except the specified axis.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis to join arrays along.

	Returns:	Joined array.

	Return type:	cupy.ndarray

See also

numpy.concatenate() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.concatenate.html#numpy.concatenate]

cupy.stack

	
cupy.stack(tup, axis=0)

	Stacks arrays along a new axis.

	Parameters:	
	tup (sequence of arrays) – Arrays to be stacked.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which the arrays are stacked.

	Returns:	Stacked array.

	Return type:	cupy.ndarray

See also

numpy.stack() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.stack.html#numpy.stack]

cupy.column_stack

	
cupy.column_stack(tup)

	Stacks 1-D and 2-D arrays as columns into a 2-D array.

A 1-D array is first converted to a 2-D column array. Then, the 2-D arrays
are concatenated along the second axis.

	Parameters:	tup (sequence of arrays) – 1-D or 2-D arrays to be stacked.

	Returns:	A new 2-D array of stacked columns.

	Return type:	cupy.ndarray

See also

numpy.column_stack() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.column_stack.html#numpy.column_stack]

cupy.dstack

	
cupy.dstack(tup)

	Stacks arrays along the third axis.

	Parameters:	tup (sequence of arrays) – Arrays to be stacked. Each array is converted
by cupy.atleast_3d() before stacking.

	Returns:	Stacked array.

	Return type:	cupy.ndarray

See also

numpy.dstack() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dstack.html#numpy.dstack]

cupy.hstack

	
cupy.hstack(tup)

	Stacks arrays horizontally.

If an input array has one dimension, then the array is treated as a
horizontal vector and stacked along the first axis. Otherwise, the array is
stacked along the second axis.

	Parameters:	tup (sequence of arrays) – Arrays to be stacked.

	Returns:	Stacked array.

	Return type:	cupy.ndarray

See also

numpy.hstack() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html#numpy.hstack]

cupy.vstack

	
cupy.vstack(tup)

	Stacks arrays vertically.

If an input array has one dimension, then the array is treated as a
horizontal vector and stacked along the additional axis at the head.
Otherwise, the array is stacked along the first axis.

	Parameters:	tup (sequence of arrays) – Arrays to be stacked. Each array is converted
by cupy.atleast_2d() before stacking.

	Returns:	Stacked array.

	Return type:	cupy.ndarray

See also

numpy.dstack() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dstack.html#numpy.dstack]

cupy.split

	
cupy.split(ary, indices_or_sections, axis=0)

	Splits an array into multiple sub arrays along a given axis.

	Parameters:	
	ary (cupy.ndarray) – Array to split.

	indices_or_sections (int [https://docs.python.org/3/library/functions.html#int] or sequence of ints) – A value indicating how
to divide the axis. If it is an integer, then is treated as the
number of sections, and the axis is evenly divided. Otherwise,
the integers indicate indices to split at. Note that the sequence
on the device memory is not allowed.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis along which the array is split.

	Returns:	A list of sub arrays. Each array is a view of the corresponding input
array.

See also

numpy.split() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.split.html#numpy.split]

cupy.array_split

	
cupy.array_split(ary, indices_or_sections, axis=0)

	Splits an array into multiple sub arrays along a given axis.

This function is almost equivalent to cupy.split(). The only
difference is that this function allows an integer sections that does not
evenly divide the axis.

See also

cupy.split() for more detail, numpy.array_split() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array_split.html#numpy.array_split]

cupy.dsplit

	
cupy.dsplit(ary, indices_or_sections)

	Splits an array into multiple sub arrays along the third axis.

This is equivalent to split with axis=2.

See also

cupy.split() for more detail, numpy.dsplit() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dsplit.html#numpy.dsplit]

cupy.hsplit

	
cupy.hsplit(ary, indices_or_sections)

	Splits an array into multiple sub arrays horizontally.

This is equivalent to split with axis=0 if ary has one
dimension, and otherwise that with axis=1.

See also

cupy.split() for more detail, numpy.hsplit() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.hsplit.html#numpy.hsplit]

cupy.vsplit

	
cupy.vsplit(ary, indices_or_sections)

	Splits an array into multiple sub arrays along the first axis.

This is equivalent to split with axis=0.

See also

cupy.split() for more detail, numpy.dsplit() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dsplit.html#numpy.dsplit]

cupy.tile

	
cupy.tile(A, reps)

	Construct an array by repeating A the number of times given by reps.

	Parameters:	
	A (cupy.ndarray) – Array to transform.

	reps (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The number of repeats.

	Returns:	Transformed array with repeats.

	Return type:	cupy.ndarray

See also

numpy.tile() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.tile.html#numpy.tile]

cupy.repeat

	
cupy.repeat(a, repeats, axis=None)

	Repeat arrays along an axis.

	Parameters:	
	a (cupy.ndarray) – Array to transform.

	repeats (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The number of repeats.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis to repeat.

	Returns:	Transformed array with repeats.

	Return type:	cupy.ndarray

See also

numpy.repeat() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html#numpy.repeat]

cupy.flip

	
cupy.flip(a, axis)

	Reverse the order of elements in an array along the given axis.

Note that flip function has been introduced since NumPy v1.12.
The contents of this document is the same as the original one.

	Parameters:	
	a (ndarray) – Input array.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Axis in array, which entries are reversed.

	Returns:	Output array.

	Return type:	ndarray

See also

numpy.flip() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.flip.html#numpy.flip]

cupy.fliplr

	
cupy.fliplr(a)

	Flip array in the left/right direction.

Flip the entries in each row in the left/right direction. Columns
are preserved, but appear in a different order than before.

	Parameters:	a (ndarray) – Input array.

	Returns:	Output array.

	Return type:	ndarray

See also

numpy.fliplr() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fliplr.html#numpy.fliplr]

cupy.flipud

	
cupy.flipud(a)

	Flip array in the up/down direction.

Flip the entries in each column in the up/down direction. Rows are
preserved, but appear in a different order than before.

	Parameters:	a (ndarray) – Input array.

	Returns:	Output array.

	Return type:	ndarray

See also

numpy.flipud() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.flipud.html#numpy.flipud]

cupy.reshape

	
cupy.reshape(a, newshape)

	Returns an array with new shape and same elements.

It tries to return a view if possible, otherwise returns a copy.

This function currently does not support order option.

	Parameters:	
	a (cupy.ndarray) – Array to be reshaped.

	newshape (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The new shape of the array to return.
If it is an integer, then it is treated as a tuple of length one.
It should be compatible with a.size. One of the elements can be
-1, which is automatically replaced with the appropriate value to
make the shape compatible with a.size.

	Returns:	A reshaped view of a if possible, otherwise a copy.

	Return type:	cupy.ndarray

See also

numpy.reshape() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape]

cupy.roll

	
cupy.roll(a, shift, axis=None)

	Roll array elements along a given axis.

	Parameters:	
	a (ndarray) – Array to be rolled.

	shift (int [https://docs.python.org/3/library/functions.html#int]) – The number of places by which elements are shifted.

	axis (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The axis along which elements are shifted.
If axis is None, the array is flattened before shifting,
and after that it is reshaped to the original shape.

	Returns:	Output array.

	Return type:	ndarray

See also

numpy.roll() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.roll.html#numpy.roll]

cupy.rot90

	
cupy.rot90(a, k=1, axes=(0, 1))

	Rotate an array by 90 degrees in the plane specified by axes.

Note that axes argument has been introduced since NumPy v1.12.
The contents of this document is the same as the original one.

	Parameters:	
	a (ndarray) – Array of two or more dimensions.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Number of times the array is rotated by 90 degrees.

	axes – (tuple of ints): The array is rotated in the plane defined by
the axes. Axes must be different.

	Returns:	Output array.

	Return type:	ndarray

See also

numpy.rot90() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rot90.html#numpy.rot90]

Binary Operations

Elementwise bit operations

	cupy.bitwise_and
	Computes the bitwise AND of two arrays elementwise.

	cupy.bitwise_or
	Computes the bitwise OR of two arrays elementwise.

	cupy.bitwise_xor
	Computes the bitwise XOR of two arrays elementwise.

	cupy.invert
	Computes the bitwise NOT of an array elementwise.

	cupy.left_shift
	Shifts the bits of each integer element to the left.

	cupy.right_shift
	Shifts the bits of each integer element to the right.

Bit packing

	cupy.packbits
	Packs the elements of a binary-valued array into bits in a uint8 array.

	cupy.unpackbits
	Unpacks elements of a uint8 array into a binary-valued output array.

Output formatting

	cupy.binary_repr
	Return the binary representation of the input number as a string.

cupy.bitwise_and

	
cupy.bitwise_and = <ufunc 'cupy_bitwise_and'>

	Computes the bitwise AND of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_and [https://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_and.html#numpy.bitwise_and]

cupy.bitwise_or

	
cupy.bitwise_or = <ufunc 'cupy_bitwise_or'>

	Computes the bitwise OR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_or [https://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_or.html#numpy.bitwise_or]

cupy.bitwise_xor

	
cupy.bitwise_xor = <ufunc 'cupy_bitwise_xor'>

	Computes the bitwise XOR of two arrays elementwise.

Only integer and boolean arrays are handled.

See also

numpy.bitwise_xor [https://docs.scipy.org/doc/numpy/reference/generated/numpy.bitwise_xor.html#numpy.bitwise_xor]

cupy.invert

	
cupy.invert = <ufunc 'cupy_invert'>

	Computes the bitwise NOT of an array elementwise.

Only integer and boolean arrays are handled.

See also

numpy.invert [https://docs.scipy.org/doc/numpy/reference/generated/numpy.invert.html#numpy.invert]

cupy.left_shift

	
cupy.left_shift = <ufunc 'cupy_left_shift'>

	Shifts the bits of each integer element to the left.

Only integer arrays are handled.

See also

numpy.left_shift [https://docs.scipy.org/doc/numpy/reference/generated/numpy.left_shift.html#numpy.left_shift]

cupy.right_shift

	
cupy.right_shift = <ufunc 'cupy_right_shift'>

	Shifts the bits of each integer element to the right.

Only integer arrays are handled

See also

numpy.right_shift [https://docs.scipy.org/doc/numpy/reference/generated/numpy.right_shift.html#numpy.right_shift]

cupy.packbits

	
cupy.packbits(myarray)

	Packs the elements of a binary-valued array into bits in a uint8 array.

This function currently does not support axis option.

	Parameters:	myarray (cupy.ndarray) – Input array.

	Returns:	The packed array.

	Return type:	cupy.ndarray

Note

When the input array is empty, this function returns a copy of it,
i.e., the type of the output array is not necessarily always uint8.
This exactly follows the NumPy’s behaviour (as of version 1.11),
alghough this is inconsistent to the documentation.

See also

numpy.packbits() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.packbits.html#numpy.packbits]

cupy.unpackbits

	
cupy.unpackbits(myarray)

	Unpacks elements of a uint8 array into a binary-valued output array.

This function currently does not support axis option.

	Parameters:	myarray (cupy.ndarray) – Input array.

	Returns:	The unpacked array.

	Return type:	cupy.ndarray

See also

numpy.unpackbits() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.unpackbits.html#numpy.unpackbits]

cupy.binary_repr

	
cupy.binary_repr(num, width=None)

	Return the binary representation of the input number as a string.

For negative numbers, if width is not given, a minus sign is added to the
front. If width is given, the two’s complement of the number is
returned, with respect to that width.

In a two’s-complement system negative numbers are represented by the two’s
complement of the absolute value. This is the most common method of
representing signed integers on computers [1]. A N-bit two’s-complement
system can represent every integer in the range
\(-2^{N-1}\) to \(+2^{N-1}-1\).

	Parameters:	
	num (int [https://docs.python.org/3/library/functions.html#int]) – Only an integer decimal number can be used.

	width (int [https://docs.python.org/3/library/functions.html#int], optional) – The length of the returned string if num is positive, or the length
of the two’s complement if num is negative, provided that width is
at least a sufficient number of bits for num to be represented in the
designated form.

If the width value is insufficient, it will be ignored, and num will
be returned in binary (num > 0) or two’s complement (num < 0) form
with its width equal to the minimum number of bits needed to represent
the number in the designated form. This behavior is deprecated and will
later raise an error.

Deprecated since version 1.12.0.

	Returns:	bin – Binary representation of num or two’s complement of num.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

See also

	base_repr()

	Return a string representation of a number in the given base system.

	bin() [https://docs.python.org/3/library/functions.html#bin]

	Python’s built-in binary representation generator of an integer.

Notes

binary_repr is equivalent to using base_repr with base 2, but about 25x
faster.

References

	[1]	Wikipedia, “Two’s complement”,
http://en.wikipedia.org/wiki/Two’s_complement

Examples

>>> np.binary_repr(3)
'11'
>>> np.binary_repr(-3)
'-11'
>>> np.binary_repr(3, width=4)
'0011'

The two’s complement is returned when the input number is negative and
width is specified:

>>> np.binary_repr(-3, width=3)
'101'
>>> np.binary_repr(-3, width=5)
'11101'

Indexing Routines

	cupy.c_
	Translates slice objects to concatenation along the second axis.

	cupy.r_
	Translates slice objects to concatenation along the first axis.

	cupy.nonzero
	Return the indices of the elements that are non-zero.

	cupy.where
	

	cupy.ix_
	Construct an open mesh from multiple sequences.

	cupy.take
	Takes elements of an array at specified indices along an axis.

	cupy.choose
	

	cupy.diag
	Returns a diagonal or a diagonal array.

	cupy.diagonal
	Returns specified diagonals.

	cupy.fill_diagonal
	Fill the main diagonal of the given array of any dimensionality.

cupy.c

	
cupy.c_ = <cupy.indexing.generate.CClass object>

	Translates slice objects to concatenation along the second axis.

This is a CuPy object that corresponds to cupy.r_(), which is
useful because of its common occurrence. In particular, arrays will be
stacked along their last axis after being upgraded to at least 2-D with
1’s post-pended to the shape (column vectors made out of 1-D arrays).

For detailed documentation, see r_().

This implementation is partially borrowed from NumPy’s one.

	Parameters:	a function, so takes no parameters (Not) –

	Returns:	Joined array.

	Return type:	cupy.ndarray

See also

numpy.c_()

Examples

>>> a = cupy.array([[1, 2, 3]], dtype=np.int32)
>>> b = cupy.array([[4, 5, 6]], dtype=np.int32)
>>> cupy.c_[a, 0, 0, b]
array([[1, 2, 3, 0, 0, 4, 5, 6]], dtype=int32)

cupy.r

	
cupy.r_ = <cupy.indexing.generate.RClass object>

	Translates slice objects to concatenation along the first axis.

This is a simple way to build up arrays quickly.
If the index expression contains comma separated arrays, then stack
them along their first axis.

This object can build up from normal CuPy arrays.
Therefore, the other objects (e.g. writing strings like ‘2,3,4’,
or using imaginary numbers like [1,2,3j],
or using string integers like ‘-1’) are not implemented yet
compared with NumPy.

This implementation is partially borrowed from NumPy’s one.

	Parameters:	a function, so takes no parameters (Not) –

	Returns:	Joined array.

	Return type:	cupy.ndarray

See also

numpy.r_()

Examples

>>> a = cupy.array([1, 2, 3], dtype=np.int32)
>>> b = cupy.array([4, 5, 6], dtype=np.int32)
>>> cupy.r_[a, 0, 0, b]
array([1, 2, 3, 0, 0, 4, 5, 6], dtype=int32)

cupy.nonzero

	
cupy.nonzero(a)

	Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a,
containing the indices of the non-zero elements in that dimension.

	Parameters:	a (cupy.ndarray) – array

	Returns:	Indices of elements that are non-zero.

	Return type:	tuple of arrays

See also

numpy.nonzero() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.nonzero.html#numpy.nonzero]

cupy.where

	
cupy.where(*args, **kwargs)

	

cupy.ix

	
cupy.ix_(*args)

	Construct an open mesh from multiple sequences.

This function takes N 1-D sequences and returns N outputs with N
dimensions each, such that the shape is 1 in all but one dimension
and the dimension with the non-unit shape value cycles through all
N dimensions.

Using ix_ one can quickly construct index arrays that will index
the cross product. a[cupy.ix_([1,3],[2,5])] returns the array
[[a[1,2] a[1,5]], [a[3,2] a[3,5]]].

	Parameters:	*args – 1-D sequences

	Returns:	N arrays with N dimensions each, with N the number of input sequences.
Together these arrays form an open mesh.

	Return type:	tuple of ndarrays

Examples

>>> a = cupy.arange(10).reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])
>>> ixgrid = cupy.ix_([0,1], [2,4])
>>> ixgrid
(array([[0],
 [1]]), array([[2, 4]]))

See also

numpy.ix_() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ix_.html#numpy.ix_]

cupy.take

	
cupy.take(a, indices, axis=None, out=None)

	Takes elements of an array at specified indices along an axis.

This is an implementation of “fancy indexing” at single axis.

This function does not support mode option.

	Parameters:	
	a (cupy.ndarray) – Array to extract elements.

	indices (int [https://docs.python.org/3/library/functions.html#int] or array-like) – Indices of elements that this function
takes.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – The axis along which to select indices. The flattened input
is used by default.

	out (cupy.ndarray) – Output array. If provided, it should be of
appropriate shape and dtype.

	Returns:	The result of fancy indexing.

	Return type:	cupy.ndarray

See also

numpy.take() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html#numpy.take]

cupy.choose

	
cupy.choose(a, choices, out=None, mode='raise')

	

cupy.diag

	
cupy.diag(v, k=0)

	Returns a diagonal or a diagonal array.

	Parameters:	
	v (array-like) – Array or array-like object.

	k (int [https://docs.python.org/3/library/functions.html#int]) – Index of diagonals. Zero indicates the main diagonal, a
positive value an upper diagonal, and a negative value a lower
diagonal.

	Returns:	If v indicates a 1-D array, then it returns a 2-D
array with the specified diagonal filled by v. If v indicates a
2-D array, then it returns the specified diagonal of v. In latter
case, if v is a cupy.ndarray object, then its view is
returned.

	Return type:	cupy.ndarray

See also

numpy.diag() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.diag.html#numpy.diag]

cupy.diagonal

	
cupy.diagonal(a, offset=0, axis1=0, axis2=1)

	Returns specified diagonals.

This function extracts the diagonals along two specified axes. The other
axes are not changed. This function returns a writable view of this array
as NumPy 1.10 will do.

	Parameters:	
	a (cupy.ndarray) – Array from which the diagonals are taken.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Index of the diagonals. Zero indicates the main
diagonals, a positive value upper diagonals, and a negative value
lower diagonals.

	axis1 (int [https://docs.python.org/3/library/functions.html#int]) – The first axis to take diagonals from.

	axis2 (int [https://docs.python.org/3/library/functions.html#int]) – The second axis to take diagonals from.

	Returns:	A view of the diagonals of a.

	Return type:	cupy.ndarray

See also

numpy.diagonal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.diagonal.html#numpy.diagonal]

cupy.fill_diagonal

	
cupy.fill_diagonal(a, val, wrap=False)

	Fill the main diagonal of the given array of any dimensionality.

For an array a with a.ndim > 2, the diagonal is the list of
locations with indices a[i, i, ..., i] all identical. This function
modifies the input array in-place, it does not return a value.

	Parameters:	
	a (cupy.ndarray) – The array, at least 2-D.

	val (scalar) – The value to be written on the diagonal.
Its type must be compatible with that of the array a.

	wrap (bool [https://docs.python.org/3/library/functions.html#bool]) – If specified, the diagonal is “wrapped” after N columns.
This affects only tall matrices.

Examples

>>> a = cupy.zeros((3, 3), int)
>>> cupy.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],
 [0, 5, 0],
 [0, 0, 5]])

See also

numpy.fill_diagonal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fill_diagonal.html#numpy.fill_diagonal]

Input and Output

NPZ files

	cupy.load
	Loads arrays or pickled objects from .npy, .npz or pickled file.

	cupy.save
	Saves an array to a binary file in .npy format.

	cupy.savez
	Saves one or more arrays into a file in uncompressed .npz format.

	cupy.savez_compressed
	Saves one or more arrays into a file in compressed .npz format.

String formatting

	cupy.array_repr
	Returns the string representation of an array.

	cupy.array_str
	Returns the string representation of the content of an array.

Base-n representations

	cupy.binary_repr
	Return the binary representation of the input number as a string.

	cupy.base_repr
	Return a string representation of a number in the given base system.

cupy.load

	
cupy.load(file, mmap_mode=None)

	Loads arrays or pickled objects from .npy, .npz or pickled file.

This function just calls numpy.load and then sends the arrays to the
current device. NPZ file is converted to NpzFile object, which defers the
transfer to the time of accessing the items.

	Parameters:	
	file (file-like object or string [https://docs.python.org/3/library/string.html#module-string]) – The file to read.

	mmap_mode (None [https://docs.python.org/3/library/constants.html#None], 'r+', 'r', 'w+', 'c') – If not None, memory-map the
file to construct an intermediate numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] object and
transfer it to the current device.

	Returns:	CuPy array or NpzFile object depending on the type of the file. NpzFile
object is a dictionary-like object with the context manager protocol
(which enables us to use with statement on it).

See also

numpy.load() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html#numpy.load]

cupy.save

	
cupy.save(file, arr)

	Saves an array to a binary file in .npy format.

	Parameters:	
	file (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – File or filename to save.

	arr (array_like) – Array to save. It should be able to feed to
cupy.asnumpy().

See also

numpy.save() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.save.html#numpy.save]

cupy.savez

	
cupy.savez(file, *args, **kwds)

	Saves one or more arrays into a file in uncompressed .npz format.

Arguments without keys are treated as arguments with automatic keys named
arr_0, arr_1, etc. corresponding to the positions in the argument
list. The keys of arguments are used as keys in the .npz file, which
are used for accessing NpzFile object when the file is read by
cupy.load() function.

	Parameters:	
	file (file or str [https://docs.python.org/3/library/stdtypes.html#str]) – File or filename to save.

	*args – Arrays with implicit keys.

	**kwds – Arrays with explicit keys.

See also

numpy.savez() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez]

cupy.savez_compressed

	
cupy.savez_compressed(file, *args, **kwds)

	Saves one or more arrays into a file in compressed .npz format.

It is equivalent to cupy.savez() function except the output file is
compressed.

See also

cupy.savez() for more detail,
numpy.savez_compressed() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed]

cupy.array_repr

	
cupy.array_repr(arr, max_line_width=None, precision=None, suppress_small=None)

	Returns the string representation of an array.

	Parameters:	
	arr (array_like) – Input array. It should be able to feed to
cupy.asnumpy().

	max_line_width (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of line lengths.

	precision (int [https://docs.python.org/3/library/functions.html#int]) – Floating point precision. It uses the current printing
precision of NumPy.

	suppress_small (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, very small numbers are printed as
zeros

	Returns:	The string representation of arr.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

See also

numpy.array_repr() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array_repr.html#numpy.array_repr]

cupy.array_str

	
cupy.array_str(arr, max_line_width=None, precision=None, suppress_small=None)

	Returns the string representation of the content of an array.

	Parameters:	
	arr (array_like) – Input array. It should be able to feed to
cupy.asnumpy().

	max_line_width (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of line lengths.

	precision (int [https://docs.python.org/3/library/functions.html#int]) – Floating point precision. It uses the current printing
precision of NumPy.

	suppress_small (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, very small number are printed as
zeros.

See also

numpy.array_str() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array_str.html#numpy.array_str]

cupy.binary_repr

	
cupy.binary_repr(num, width=None)

	Return the binary representation of the input number as a string.

For negative numbers, if width is not given, a minus sign is added to the
front. If width is given, the two’s complement of the number is
returned, with respect to that width.

In a two’s-complement system negative numbers are represented by the two’s
complement of the absolute value. This is the most common method of
representing signed integers on computers [1]. A N-bit two’s-complement
system can represent every integer in the range
\(-2^{N-1}\) to \(+2^{N-1}-1\).

	Parameters:	
	num (int [https://docs.python.org/3/library/functions.html#int]) – Only an integer decimal number can be used.

	width (int [https://docs.python.org/3/library/functions.html#int], optional) – The length of the returned string if num is positive, or the length
of the two’s complement if num is negative, provided that width is
at least a sufficient number of bits for num to be represented in the
designated form.

If the width value is insufficient, it will be ignored, and num will
be returned in binary (num > 0) or two’s complement (num < 0) form
with its width equal to the minimum number of bits needed to represent
the number in the designated form. This behavior is deprecated and will
later raise an error.

Deprecated since version 1.12.0.

	Returns:	bin – Binary representation of num or two’s complement of num.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

See also

	base_repr()

	Return a string representation of a number in the given base system.

	bin() [https://docs.python.org/3/library/functions.html#bin]

	Python’s built-in binary representation generator of an integer.

Notes

binary_repr is equivalent to using base_repr with base 2, but about 25x
faster.

References

	[1]	Wikipedia, “Two’s complement”,
http://en.wikipedia.org/wiki/Two’s_complement

Examples

>>> np.binary_repr(3)
'11'
>>> np.binary_repr(-3)
'-11'
>>> np.binary_repr(3, width=4)
'0011'

The two’s complement is returned when the input number is negative and
width is specified:

>>> np.binary_repr(-3, width=3)
'101'
>>> np.binary_repr(-3, width=5)
'11101'

cupy.base_repr

	
cupy.base_repr(number, base=2, padding=0)

	Return a string representation of a number in the given base system.

	Parameters:	
	number (int [https://docs.python.org/3/library/functions.html#int]) – The value to convert. Positive and negative values are handled.

	base (int [https://docs.python.org/3/library/functions.html#int], optional) – Convert number to the base number system. The valid range is 2-36,
the default value is 2.

	padding (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of zeros padded on the left. Default is 0 (no padding).

	Returns:	out – String representation of number in base system.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

See also

	binary_repr()

	Faster version of base_repr for base 2.

Examples

>>> np.base_repr(5)
'101'
>>> np.base_repr(6, 5)
'11'
>>> np.base_repr(7, base=5, padding=3)
'00012'

>>> np.base_repr(10, base=16)
'A'
>>> np.base_repr(32, base=16)
'20'

Linear Algebra

Matrix and vector products

	cupy.dot
	Returns a dot product of two arrays.

	cupy.vdot
	Returns the dot product of two vectors.

	cupy.inner
	Returns the inner product of two arrays.

	cupy.outer
	Returns the outer product of two vectors.

	cupy.matmul
	Returns the matrix product of two arrays and is the implementation of the @ operator introduced in Python 3.5 following PEP465.

	cupy.tensordot
	Returns the tensor dot product of two arrays along specified axes.

Decompositions

	cupy.linalg.cholesky
	Cholesky decomposition.

	cupy.linalg.qr
	QR decomposition.

	cupy.linalg.svd
	Singular Value Decomposition.

Norms etc.

	cupy.linalg.norm
	Returns one of matrix norms specified by ord parameter.

	cupy.linalg.matrix_rank
	

	cupy.linalg.slogdet
	

	cupy.trace
	Returns the sum along the diagonals of an array.

cupy.dot

	
cupy.dot(a, b, out=None)

	Returns a dot product of two arrays.

For arrays with more than one axis, it computes the dot product along the
last axis of a and the second-to-last axis of b. This is just a
matrix product if the both arrays are 2-D. For 1-D arrays, it uses their
unique axis as an axis to take dot product over.

	Parameters:	
	a (cupy.ndarray) – The left argument.

	b (cupy.ndarray) – The right argument.

	out (cupy.ndarray) – Output array.

	Returns:	The dot product of a and b.

	Return type:	cupy.ndarray

See also

numpy.dot() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot]

cupy.vdot

	
cupy.vdot(a, b)

	Returns the dot product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs inner
product of these vectors.

	Parameters:	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.

	Returns:	Zero-dimensional array of the dot product result.

	Return type:	cupy.ndarray

See also

numpy.vdot() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.vdot.html#numpy.vdot]

cupy.inner

	
cupy.inner(a, b)

	Returns the inner product of two arrays.

It uses the last axis of each argument to take sum product.

	Parameters:	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.

	Returns:	The inner product of a and b.

	Return type:	cupy.ndarray

See also

numpy.inner() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.inner.html#numpy.inner]

cupy.outer

	
cupy.outer(a, b, out=None)

	Returns the outer product of two vectors.

The input arrays are flattened into 1-D vectors and then it performs outer
product of these vectors.

	Parameters:	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.

	out (cupy.ndarray) – Output array.

	Returns:	2-D array of the outer product of a and b.

	Return type:	cupy.ndarray

See also

numpy.outer() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.outer.html#numpy.outer]

cupy.matmul

	
cupy.matmul()

	Returns the matrix product of two arrays and is the implementation of
the @ operator introduced in Python 3.5 following PEP465.

The main difference against cupy.dot are the handling of arrays with more
than 2 dimensions. For more information see numpy.matmul() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.matmul.html#numpy.matmul].

Note

Differences to numpy or missing features:

Currently the output must be real (float16, float32, uint8, ...),
complex64 and complex128 follow later. This means, that
numpy.result_type(a.dtype, b.dtype) have to be real.

The out array as input is currently not supported.

	Parameters:	
	a (cupy.ndarray) – The left argument.

	b (cupy.ndarray) – The right argument.

	out (cupy.ndarray) – Output array.

See also

numpy.matmul() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.matmul.html#numpy.matmul]

cupy.tensordot

	
cupy.tensordot(a, b, axes=2)

	Returns the tensor dot product of two arrays along specified axes.

This is equivalent to compute dot product along the specified axes which
are treated as one axis by reshaping.

	Parameters:	
	a (cupy.ndarray) – The first argument.

	b (cupy.ndarray) – The second argument.

	axes –
	If it is an integer, then axes axes at the last of a and
the first of b are used.

	If it is a pair of sequences of integers, then these two
sequences specify the list of axes for a and b. The
corresponding axes are paired for sum-product.

	out (cupy.ndarray) – Output array.

	Returns:	The tensor dot product of a and b along the
axes specified by axes.

	Return type:	cupy.ndarray

See also

numpy.tensordot() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html#numpy.tensordot]

cupy.linalg.cholesky

	
cupy.linalg.cholesky(a)

	Cholesky decomposition.

Decompose a given two-dimensional square matrix into L * L.T,
where L is a lower-triangular matrix and .T is a conjugate
transpose operator. Note that in the current implementation a must be
a real matrix, and only float32 and float64 are supported.

	Parameters:	a (cupy.ndarray) – The input matrix with dimension (N, N)

See also

numpy.linalg.cholesky() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.cholesky.html#numpy.linalg.cholesky]

cupy.linalg.qr

	
cupy.linalg.qr(a, mode='reduced')

	QR decomposition.

Decompose a given two-dimensional matrix into Q * R, where Q
is an orthonormal and R is an upper-triangular matrix.

	Parameters:	
	a (cupy.ndarray) – The input matrix.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The mode of decomposition. Currently ‘reduced’,
‘complete’, ‘r’, and ‘raw’ modes are supported. The default mode
is ‘reduced’, and decompose a matrix A = (M, N) into Q,
R with dimensions (M, K), (K, N), where
K = min(M, N).

See also

numpy.linalg.qr() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr]

cupy.linalg.svd

	
cupy.linalg.svd(a, full_matrices=True, compute_uv=True)

	Singular Value Decomposition.

Factorizes the matrix a as u * np.diag(s) * v, where u and
v are unitary and s is an one-dimensional array of a‘s
singular values.

	Parameters:	
	a (cupy.ndarray) – The input matrix with dimension (M, N).

	full_matrices (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it returns U and V with dimensions
(M, M) and (N, N). Otherwise, the dimensions of U and V
are respectively (M, K) and (K, N), where
K = min(M, N).

	compute_uv (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it only returns singular values.

See also

numpy.linalg.svd() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd]

cupy.linalg.norm

	
cupy.linalg.norm(x, ord=None, axis=None, keepdims=False)

	Returns one of matrix norms specified by ord parameter.

Complex valued matrices and vectors are not supported.
See numpy.linalg.norm for more detail.

	Parameters:	
	x (cupy.ndarray) – Array to take norm. If axis is None,
x must be 1-D or 2-D.

	ord (non-zero int, inf, -inf, 'fro') – Norm type.

	axis (int [https://docs.python.org/3/library/functions.html#int], 2-tuple of ints, None [https://docs.python.org/3/library/constants.html#None]) – 1-D or 2-D norm is cumputed over
axis.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If this is set True, the axes which are normed
over are left.

	Returns:	cupy.ndarray

cupy.trace

	
cupy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)

	Returns the sum along the diagonals of an array.

It computes the sum along the diagonals at axis1 and axis2.

	Parameters:	
	a (cupy.ndarray) – Array to take trace.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Index of diagonals. Zero indicates the main diagonal, a
positive value an upper diagonal, and a negative value a lower
diagonal.

	axis1 (int [https://docs.python.org/3/library/functions.html#int]) – The first axis along which the trace is taken.

	axis2 (int [https://docs.python.org/3/library/functions.html#int]) – The second axis along which the trace is taken.

	dtype – Data type specifier of the output.

	out (cupy.ndarray) – Output array.

	Returns:	The trace of a along axes (axis1, axis2).

	Return type:	cupy.ndarray

See also

numpy.trace() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.trace.html#numpy.trace]

Logic Functions

Truth value testing

	cupy.all
	

	cupy.any
	

Infinities and NaNs

	cupy.isfinite
	Tests finiteness elementwise.

	cupy.isinf
	Tests if each element is the positive or negative infinity.

	cupy.isnan
	Tests if each element is a NaN.

Array type testing

	cupy.isscalar
	Returns True if the type of num is a scalar type.

Logic operations

	cupy.logical_and
	Computes the logical AND of two arrays.

	cupy.logical_or
	Computes the logical OR of two arrays.

	cupy.logical_not
	Computes the logical NOT of an array.

	cupy.logical_xor
	Computes the logical XOR of two arrays.

Comparison operations

	cupy.greater
	Tests elementwise if x1 > x2.

	cupy.greater_equal
	Tests elementwise if x1 >= x2.

	cupy.less
	Tests elementwise if x1 < x2.

	cupy.less_equal
	Tests elementwise if x1 <= x2.

	cupy.equal
	Tests elementwise if x1 == x2.

	cupy.not_equal
	Tests elementwise if x1 != x2.

cupy.all

	
cupy.all(*args, **kwargs)

	

cupy.any

	
cupy.any(*args, **kwargs)

	

cupy.isfinite

	
cupy.isfinite = <ufunc 'cupy_isfinite'>

	Tests finiteness elementwise.

Each element of returned array is True only if the corresponding
element of the input is finite (i.e. not an infinity nor NaN).

See also

numpy.isfinite [https://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html#numpy.isfinite]

cupy.isinf

	
cupy.isinf = <ufunc 'cupy_isinf'>

	Tests if each element is the positive or negative infinity.

See also

numpy.isinf [https://docs.scipy.org/doc/numpy/reference/generated/numpy.isinf.html#numpy.isinf]

cupy.isnan

	
cupy.isnan = <ufunc 'cupy_isnan'>

	Tests if each element is a NaN.

See also

numpy.isnan [https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html#numpy.isnan]

cupy.isscalar

	
cupy.isscalar(num)

	Returns True if the type of num is a scalar type.

	Parameters:	num (any) – Input argument, can be of any type and shape.

	Returns:	val – True if num is a scalar type, False if it is not.

	Return type:	bool [https://docs.python.org/3/library/functions.html#bool]

Examples

>>> np.isscalar(3.1)
True
>>> np.isscalar([3.1])
False
>>> np.isscalar(False)
True

cupy.logical_and

	
cupy.logical_and = <ufunc 'cupy_logical_and'>

	Computes the logical AND of two arrays.

See also

numpy.logical_and [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_and.html#numpy.logical_and]

cupy.logical_or

	
cupy.logical_or = <ufunc 'cupy_logical_or'>

	Computes the logical OR of two arrays.

See also

numpy.logical_or [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_or.html#numpy.logical_or]

cupy.logical_not

	
cupy.logical_not = <ufunc 'cupy_logical_not'>

	Computes the logical NOT of an array.

See also

numpy.logical_not [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_not.html#numpy.logical_not]

cupy.logical_xor

	
cupy.logical_xor = <ufunc 'cupy_logical_xor'>

	Computes the logical XOR of two arrays.

See also

numpy.logical_xor [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logical_xor.html#numpy.logical_xor]

cupy.greater

	
cupy.greater = <ufunc 'cupy_greater'>

	Tests elementwise if x1 > x2.

See also

numpy.greater [https://docs.scipy.org/doc/numpy/reference/generated/numpy.greater.html#numpy.greater]

cupy.greater_equal

	
cupy.greater_equal = <ufunc 'cupy_greater_equal'>

	Tests elementwise if x1 >= x2.

See also

numpy.greater_equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.greater_equal.html#numpy.greater_equal]

cupy.less

	
cupy.less = <ufunc 'cupy_less'>

	Tests elementwise if x1 < x2.

See also

numpy.less [https://docs.scipy.org/doc/numpy/reference/generated/numpy.less.html#numpy.less]

cupy.less_equal

	
cupy.less_equal = <ufunc 'cupy_less_equal'>

	Tests elementwise if x1 <= x2.

See also

numpy.less_equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.less_equal.html#numpy.less_equal]

cupy.equal

	
cupy.equal = <ufunc 'cupy_equal'>

	Tests elementwise if x1 == x2.

See also

numpy.equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.equal.html#numpy.equal]

cupy.not_equal

	
cupy.not_equal = <ufunc 'cupy_not_equal'>

	Tests elementwise if x1 != x2.

See also

numpy.equal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.equal.html#numpy.equal]

Mathematical Functions

Trigonometric functions

	cupy.sin
	Elementwise sine function.

	cupy.cos
	Elementwise cosine function.

	cupy.tan
	Elementwise tangent function.

	cupy.arcsin
	Elementwise inverse-sine function (a.k.a.

	cupy.arccos
	Elementwise inverse-cosine function (a.k.a.

	cupy.arctan
	Elementwise inverse-tangent function (a.k.a.

	cupy.hypot
	Computes the hypoteneous of orthogonal vectors of given length.

	cupy.arctan2
	Elementwise inverse-tangent of the ratio of two arrays.

	cupy.deg2rad
	Converts angles from degrees to radians elementwise.

	cupy.rad2deg
	Converts angles from radians to degrees elementwise.

	cupy.degrees
	Converts angles from radians to degrees elementwise.

	cupy.radians
	Converts angles from degrees to radians elementwise.

Hyperbolic functions

	cupy.sinh
	Elementwise hyperbolic sine function.

	cupy.cosh
	Elementwise hyperbolic cosine function.

	cupy.tanh
	Elementwise hyperbolic tangent function.

	cupy.arcsinh
	Elementwise inverse of hyperbolic sine function.

	cupy.arccosh
	Elementwise inverse of hyperbolic cosine function.

	cupy.arctanh
	Elementwise inverse of hyperbolic tangent function.

Rounding

	cupy.rint
	Rounds each element of an array to the nearest integer.

	cupy.floor
	Rounds each element of an array to its floor integer.

	cupy.ceil
	Rounds each element of an array to its ceiling integer.

	cupy.trunc
	Rounds each element of an array towards zero.

	cupy.fix
	If given value x is positive, it return floor(x).

Sums and products

	cupy.sum
	

	cupy.prod
	

	cupy.cumsum
	

	cupy.cumprod
	

Exponential and logarithm functions

	cupy.exp
	Elementwise exponential function.

	cupy.expm1
	Computes exp(x) - 1 elementwise.

	cupy.exp2
	Elementwise exponentiation with base 2.

	cupy.log
	Elementwise natural logarithm function.

	cupy.log10
	Elementwise common logarithm function.

	cupy.log2
	Elementwise binary logarithm function.

	cupy.log1p
	Computes log(1 + x) elementwise.

	cupy.logaddexp
	Computes log(exp(x1) + exp(x2)) elementwise.

	cupy.logaddexp2
	Computes log2(exp2(x1) + exp2(x2)) elementwise.

Floating point manipulations

	cupy.signbit
	Tests elementwise if the sign bit is set (i.e.

	cupy.copysign
	Returns the first argument with the sign bit of the second elementwise.

	cupy.ldexp
	Computes x1 * 2 ** x2 elementwise.

	cupy.frexp
	Decomposes each element to mantissa and two’s exponent.

	cupy.nextafter
	Computes the nearest neighbor float values towards the second argument.

Arithmetic operations

	cupy.negative
	Takes numerical negative elementwise.

	cupy.add
	Adds two arrays elementwise.

	cupy.subtract
	Subtracts arguments elementwise.

	cupy.multiply
	Multiplies two arrays elementwise.

	cupy.divide
	Elementwise true division (i.e.

	cupy.true_divide
	Elementwise true division (i.e.

	cupy.floor_divide
	Elementwise floor division (i.e.

	cupy.power
	Computes x1 ** x2 elementwise.

	cupy.fmod
	Computes the remainder of C division elementwise.

	cupy.mod
	Computes the remainder of Python division elementwise.

	cupy.remainder
	Computes the remainder of Python division elementwise.

	cupy.modf
	Extracts the fractional and integral parts of an array elementwise.

	cupy.reciprocal
	Computes 1 / x elementwise.

Miscellaneous

	cupy.clip
	

	cupy.sqrt
	

	cupy.square
	Elementwise square function.

	cupy.absolute
	Elementwise absolute value function.

	cupy.sign
	Elementwise sign function.

	cupy.maximum
	Takes the maximum of two arrays elementwise.

	cupy.minimum
	Takes the minimum of two arrays elementwise.

	cupy.fmax
	Takes the maximum of two arrays elementwise.

	cupy.fmin
	Takes the minimum of two arrays elementwise.

cupy.sin

	
cupy.sin = <ufunc 'cupy_sin'>

	Elementwise sine function.

See also

numpy.sin [https://docs.scipy.org/doc/numpy/reference/generated/numpy.sin.html#numpy.sin]

cupy.cos

	
cupy.cos = <ufunc 'cupy_cos'>

	Elementwise cosine function.

See also

numpy.cos [https://docs.scipy.org/doc/numpy/reference/generated/numpy.cos.html#numpy.cos]

cupy.tan

	
cupy.tan = <ufunc 'cupy_tan'>

	Elementwise tangent function.

See also

numpy.tan [https://docs.scipy.org/doc/numpy/reference/generated/numpy.tan.html#numpy.tan]

cupy.arcsin

	
cupy.arcsin = <ufunc 'cupy_arcsin'>

	Elementwise inverse-sine function (a.k.a. arcsine function).

See also

numpy.arcsin [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsin.html#numpy.arcsin]

cupy.arccos

	
cupy.arccos = <ufunc 'cupy_arccos'>

	Elementwise inverse-cosine function (a.k.a. arccosine function).

See also

numpy.arccos [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arccos.html#numpy.arccos]

cupy.arctan

	
cupy.arctan = <ufunc 'cupy_arctan'>

	Elementwise inverse-tangent function (a.k.a. arctangent function).

See also

numpy.arctan [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan.html#numpy.arctan]

cupy.hypot

	
cupy.hypot = <ufunc 'cupy_hypot'>

	Computes the hypoteneous of orthogonal vectors of given length.

This is equivalent to sqrt(x1 **2 + x2 ** 2), while this function is
more efficient.

See also

numpy.hypot [https://docs.scipy.org/doc/numpy/reference/generated/numpy.hypot.html#numpy.hypot]

cupy.arctan2

	
cupy.arctan2 = <ufunc 'cupy_arctan2'>

	Elementwise inverse-tangent of the ratio of two arrays.

See also

numpy.arctan2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctan2.html#numpy.arctan2]

cupy.deg2rad

	
cupy.deg2rad = <ufunc 'cupy_deg2rad'>

	Converts angles from degrees to radians elementwise.

See also

numpy.deg2rad [https://docs.scipy.org/doc/numpy/reference/generated/numpy.deg2rad.html#numpy.deg2rad], numpy.radians [https://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html#numpy.radians]

cupy.rad2deg

	
cupy.rad2deg = <ufunc 'cupy_rad2deg'>

	Converts angles from radians to degrees elementwise.

See also

numpy.rad2deg [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rad2deg.html#numpy.rad2deg], numpy.degrees [https://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html#numpy.degrees]

cupy.degrees

	
cupy.degrees = <ufunc 'cupy_rad2deg'>

	Converts angles from radians to degrees elementwise.

See also

numpy.rad2deg [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rad2deg.html#numpy.rad2deg], numpy.degrees [https://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html#numpy.degrees]

cupy.radians

	
cupy.radians = <ufunc 'cupy_deg2rad'>

	Converts angles from degrees to radians elementwise.

See also

numpy.deg2rad [https://docs.scipy.org/doc/numpy/reference/generated/numpy.deg2rad.html#numpy.deg2rad], numpy.radians [https://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html#numpy.radians]

cupy.sinh

	
cupy.sinh = <ufunc 'cupy_sinh'>

	Elementwise hyperbolic sine function.

See also

numpy.sinh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.sinh.html#numpy.sinh]

cupy.cosh

	
cupy.cosh = <ufunc 'cupy_cosh'>

	Elementwise hyperbolic cosine function.

See also

numpy.cosh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.cosh.html#numpy.cosh]

cupy.tanh

	
cupy.tanh = <ufunc 'cupy_tanh'>

	Elementwise hyperbolic tangent function.

See also

numpy.tanh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.tanh.html#numpy.tanh]

cupy.arcsinh

	
cupy.arcsinh = <ufunc 'cupy_arcsinh'>

	Elementwise inverse of hyperbolic sine function.

See also

numpy.arcsinh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsinh.html#numpy.arcsinh]

cupy.arccosh

	
cupy.arccosh = <ufunc 'cupy_arccosh'>

	Elementwise inverse of hyperbolic cosine function.

See also

numpy.arccosh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arccosh.html#numpy.arccosh]

cupy.arctanh

	
cupy.arctanh = <ufunc 'cupy_arctanh'>

	Elementwise inverse of hyperbolic tangent function.

See also

numpy.arctanh [https://docs.scipy.org/doc/numpy/reference/generated/numpy.arctanh.html#numpy.arctanh]

cupy.rint

	
cupy.rint = <ufunc 'cupy_rint'>

	Rounds each element of an array to the nearest integer.

See also

numpy.rint [https://docs.scipy.org/doc/numpy/reference/generated/numpy.rint.html#numpy.rint]

cupy.floor

	
cupy.floor = <ufunc 'cupy_floor'>

	Rounds each element of an array to its floor integer.

See also

numpy.floor [https://docs.scipy.org/doc/numpy/reference/generated/numpy.floor.html#numpy.floor]

cupy.ceil

	
cupy.ceil = <ufunc 'cupy_ceil'>

	Rounds each element of an array to its ceiling integer.

See also

numpy.ceil [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ceil.html#numpy.ceil]

cupy.trunc

	
cupy.trunc = <ufunc 'cupy_trunc'>

	Rounds each element of an array towards zero.

See also

numpy.trunc [https://docs.scipy.org/doc/numpy/reference/generated/numpy.trunc.html#numpy.trunc]

cupy.fix

	
cupy.fix = <ufunc 'cupy_fix'>

	If given value x is positive, it return floor(x).
Else, it return ceil(x).
.. seealso:: numpy.fix

cupy.sum

	
cupy.sum(*args, **kwargs)

	

cupy.prod

	
cupy.prod(*args, **kwargs)

	

cupy.cumsum

	
cupy.cumsum(a, axis=None, dtype=None, out=None)

	

cupy.exp

	
cupy.exp = <ufunc 'cupy_exp'>

	Elementwise exponential function.

See also

numpy.exp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp.html#numpy.exp]

cupy.expm1

	
cupy.expm1 = <ufunc 'cupy_expm1'>

	Computes exp(x) - 1 elementwise.

See also

numpy.expm1 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.expm1.html#numpy.expm1]

cupy.exp2

	
cupy.exp2 = <ufunc 'cupy_exp2'>

	Elementwise exponentiation with base 2.

See also

numpy.exp2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.exp2.html#numpy.exp2]

cupy.log

	
cupy.log = <ufunc 'cupy_log'>

	Elementwise natural logarithm function.

See also

numpy.log [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html#numpy.log]

cupy.log10

	
cupy.log10 = <ufunc 'cupy_log10'>

	Elementwise common logarithm function.

See also

numpy.log10 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log10.html#numpy.log10]

cupy.log2

	
cupy.log2 = <ufunc 'cupy_log2'>

	Elementwise binary logarithm function.

See also

numpy.log2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log2.html#numpy.log2]

cupy.log1p

	
cupy.log1p = <ufunc 'cupy_log1p'>

	Computes log(1 + x) elementwise.

See also

numpy.log1p [https://docs.scipy.org/doc/numpy/reference/generated/numpy.log1p.html#numpy.log1p]

cupy.logaddexp

	
cupy.logaddexp = <ufunc 'cupy_logaddexp'>

	Computes log(exp(x1) + exp(x2)) elementwise.

See also

numpy.logaddexp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp.html#numpy.logaddexp]

cupy.logaddexp2

	
cupy.logaddexp2 = <ufunc 'cupy_logaddexp2'>

	Computes log2(exp2(x1) + exp2(x2)) elementwise.

See also

numpy.logaddexp2 [https://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp2.html#numpy.logaddexp2]

cupy.signbit

	
cupy.signbit = <ufunc 'cupy_signbit'>

	Tests elementwise if the sign bit is set (i.e. less than zero).

See also

numpy.signbit [https://docs.scipy.org/doc/numpy/reference/generated/numpy.signbit.html#numpy.signbit]

cupy.copysign

	
cupy.copysign = <ufunc 'cupy_copysign'>

	Returns the first argument with the sign bit of the second elementwise.

See also

numpy.copysign [https://docs.scipy.org/doc/numpy/reference/generated/numpy.copysign.html#numpy.copysign]

cupy.ldexp

	
cupy.ldexp = <ufunc 'cupy_ldexp'>

	Computes x1 * 2 ** x2 elementwise.

See also

numpy.ldexp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ldexp.html#numpy.ldexp]

cupy.frexp

	
cupy.frexp = <ufunc 'cupy_frexp'>

	Decomposes each element to mantissa and two’s exponent.

This ufunc outputs two arrays of the input dtype and the int dtype.

See also

numpy.frexp [https://docs.scipy.org/doc/numpy/reference/generated/numpy.frexp.html#numpy.frexp]

cupy.nextafter

	
cupy.nextafter = <ufunc 'cupy_nextafter'>

	Computes the nearest neighbor float values towards the second argument.

See also

numpy.nextafter [https://docs.scipy.org/doc/numpy/reference/generated/numpy.nextafter.html#numpy.nextafter]

cupy.negative

	
cupy.negative = <ufunc 'cupy_negative'>

	Takes numerical negative elementwise.

See also

numpy.negative [https://docs.scipy.org/doc/numpy/reference/generated/numpy.negative.html#numpy.negative]

cupy.add

	
cupy.add = <ufunc 'cupy_add'>

	Adds two arrays elementwise.

See also

numpy.add [https://docs.scipy.org/doc/numpy/reference/generated/numpy.add.html#numpy.add]

cupy.subtract

	
cupy.subtract = <ufunc 'cupy_subtract'>

	Subtracts arguments elementwise.

See also

numpy.subtract [https://docs.scipy.org/doc/numpy/reference/generated/numpy.subtract.html#numpy.subtract]

cupy.multiply

	
cupy.multiply = <ufunc 'cupy_multiply'>

	Multiplies two arrays elementwise.

See also

numpy.multiply [https://docs.scipy.org/doc/numpy/reference/generated/numpy.multiply.html#numpy.multiply]

cupy.divide

	
cupy.divide = <ufunc 'cupy_true_divide'>

	Elementwise true division (i.e. division as floating values).

See also

numpy.true_divide [https://docs.scipy.org/doc/numpy/reference/generated/numpy.true_divide.html#numpy.true_divide]

cupy.true_divide

	
cupy.true_divide = <ufunc 'cupy_true_divide'>

	Elementwise true division (i.e. division as floating values).

See also

numpy.true_divide [https://docs.scipy.org/doc/numpy/reference/generated/numpy.true_divide.html#numpy.true_divide]

cupy.floor_divide

	
cupy.floor_divide = <ufunc 'cupy_floor_divide'>

	Elementwise floor division (i.e. integer quotient).

See also

numpy.floor_divide [https://docs.scipy.org/doc/numpy/reference/generated/numpy.floor_divide.html#numpy.floor_divide]

cupy.power

	
cupy.power = <ufunc 'cupy_power'>

	Computes x1 ** x2 elementwise.

See also

numpy.power [https://docs.scipy.org/doc/numpy/reference/generated/numpy.power.html#numpy.power]

cupy.fmod

	
cupy.fmod = <ufunc 'cupy_fmod'>

	Computes the remainder of C division elementwise.

See also

numpy.fmod [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fmod.html#numpy.fmod]

cupy.mod

	
cupy.mod = <ufunc 'cupy_remainder'>

	Computes the remainder of Python division elementwise.

See also

numpy.remainder [https://docs.scipy.org/doc/numpy/reference/generated/numpy.remainder.html#numpy.remainder]

cupy.remainder

	
cupy.remainder = <ufunc 'cupy_remainder'>

	Computes the remainder of Python division elementwise.

See also

numpy.remainder [https://docs.scipy.org/doc/numpy/reference/generated/numpy.remainder.html#numpy.remainder]

cupy.modf

	
cupy.modf = <ufunc 'cupy_modf'>

	Extracts the fractional and integral parts of an array elementwise.

This ufunc returns two arrays.

See also

numpy.modf [https://docs.scipy.org/doc/numpy/reference/generated/numpy.modf.html#numpy.modf]

cupy.reciprocal

	
cupy.reciprocal = <ufunc 'cupy_reciprocal'>

	Computes 1 / x elementwise.

See also

numpy.reciprocal [https://docs.scipy.org/doc/numpy/reference/generated/numpy.reciprocal.html#numpy.reciprocal]

cupy.clip

	
cupy.clip(*args, **kwargs)

	

cupy.sqrt

	
cupy.sqrt = <ufunc 'cupy_sqrt'>

	

cupy.square

	
cupy.square = <ufunc 'cupy_square'>

	Elementwise square function.

See also

numpy.square [https://docs.scipy.org/doc/numpy/reference/generated/numpy.square.html#numpy.square]

cupy.absolute

	
cupy.absolute = <ufunc 'cupy_absolute'>

	Elementwise absolute value function.

See also

numpy.absolute [https://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html#numpy.absolute]

cupy.sign

	
cupy.sign = <ufunc 'cupy_sign'>

	Elementwise sign function.

It returns -1, 0, or 1 depending on the sign of the input.

See also

numpy.sign [https://docs.scipy.org/doc/numpy/reference/generated/numpy.sign.html#numpy.sign]

cupy.maximum

	
cupy.maximum = <ufunc 'cupy_maximum'>

	Takes the maximum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also

numpy.maximum [https://docs.scipy.org/doc/numpy/reference/generated/numpy.maximum.html#numpy.maximum]

cupy.minimum

	
cupy.minimum = <ufunc 'cupy_minimum'>

	Takes the minimum of two arrays elementwise.

If NaN appears, it returns the NaN.

See also

numpy.minimum [https://docs.scipy.org/doc/numpy/reference/generated/numpy.minimum.html#numpy.minimum]

cupy.fmax

	
cupy.fmax = <ufunc 'cupy_fmax'>

	Takes the maximum of two arrays elementwise.

If NaN appears, it returns the other operand.

See also

numpy.fmax [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fmax.html#numpy.fmax]

cupy.fmin

	
cupy.fmin = <ufunc 'cupy_fmin'>

	Takes the minimum of two arrays elementwise.

If NaN appears, it returns the other operand.

See also

numpy.fmin [https://docs.scipy.org/doc/numpy/reference/generated/numpy.fmin.html#numpy.fmin]

Padding

	cupy.pad
	Returns padded array.

cupy.pad

	
cupy.pad(array, pad_width, mode, **keywords)

	Returns padded array. You can specify the padded widths and values.

This function currently supports only mode=constant .

	Parameters:	
	array (array-like) – Input array of rank N.

	pad_width (int [https://docs.python.org/3/library/functions.html#int] or array-like) – Number of values padded
to the edges of each axis.
((before_1, after_1), ... (before_N, after_N)) uniquely pad widths
for each axis.
((before, after),) yields same before and after pad for each axis.
(pad,) or int is a shortcut for before = after = pad width for all
axes.
You cannot specify cupy.ndarray .

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) –
	‘constant’

	Pads with a constant values.

	constant_values (int [https://docs.python.org/3/library/functions.html#int] or array-like) – Used in
constant.
The values are padded for each axis.
((before_1, after_1), ... (before_N, after_N)) uniquely pad
constants for each axis.
((before, after),) yields same before and after constants for each
axis.
(constant,) or int is a shortcut for before = after = constant for
all axes.
Default is 0. You cannot specify cupy.ndarray .

	Returns:	Padded array of rank equal to array with shape increased according
to pad_width .

	Return type:	cupy.ndarray

See also

numpy.pad() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html#numpy.pad]

Random Sampling (cupy.random)

CuPy’s random number generation routines are based on cuRAND.
They cover a small fraction of numpy.random.

The big difference of cupy.random from numpy.random is that cupy.random supports dtype option for most functions.
This option enables us to generate float32 values directly without any space overhead.

Sample random data

	cupy.random.choice
	Returns an array of random values from a given 1-D array.

	cupy.random.rand
	Returns an array of uniform random values over the interval [0, 1).

	cupy.random.randn
	Returns an array of standard normal random values.

	cupy.random.randint
	Returns a scalar or an array of integer values over [low, high).

	cupy.random.random_integers
	Return a scalar or an array of integer values over [low, high]

	cupy.random.random_sample
	Returns an array of random values over the interval [0, 1).

	cupy.random.random
	Returns an array of random values over the interval [0, 1).

	cupy.random.ranf
	Returns an array of random values over the interval [0, 1).

	cupy.random.sample
	Returns an array of random values over the interval [0, 1).

	cupy.random.bytes
	Return random bytes.

Distributions

	cupy.random.gumbel
	Returns an array of samples drawn from a Gumbel distribution.

	cupy.random.lognormal
	Returns an array of samples drawn from a log normal distribution.

	cupy.random.normal
	Returns an array of normally distributed samples.

	cupy.random.standard_normal
	Returns an array of samples drawn from the standard normal distribution.

	cupy.random.uniform
	Returns an array of uniformly-distributed samples over an interval.

Random number generator

	cupy.random.seed
	Resets the state of the random number generator with a seed.

	cupy.random.get_random_state
	Gets the state of the random number generator for the current device.

	cupy.random.RandomState
	Portable container of a pseudo-random number generator.

cupy.random.choice

	
cupy.random.choice(a, size=None, replace=True, p=None)

	Returns an array of random values from a given 1-D array.

Each element of the returned array is independently sampled
from a according to p or uniformly.

	Parameters:	
	a (1-D array-like or int [https://docs.python.org/3/library/functions.html#int]) – If an array-like,
a random sample is generated from its elements.
If an int, the random sample is generated as if a was
cupy.arange(n)

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array.

	replace (boolean) – Whether the sample is with or without replacement

	p (1-D array-like) – The probabilities associated with each entry in a.
If not given the sample assumes a uniform distribution over all
entries in a.

	Returns:	
	An array of a values distributed according to

	p or uniformly.

	Return type:	cupy.ndarray

See also

numpy.random.choice() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.choice.html#numpy.random.choice]

cupy.random.rand

	
cupy.random.rand(*size, **kwarg)

	Returns an array of uniform random values over the interval [0, 1).

Each element of the array is uniformly distributed on the half-open
interval [0, 1). All elements are identically and independently
distributed (i.i.d.).

	Parameters:	
	size (tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed. The default is
numpy.float64.

	Returns:	A random array.

	Return type:	cupy.ndarray

See also

numpy.random.rand() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html#numpy.random.rand]

cupy.random.randn

	
cupy.random.randn(*size, **kwarg)

	Returns an array of standard normal random values.

Each element of the array is normally distributed with zero mean and unit
variance. All elements are identically and independently distributed
(i.i.d.).

	Parameters:	
	size (tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.
The default is numpy.float64.

	Returns:	An array of standard normal random values.

	Return type:	cupy.ndarray

See also

numpy.random.randn() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html#numpy.random.randn]

cupy.random.randint

	
cupy.random.randint(low, high=None, size=None)

	Returns a scalar or an array of integer values over [low, high).

Each element of returned values are independently sampled from
uniform distribution over left-close and right-open interval
[low, high).

	Parameters:	
	low (int [https://docs.python.org/3/library/functions.html#int]) – If high is not None,
it is the lower bound of the interval.
Otherwise, it is the upper bound of the interval
and lower bound of the interval is set to 0.

	high (int [https://docs.python.org/3/library/functions.html#int]) – Upper bound of the interval.

	size (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of returned value.

	Returns:	If size is None,
it is single integer sampled.
If size is integer, it is the 1D-array of length size element.
Otherwise, it is the array whose shape specified by size.

	Return type:	int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray of ints

cupy.random.random_integers

	
cupy.random.random_integers(low, high=None, size=None)

	Return a scalar or an array of integer values over [low, high]

Each element of returned values are independently sampled from
uniform distribution over closed interval [low, high].

	Parameters:	
	low (int [https://docs.python.org/3/library/functions.html#int]) – If high is not None,
it is the lower bound of the interval.
Otherwise, it is the upper bound of the interval
and the lower bound is set to 1.

	high (int [https://docs.python.org/3/library/functions.html#int]) – Upper bound of the interval.

	size (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of returned value.

	Returns:	If size is None,
it is single integer sampled.
If size is integer, it is the 1D-array of length size element.
Otherwise, it is the array whose shape specified by size.

	Return type:	int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray of ints

cupy.random.random_sample

	
cupy.random.random_sample(size=None, dtype=<class 'float'>)

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:	An array of uniformly distributed random values.

	Return type:	cupy.ndarray

See also

numpy.random.random_sample() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample]

cupy.random.random

	
cupy.random.random(size=None, dtype=<class 'float'>)

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:	An array of uniformly distributed random values.

	Return type:	cupy.ndarray

See also

numpy.random.random_sample() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample]

cupy.random.ranf

	
cupy.random.ranf(size=None, dtype=<class 'float'>)

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:	An array of uniformly distributed random values.

	Return type:	cupy.ndarray

See also

numpy.random.random_sample() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample]

cupy.random.sample

	
cupy.random.sample(size=None, dtype=<class 'float'>)

	Returns an array of random values over the interval [0, 1).

This is a variant of cupy.random.rand().

	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:	An array of uniformly distributed random values.

	Return type:	cupy.ndarray

See also

numpy.random.random_sample() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample]

cupy.random.bytes

	
cupy.random.bytes(length)

	Return random bytes.

	Parameters:	length (int [https://docs.python.org/3/library/functions.html#int]) – Number of random bytes.

	Returns:	out – String of length length.

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

Examples

>>> np.random.bytes(10)
' eh\x85\x022SZ\xbf\xa4' #random

cupy.random.gumbel

	
cupy.random.gumbel(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)

	Returns an array of samples drawn from a Gumbel distribution.

The samples are drawn from a Gumbel distribution with location loc
and scale scale.
Its probability density function is defined as

\[f(x) = \frac{1}{\eta} \exp\left\{ - \frac{x - \mu}{\eta} \right\} \exp\left[-\exp\left\{-\frac{x - \mu}{\eta} \right\}\right],\]

where \(\mu\) is loc and \(\eta\) is scale.

	Parameters:	
	loc (float [https://docs.python.org/3/library/functions.html#float]) – The location of the mode \(\mu\).

	scale (float [https://docs.python.org/3/library/functions.html#float]) – The scale parameter \(\eta\).

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:	Samples drawn from the Gumbel destribution.

	Return type:	cupy.ndarray

See also

numpy.random.gumbel() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.gumbel.html#numpy.random.gumbel]

cupy.random.lognormal

	
cupy.random.lognormal(mean=0.0, sigma=1.0, size=None, dtype=<class 'float'>)

	Returns an array of samples drawn from a log normal distribution.

The samples are natural log of samples drawn from a normal distribution
with mean mean and deviation sigma.

	Parameters:	
	mean (float [https://docs.python.org/3/library/functions.html#float]) – Mean of the normal distribution.

	sigma (float [https://docs.python.org/3/library/functions.html#float]) – Standard deviation of the normal distribution.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:	Samples drawn from the log normal distribution.

	Return type:	cupy.ndarray

See also

numpy.random.lognormal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.lognormal.html#numpy.random.lognormal]

cupy.random.normal

	
cupy.random.normal(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)

	Returns an array of normally distributed samples.

	Parameters:	
	loc (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Mean of the normal distribution.

	scale (float [https://docs.python.org/3/library/functions.html#float] or array_like of floats) – Standard deviation of the normal distribution.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier. Only numpy.float32 and
numpy.float64 types are allowed.

	Returns:	Normally distributed samples.

	Return type:	cupy.ndarray

See also

numpy.random.normal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html#numpy.random.normal]

cupy.random.standard_normal

	
cupy.random.standard_normal(size=None, dtype=<class 'float'>)

	Returns an array of samples drawn from the standard normal distribution.

This is a variant of cupy.random.randn().

	Parameters:	
	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier.

	Returns:	Samples drawn from the standard normal distribution.

	Return type:	cupy.ndarray

See also

numpy.random.standard_normal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.standard_normal.html#numpy.random.standard_normal]

cupy.random.uniform

	
cupy.random.uniform(low=0.0, high=1.0, size=None, dtype=<class 'float'>)

	Returns an array of uniformly-distributed samples over an interval.

Samples are drawn from a uniform distribution over the half-open interval
[low, high).

	Parameters:	
	low (float [https://docs.python.org/3/library/functions.html#float]) – Lower end of the interval.

	high (float [https://docs.python.org/3/library/functions.html#float]) – Upper end of the interval.

	size (int [https://docs.python.org/3/library/functions.html#int] or tuple of ints) – The shape of the array. If None, a
zero-dimensional array is generated.

	dtype – Data type specifier.

	Returns:	Samples drawn from the uniform distribution.

	Return type:	cupy.ndarray

See also

numpy.random.uniform() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.uniform.html#numpy.random.uniform]

cupy.random.seed

	
cupy.random.seed(seed=None)

	Resets the state of the random number generator with a seed.

This function resets the state of the global random number generator for
the current device. Be careful that generators for other devices are not
affected.

	Parameters:	seed (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int]) – Seed for the random number generator. If None,
it uses os.urandom() [https://docs.python.org/3/library/os.html#os.urandom] if available or time.clock() [https://docs.python.org/3/library/time.html#time.clock]
otherwise. Note that this function does not support seeding by an
integer array.

cupy.random.get_random_state

	
cupy.random.get_random_state()

	Gets the state of the random number generator for the current device.

If the state for the current device is not created yet, this function
creates a new one, initializes it, and stores it as the state for the
current device.

	Returns:	The state of the random number generator for the
device.

	Return type:	RandomState

cupy.random.RandomState

	
class cupy.random.RandomState(seed=None, method=100)

	Portable container of a pseudo-random number generator.

An instance of this class holds the state of a random number generator. The
state is available only on the device which has been current at the
initialization of the instance.

Functions of cupy.random use global instances of this class.
Different instances are used for different devices. The global state for
the current device can be obtained by the
cupy.random.get_random_state() function.

	Parameters:	
	seed (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int]) – Seed of the random number generator. See the
seed() method for detail.

	method (int [https://docs.python.org/3/library/functions.html#int]) – Method of the random number generator. Following values
are available:

cupy.cuda.curand.CURAND_RNG_PSEUDO_DEFAULT
cupy.cuda.curand.CURAND_RNG_XORWOW
cupy.cuda.curand.CURAND_RNG_MRG32K3A
cupy.cuda.curand.CURAND_RNG_MTGP32
cupy.cuda.curand.CURAND_RNG_MT19937
cupy.cuda.curand.CURAND_RNG_PHILOX4_32_10

Methods

	
choice(a, size=None, replace=True, p=None)

	Returns an array of random values from a given 1-D array.

See also

cupy.random.choice() for full document,
numpy.random.choice()

	
interval(mx, size)

	Generate multiple integers independently sampled uniformly from [0, mx].

	Parameters:	
	mx (int [https://docs.python.org/3/library/functions.html#int]) – Upper bound of the interval

	size (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of the array or the scalar
returned.

	Returns:	If None, an cupy.ndarray with
shape () is returned.
If int, 1-D array of length size is returned.
If tuple, multi-dimensional array with shape
size is returned.
Currently, each element of the array is numpy.int32.

	Return type:	int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray

	
lognormal(mean=0.0, sigma=1.0, size=None, dtype=<class 'float'>)

	Returns an array of samples drawn from a log normal distribution.

See also

cupy.random.lognormal() for full documentation,
numpy.random.RandomState.lognormal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.lognormal.html#numpy.random.RandomState.lognormal]

	
normal(loc=0.0, scale=1.0, size=None, dtype=<class 'float'>)

	Returns an array of normally distributed samples.

See also

cupy.random.normal() for full documentation,
numpy.random.RandomState.normal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.normal.html#numpy.random.RandomState.normal]

	
rand(*size, **kwarg)

	Returns uniform random values over the interval [0, 1).

See also

cupy.random.rand() for full documentation,
numpy.random.RandomState.rand() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.rand.html#numpy.random.RandomState.rand]

	
randn(*size, **kwarg)

	Returns an array of standard normal random values.

See also

cupy.random.randn() for full documentation,
numpy.random.RandomState.randn() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.randn.html#numpy.random.RandomState.randn]

	
random_sample(size=None, dtype=<class 'float'>)

	Returns an array of random values over the interval [0, 1).

See also

cupy.random.random_sample() for full documentation,
numpy.random.RandomState.random_sample() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.random_sample.html#numpy.random.RandomState.random_sample]

	
seed(seed=None)

	Resets the state of the random number generator with a seed.

See also

cupy.random.seed() for full documentation,
numpy.random.RandomState.seed() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.seed.html#numpy.random.RandomState.seed]

	
set_stream(stream=None)

	

	
standard_normal(size=None, dtype=<class 'float'>)

	Returns samples drawn from the standard normal distribution.

See also

cupy.random.standard_normal() for full documentation,
numpy.random.RandomState.standard_normal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.standard_normal.html#numpy.random.RandomState.standard_normal]

	
uniform(low=0.0, high=1.0, size=None, dtype=<class 'float'>)

	Returns an array of uniformly-distributed samples over an interval.

See also

cupy.random.uniform() for full documentation,
numpy.random.RandomState.uniform() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.uniform.html#numpy.random.RandomState.uniform]

Sorting, Searching, and Counting

	cupy.sort
	Returns a sorted copy of an array with a stable sorting algorithm.

	cupy.argsort
	

	cupy.argmax
	Returns the indices of the maximum along an axis.

	cupy.argmin
	Returns the indices of the minimum along an axis.

	cupy.count_nonzero
	Counts the number of non-zero values in the array.

	cupy.nonzero
	Return the indices of the elements that are non-zero.

	cupy.flatnonzero
	Return indices that are non-zero in the flattened version of a.

	cupy.where
	

cupy.sort

	
cupy.sort(a)

	Returns a sorted copy of an array with a stable sorting algorithm.

	Parameters:	a (cupy.ndarray) – Array to be sorted.

	Returns:	Array of the same type and shape as a.

	Return type:	cupy.ndarray

Note

For its implementation reason, cupy.sort currently supports only
arrays with their rank of one and does not support axis, kind
and order parameters that numpy.sort does support.

See also

numpy.sort() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html#numpy.sort]

cupy.argmax

	
cupy.argmax(a, axis=None, dtype=None, out=None, keepdims=False)

	Returns the indices of the maximum along an axis.

	Parameters:	
	a (cupy.ndarray) – Array to take argmax.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to find the maximum. a is flattened by
default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis axis is preserved as an axis
of length one.

	Returns:	The indices of the maximum of a along an axis.

	Return type:	cupy.ndarray

See also

numpy.argmax() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html#numpy.argmax]

cupy.argmin

	
cupy.argmin(a, axis=None, dtype=None, out=None, keepdims=False)

	Returns the indices of the minimum along an axis.

	Parameters:	
	a (cupy.ndarray) – Array to take argmin.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to find the minimum. a is flattened by
default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis axis is preserved as an axis
of length one.

	Returns:	The indices of the minimum of a along an axis.

	Return type:	cupy.ndarray

See also

numpy.argmin() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html#numpy.argmin]

cupy.count_nonzero

	
cupy.count_nonzero(a, axis=None)

	Counts the number of non-zero values in the array.

	Parameters:	
	a (cupy.ndarray) – The array for which to count non-zeros.

	axis (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Axis or tuple of axes along which to
count non-zeros. Default is None, meaning that non-zeros will be
counted along a flattened version of a

	Returns:	
	Number of non-zero values in the array

	along a given axis. Otherwise, the total number of non-zero values
in the array is returned.

	Return type:	int [https://docs.python.org/3/library/functions.html#int] or cupy.ndarray of int

cupy.nonzero

	
cupy.nonzero(a)

	Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of a,
containing the indices of the non-zero elements in that dimension.

	Parameters:	a (cupy.ndarray) – array

	Returns:	Indices of elements that are non-zero.

	Return type:	tuple of arrays

See also

numpy.nonzero() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.nonzero.html#numpy.nonzero]

cupy.flatnonzero

	
cupy.flatnonzero(a)

	Return indices that are non-zero in the flattened version of a.

This is equivalent to a.ravel().nonzero()[0].

	Parameters:	a (cupy.ndarray) – input array

	Returns:	Output array,
containing the indices of the elements of a.ravel() that are non-zero.

	Return type:	cupy.ndarray

See also

numpy.flatnonzero() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.flatnonzero.html#numpy.flatnonzero]

cupy.where

	
cupy.where(*args, **kwargs)

	

Statistics

Order statistics

	cupy.amin
	

	cupy.amax
	

	cupy.nanmin
	Returns the minimum of an array along an axis ignoring NaN.

	cupy.nanmax
	Returns the maximum of an array along an axis ignoring NaN.

Means and variances

	cupy.mean
	Returns the arithmetic mean along an axis.

	cupy.var
	Returns the variance along an axis.

	cupy.std
	Returns the standard deviation along an axis.

Histograms

	cupy.bincount
	Count number of occurrences of each value in array of non-negative ints.

cupy.amin

	
cupy.amin(*args, **kwargs)

	

cupy.amax

	
cupy.amax(*args, **kwargs)

	

cupy.nanmin

	
cupy.nanmin(a, axis=None, out=None, keepdims=False)

	Returns the minimum of an array along an axis ignoring NaN.

When there is a slice whose elements are all NaN, a RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning]
is raised and NaN is returned.

	Parameters:	
	a (cupy.ndarray) – Array to take the minimum.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to take the minimum. The flattened array
is used by default.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:	The minimum of a, along the axis if specified.

	Return type:	cupy.ndarray

See also

numpy.nanmin() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.nanmin.html#numpy.nanmin]

cupy.nanmax

	
cupy.nanmax(a, axis=None, out=None, keepdims=False)

	Returns the maximum of an array along an axis ignoring NaN.

When there is a slice whose elements are all NaN, a RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning]
is raised and NaN is returned.

	Parameters:	
	a (cupy.ndarray) – Array to take the maximum.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to take the maximum. The flattened array
is used by default.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:	The maximum of a, along the axis if specified.

	Return type:	cupy.ndarray

See also

numpy.nanmax() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.nanmax.html#numpy.nanmax]

cupy.mean

	
cupy.mean(a, axis=None, dtype=None, out=None, keepdims=False)

	Returns the arithmetic mean along an axis.

	Parameters:	
	a (cupy.ndarray) – Array to compute mean.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to compute mean. The flattened array is
used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:	The mean of the input array along the axis.

	Return type:	cupy.ndarray

See also

numpy.mean() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean]

cupy.var

	
cupy.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)

	Returns the variance along an axis.

	Parameters:	
	a (cupy.ndarray) – Array to compute variance.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to compute variance. The flattened array
is used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:	The variance of the input array along the axis.

	Return type:	cupy.ndarray

See also

numpy.var() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html#numpy.var]

cupy.std

	
cupy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)

	Returns the standard deviation along an axis.

	Parameters:	
	a (cupy.ndarray) – Array to compute standard deviation.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Along which axis to compute standard deviation. The
flattened array is used by default.

	dtype – Data type specifier.

	out (cupy.ndarray) – Output array.

	keepdims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the axis is remained as an axis of
size one.

	Returns:	The standard deviation of the input array along the axis.

	Return type:	cupy.ndarray

See also

numpy.std() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std]

cupy.bincount

	
cupy.bincount(x, weights=None, minlength=None)

	Count number of occurrences of each value in array of non-negative ints.

	Parameters:	
	x (cupy.ndarray) – Input array.

	weights (cupy.ndarray) – Weights array which has the same shape as
x.

	minlength (int [https://docs.python.org/3/library/functions.html#int]) – A minimum number of bins for the output array.

	Returns:	
	The result of binning the input array. The length of

	output is equal to max(cupy.max(x) + 1, minlength).

	Return type:	cupy.ndarray

See also

numpy.bincount() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html#numpy.bincount]

External Functions

	cupy.scatter_add
	Adds given values to specified elements of an array.

cupy.scatter_add

	
cupy.scatter_add(a, slices, value)

	Adds given values to specified elements of an array.

It adds value to the specified elements of a.
If all of the indices target different locations, the operation of
scatter_add() is equivalent to a[slices] = a[slices] + value.
If there are multiple elements targeting the same location,
scatter_add() uses all of these values for addition. On the other
hand, a[slices] = a[slices] + value only adds the contribution from one
of the indices targeting the same location.

Note that just like an array indexing, negative indices are interpreted as
counting from the end of an array.

Also note that scatter_add() behaves identically
to numpy.add.at().

Example

>>> import numpy
>>> import cupy
>>> a = cupy.zeros((6,), dtype=numpy.float32)
>>> i = cupy.array([1, 0, 1])
>>> v = cupy.array([1., 1., 1.])
>>> cupy.scatter_add(a, i, v);
>>> a
array([1., 2., 0., 0., 0., 0.], dtype=float32)

	Parameters:	
	a (ndarray) – An array that gets added.

	slices – It is integer, slices, ellipsis, numpy.newaxis,
integer array-like, boolean array-like or tuple of them.
It works for slices used for
cupy.ndarray.__getitem__() and
cupy.ndarray.__setitem__().

	v (array-like) – Values to increment a at referenced locations.

Note

It only supports types that are supported by CUDA’s atomicAdd when
an integer array is included in slices.
The supported types are numpy.float32, numpy.int32,
numpy.uint32, numpy.uint64 and numpy.ulonglong.

Note

scatter_add() does not raise an error when indices exceed size of
axes. Instead, it wraps indices.

See also

numpy.add.at().

NumPy-CuPy Generic Code Support

	cupy.get_array_module
	Returns the array module for arguments.

cupy.get_array_module

	
cupy.get_array_module(*args)

	Returns the array module for arguments.

This function is used to implement CPU/GPU generic code. If at least one of
the arguments is a cupy.ndarray object, the cupy module is
returned.

	Parameters:	args – Values to determine whether NumPy or CuPy should be used.

	Returns:	cupy or numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy] is returned based on the types of
the arguments.

	Return type:	module

Example

A NumPy/CuPy generic function can be written as follows

>>> def softplus(x):
... xp = cupy.get_array_module(x)
... return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

Low-Level CUDA Support

Device management

	cupy.cuda.Device
	Object that represents a CUDA device.

Memory management

	cupy.cuda.Memory
	Memory allocation on a CUDA device.

	cupy.cuda.MemoryPointer
	Pointer to a point on a device memory.

	cupy.cuda.alloc
	Calls the current allocator.

	cupy.cuda.set_allocator
	Sets the current allocator.

	cupy.cuda.MemoryPool
	Memory pool for all devices on the machine.

Streams and events

	cupy.cuda.Stream
	CUDA stream.

	cupy.cuda.Event
	CUDA event, a synchronization point of CUDA streams.

	cupy.cuda.get_elapsed_time
	Gets the elapsed time between two events.

Profiler

	cupy.cuda.profile
	Enable CUDA profiling during with statement.

	cupy.cuda.profiler.initialize
	Initialize the CUDA profiler.

	cupy.cuda.profiler.start
	Enable profiling.

	cupy.cuda.profiler.stop
	Disable profiling.

	cupy.cuda.nvtx.Mark
	Marks an instantaneous event (marker) in the application.

	cupy.cuda.nvtx.MarkC
	Marks an instantaneous event (marker) in the application.

	cupy.cuda.nvtx.RangePush
	Starts a nestead range.

	cupy.cuda.nvtx.RangePushC
	Starts a nestead range.

	cupy.cuda.nvtx.RangePop
	Ends a nestead range.

cupy.cuda.Device

	
class cupy.cuda.Device

	Object that represents a CUDA device.

This class provides some basic manipulations on CUDA devices.

It supports the context protocol. For example, the following code is an
example of temporarily switching the current device:

with Device(0):
 do_something_on_device_0()

After the with statement gets done, the current device is reset to the
original one.

	Parameters:	device (int [https://docs.python.org/3/library/functions.html#int] or cupy.cuda.Device) – Index of the device to manipulate. Be
careful that the device ID (a.k.a. GPU ID) is zero origin. If it is
a Device object, then its ID is used. The current device is
selected by default.

	Variables:	id (int [https://docs.python.org/3/library/functions.html#int]) – ID of this device.

Methods

	
__enter__()

	

	
__exit__()

	

	
synchronize()

	Synchronizes the current thread to the device.

	
use()

	Makes this device current.

If you want to switch a device temporarily, use the with statement.

Attributes

	
compute_capability

	Compute capability of this device.

The capability is represented by a string containing the major index
and the minor index. For example, compute capability 3.5 is represented
by the string ‘35’.

	
cublas_handle

	The cuBLAS handle for this device.

The same handle is used for the same device even if the Device instance
itself is different.

	
cusolver_handle

	The cuSOLVER handle for this device.

The same handle is used for the same device even if the Device instance
itself is different.

	
id

	

cupy.cuda.Memory

	
class cupy.cuda.Memory

	Memory allocation on a CUDA device.

This class provides an RAII interface of the CUDA memory allocation.

	Parameters:	
	device (cupy.cuda.Device) – Device whose memory the pointer refers to.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation in bytes.

Methods

Attributes

	
device

	

	
ptr

	

	
size

	

cupy.cuda.MemoryPointer

	
class cupy.cuda.MemoryPointer

	Pointer to a point on a device memory.

An instance of this class holds a reference to the original memory buffer
and a pointer to a place within this buffer.

	Parameters:	
	mem (Memory) – The device memory buffer.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – An offset from the head of the buffer to the place this
pointer refers.

	Variables:	
	device (cupy.cuda.Device) – Device whose memory the pointer refers to.

	mem (Memory) – The device memory buffer.

	ptr (int [https://docs.python.org/3/library/functions.html#int]) – Pointer to the place within the buffer.

Methods

	
copy_from()

	Copies a memory sequence from a (possibly different) device or host.

This function is a useful interface that selects appropriate one from
copy_from_device() and
copy_from_host().

	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p] or cupy.cuda.MemoryPointer) – Source memory
pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	
copy_from_async()

	Copies a memory sequence from an arbitrary place asynchronously.

This function is a useful interface that selects appropriate one from
copy_from_device_async() and
copy_from_host_async().

	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p] or cupy.cuda.MemoryPointer) – Source memory
pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.

	
copy_from_device()

	Copies a memory sequence from a (possibly different) device.

	Parameters:	
	src (cupy.cuda.MemoryPointer) – Source memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	
copy_from_device_async()

	Copies a memory from a (possibly different) device asynchronously.

	Parameters:	
	src (cupy.cuda.MemoryPointer) – Source memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.

	
copy_from_host()

	Copies a memory sequence from the host memory.

	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Source memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	
copy_from_host_async()

	Copies a memory sequence from the host memory asynchronously.

	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Source memory pointer. It must be a pinned
memory.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.

	
copy_to_host()

	Copies a memory sequence to the host memory.

	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Target memory pointer.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	
copy_to_host_async()

	Copies a memory sequence to the host memory asynchronously.

	Parameters:	
	mem (ctypes.c_void_p [https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p]) – Target memory pointer. It must be a pinned
memory.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.

	
memset()

	Fills a memory sequence by constant byte value.

	Parameters:	
	value (int [https://docs.python.org/3/library/functions.html#int]) – Value to fill.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	
memset_async()

	Fills a memory sequence by constant byte value asynchronously.

	Parameters:	
	value (int [https://docs.python.org/3/library/functions.html#int]) – Value to fill.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the sequence in bytes.

	stream (cupy.cuda.Stream) – CUDA stream.

Attributes

	
device

	

	
mem

	

	
ptr

	

cupy.cuda.alloc

	
cupy.cuda.alloc()

	Calls the current allocator.

Use set_allocator() to change the current allocator.

	Parameters:	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory allocation.

	Returns:	Pointer to the allocated buffer.

	Return type:	MemoryPointer

cupy.cuda.set_allocator

	
cupy.cuda.set_allocator()

	Sets the current allocator.

	Parameters:	allocator (function) – CuPy memory allocator. It must have the same
interface as the cupy.cuda.alloc() function, which takes the
buffer size as an argument and returns the device buffer of that
size.

cupy.cuda.MemoryPool

	
class cupy.cuda.MemoryPool

	Memory pool for all devices on the machine.

A memory pool preserves any allocations even if they are freed by the user.
Freed memory buffers are held by the memory pool as free blocks, and they
are reused for further memory allocations of the same sizes. The allocated
blocks are managed for each device, so one instance of this class can be
used for multiple devices.

Note

When the allocation is skipped by reusing the pre-allocated block, it
does not call cudaMalloc and therefore CPU-GPU synchronization does
not occur. It makes interleaves of memory allocations and kernel
invocations very fast.

Note

The memory pool holds allocated blocks without freeing as much as
possible. It makes the program hold most of the device memory, which may
make other CUDA programs running in parallel out-of-memory situation.

	Parameters:	allocator (function) – The base CuPy memory allocator. It is used for
allocating new blocks when the blocks of the required size are all
in use.

Methods

	
free_all_blocks()

	Release free blocks.

	
free_all_free()

	Release free blocks.

	
malloc()

	Allocates the memory, from the pool if possible.

This method can be used as a CuPy memory allocator. The simplest way to
use a memory pool as the default allocator is the following code:

set_allocator(MemoryPool().malloc)

	Parameters:	size (int [https://docs.python.org/3/library/functions.html#int]) – Size of the memory buffer to allocate in bytes.

	Returns:	Pointer to the allocated buffer.

	Return type:	MemoryPointer

	
n_free_blocks()

	Count the total number of free blocks.

	Returns:	The total number of free blocks.

	Return type:	int [https://docs.python.org/3/library/functions.html#int]

cupy.cuda.Stream

	
class cupy.cuda.Stream(null=False, non_blocking=False)

	CUDA stream.

This class handles the CUDA stream handle in RAII way, i.e., when an Stream
instance is destroyed by the GC, its handle is also destroyed.

	Parameters:	
	null (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the stream is a null stream (i.e. the default
stream that synchronizes with all streams). Otherwise, a plain new
stream is created.

	non_blocking (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the stream does not synchronize with
the NULL stream.

	Variables:	ptr (cupy.cuda.runtime.Stream) – Raw stream handle. It can be passed to
the CUDA Runtime API via ctypes.

Methods

	
add_callback(callback, arg)

	Adds a callback that is called when all queued work is done.

	Parameters:	
	callback (function) – Callback function. It must take three
arguments (Stream object, int error status, and user data
object), and returns nothing.

	arg (object [https://docs.python.org/3/library/functions.html#object]) – Argument to the callback.

	
record(event=None)

	Records an event on the stream.

	Parameters:	event (None [https://docs.python.org/3/library/constants.html#None] or cupy.cuda.Event) – CUDA event. If None, then a
new plain event is created and used.

	Returns:	The recorded event.

	Return type:	cupy.cuda.Event

See also

cupy.cuda.Event.record()

	
synchronize()

	Waits for the stream completing all queued work.

	
wait_event(event)

	Makes the stream wait for an event.

The future work on this stream will be done after the event.

	Parameters:	event (cupy.cuda.Event) – CUDA event.

Attributes

	
done

	True if all work on this stream has been done.

	
null = <cupy.cuda.stream.Stream object>

	

cupy.cuda.Event

	
class cupy.cuda.Event(block=False, disable_timing=False, interprocess=False)

	CUDA event, a synchronization point of CUDA streams.

This class handles the CUDA event handle in RAII way, i.e., when an Event
instance is destroyed by the GC, its handle is also destroyed.

	Parameters:	
	block (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the event blocks on the
synchronize() method.

	disable_timing (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the event does not prepare the
timing data.

	interprocess (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the event can be passed to other
processes.

	Variables:	ptr (cupy.cuda.runtime.Stream) – Raw stream handle. It can be passed to
the CUDA Runtime API via ctypes.

Methods

	
record(stream=None)

	Records the event to a stream.

	Parameters:	stream (cupy.cuda.Stream) – CUDA stream to record event. The null
stream is used by default.

See also

cupy.cuda.Stream.record()

	
synchronize()

	Synchronizes all device work to the event.

If the event is created as a blocking event, it also blocks the CPU
thread until the event is done.

Attributes

	
done

	True if the event is done.

cupy.cuda.get_elapsed_time

	
cupy.cuda.get_elapsed_time(start_event, end_event)

	Gets the elapsed time between two events.

	Parameters:	
	start_event (Event) – Earlier event.

	end_event (Event) – Later event.

	Returns:	Elapsed time in milliseconds.

	Return type:	float [https://docs.python.org/3/library/functions.html#float]

cupy.cuda.profile

	
cupy.cuda.profile()

	Enable CUDA profiling during with statement.

This function enables profiling on entering a with statement, and disables
profiling on leaving the statement.

>>> with cupy.cuda.profile():
... # do something you want to measure
... pass

cupy.cuda.profiler.initialize

	
cupy.cuda.profiler.initialize()

	Initialize the CUDA profiler.

This function initialize the CUDA profiler. See the CUDA document for
detail.

	Parameters:	
	config_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the configuration file.

	output_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the coutput file.

	output_mode (int [https://docs.python.org/3/library/functions.html#int]) – cupy.cuda.profiler.cudaKeyValuePair or
cupy.cuda.profiler.cudaCSV.

cupy.cuda.profiler.start

	
cupy.cuda.profiler.start()

	Enable profiling.

A user can enable CUDA profiling. When an error occurs, it raises an
exception.

See the CUDA document for detail.

cupy.cuda.profiler.stop

	
cupy.cuda.profiler.stop()

	Disable profiling.

A user can disable CUDA profiling. When an error occurs, it raises an
exception.

See the CUDA document for detail.

cupy.cuda.nvtx.Mark

	
cupy.cuda.nvtx.Mark()

	Marks an instantaneous event (marker) in the application.

Markes are used to describe events at a specific time during execution of
the application.

	Parameters:	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a marker.

	id_color (int [https://docs.python.org/3/library/functions.html#int]) – ID of color for a marker.

cupy.cuda.nvtx.MarkC

	
cupy.cuda.nvtx.MarkC()

	Marks an instantaneous event (marker) in the application.

Markes are used to describe events at a specific time during execution of
the application.

	Parameters:	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a marker.

	color (uint32) – Color code for a marker.

cupy.cuda.nvtx.RangePush

	
cupy.cuda.nvtx.RangePush()

	Starts a nestead range.

Ranges are used to describe events over a time span during execution of
the application. The duration of a range is defined by the corresponding
pair of RangePush*() to RangePop() calls.

	Parameters:	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a range.

	id_color (int [https://docs.python.org/3/library/functions.html#int]) – ID of color for a range.

cupy.cuda.nvtx.RangePushC

	
cupy.cuda.nvtx.RangePushC()

	Starts a nestead range.

Ranges are used to describe events over a time span during execution of
the application. The duration of a range is defined by the corresponding
pair of RangePush*() to RangePop() calls.

	Parameters:	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a range.

	color (uint32) – ARGB color for a range.

cupy.cuda.nvtx.RangePop

	
cupy.cuda.nvtx.RangePop()

	Ends a nestead range.

Ranges are used to describe events over a time span during execution of
the application. The duration of a range is defined by the corresponding
pair of RangePush*() to RangePop() calls.

Kernel binary memoization

	cupy.memoize
	Makes a function memoizing the result for each argument and device.

	cupy.clear_memo
	Clears the memoized results for all functions decorated by memoize.

cupy.memoize

	
cupy.memoize()

	Makes a function memoizing the result for each argument and device.

This decorator provides automatic memoization of the function result.

	Parameters:	for_each_device (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, it memoizes the results for each
device. Otherwise, it memoizes the results only based on the
arguments.

cupy.clear_memo

	
cupy.clear_memo()

	Clears the memoized results for all functions decorated by memoize.

Custom kernels

	cupy.ElementwiseKernel
	User-defined elementwise kernel.

	cupy.ReductionKernel
	User-defined reduction kernel.

cupy.ElementwiseKernel

	
class cupy.ElementwiseKernel

	User-defined elementwise kernel.

This class can be used to define an elementwise kernel with or without
broadcasting.

The kernel is compiled at an invocation of the
__call__() method,
which is cached for each device.
The compiled binary is also cached into a file under the
$HOME/.cupy/kernel_cache/ directory with a hashed file name. The cached
binary is reused by other processes.

	Parameters:	
	in_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input argument list.

	out_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output argument list.

	operation (str [https://docs.python.org/3/library/stdtypes.html#str]) – The body in the loop written in CUDA-C/C++.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the kernel function. It should be set for
readability of the performance profiling.

	reduce_dims (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, the shapes of array arguments are
kept within the kernel invocation. The shapes are reduced
(i.e., the arrays are reshaped without copy to the minimum
dimension) by default. It may make the kernel fast by reducing the
index calculations.

	options (list [https://docs.python.org/3/library/stdtypes.html#list]) – Options passed to the nvcc command.

	preamble (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at the
top of the cu file.

	loop_prep (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at
the top of the kernel function definition and above the for
loop.

	after_loop (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at
the bottom of the kernel function definition.

Methods

Attributes

	
in_params

	

	
kwargs

	

	
name

	

	
nargs

	

	
nin

	

	
nout

	

	
operation

	

	
out_params

	

	
params

	

	
preamble

	

	
reduce_dims

	

cupy.ReductionKernel

	
class cupy.ReductionKernel

	User-defined reduction kernel.

This class can be used to define a reduction kernel with or without
broadcasting.

The kernel is compiled at an invocation of the
__call__() method, which is cached for each device.
The compiled binary is also cached into a file under the
$HOME/.cupy/kernel_cache/ directory with a hashed file name. The cached
binary is reused by other processes.

	Parameters:	
	in_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input argument list.

	out_params (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output argument list.

	map_expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Mapping expression for input values.

	reduce_expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Reduction expression.

	post_map_expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Mapping expression for reduced values.

	identity (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identity value for starting the reduction.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the kernel function. It should be set for
readability of the performance profiling.

	reduce_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of values to be used for reduction. This type
is used to store the special variables a.

	reduce_dims (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, input arrays are reshaped without copy
to smaller dimensions for efficiency.

	preamble (str [https://docs.python.org/3/library/stdtypes.html#str]) – Fragment of the CUDA-C/C++ code that is inserted at the
top of the cu file.

	options (tuple of str) – Additional compilation options.

Methods

	
__call__()

	Compiles and invokes the reduction kernel.

The compilation runs only if the kernel is not cached. Note that the
kernels with different argument dtypes, ndims, or axis are not
compatible. It means that single ReductionKernel object may be compiled
into multiple kernel binaries.

	Parameters:	args – Arguments of the kernel.

	Returns:	Arrays are returned according to the out_params argument of the
__init__ method.

Testing Modules

CuPy offers testing utilities to support unit testing.
They are under namespace cupy.testing.

Standard Assertions

The assertions have same names as NumPy’s ones.
The difference from NumPy is that they can accept both numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
and cupy.ndarray.

	cupy.testing.assert_allclose
	Raises an AssertionError if objects are not equal up to desired tolerance.

	cupy.testing.assert_array_almost_equal
	Raises an AssertionError if objects are not equal up to desired precision.

	cupy.testing.assert_array_almost_equal_nulp
	Compare two arrays relatively to their spacing.

	cupy.testing.assert_array_max_ulp
	Check that all items of arrays differ in at most N Units in the Last Place.

	cupy.testing.assert_array_equal
	Raises an AssertionError if two array_like objects are not equal.

	cupy.testing.assert_array_list_equal
	Compares lists of arrays pairwise with assert_array_equal.

	cupy.testing.assert_array_less
	Raises an AssertionError if array_like objects are not ordered by less than.

NumPy-CuPy Consistency Check

The following decorators are for testing consistency
between CuPy’s functions and corresponding NumPy’s ones.

	cupy.testing.numpy_cupy_allclose
	Decorator that checks NumPy results and CuPy ones are close.

	cupy.testing.numpy_cupy_array_almost_equal
	Decorator that checks NumPy results and CuPy ones are almost equal.

	cupy.testing.numpy_cupy_array_almost_equal_nulp
	Decorator that checks results of NumPy and CuPy are equal w.r.t.

	cupy.testing.numpy_cupy_array_max_ulp
	Decorator that checks results of NumPy and CuPy ones are equal w.r.t.

	cupy.testing.numpy_cupy_array_equal
	Decorator that checks NumPy results and CuPy ones are equal.

	cupy.testing.numpy_cupy_array_list_equal
	Decorator that checks the resulting lists of NumPy and CuPy’s one are equal.

	cupy.testing.numpy_cupy_array_less
	Decorator that checks the CuPy result is less than NumPy result.

	cupy.testing.numpy_cupy_raises
	Decorator that checks the NumPy and CuPy throw same errors.

Parameterized dtype Test

The following decorators offer the standard way for
parameterized test with respect to single or the
combination of dtype(s).

	cupy.testing.for_dtypes
	Decorator for parameterized dtype test.

	cupy.testing.for_all_dtypes
	Decorator that checks the fixture with all dtypes.

	cupy.testing.for_float_dtypes
	Decorator that checks the fixture with all float dtypes.

	cupy.testing.for_signed_dtypes
	Decorator that checks the fixture with signed dtypes.

	cupy.testing.for_unsigned_dtypes
	Decorator that checks the fixture with all dtypes.

	cupy.testing.for_int_dtypes
	Decorator that checks the fixture with integer and optionally bool dtypes.

	cupy.testing.for_dtypes_combination
	Decorator that checks the fixture with a product set of dtypes.

	cupy.testing.for_all_dtypes_combination
	Decorator that checks the fixture with a product set of all dtypes.

	cupy.testing.for_signed_dtypes_combination
	Decorator for parameterized test w.r.t.

	cupy.testing.for_unsigned_dtypes_combination
	Decorator for parameterized test w.r.t.

	cupy.testing.for_int_dtypes_combination
	Decorator for parameterized test w.r.t.

Parameterized order Test

The following decorators offer the standard way to parameterize tests with
orders.

	cupy.testing.for_orders
	Decorator to parameterize tests with order.

	cupy.testing.for_CF_orders
	Decorator that checks the fixture with orders ‘C’ and ‘F’.

cupy.testing.assert_allclose

	
cupy.testing.assert_allclose(actual, desired, rtol=1e-07, atol=0, err_msg='', verbose=True)

	Raises an AssertionError if objects are not equal up to desired tolerance.

	Parameters:	
	actual (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	desired (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	rtol (float [https://docs.python.org/3/library/functions.html#float]) – Relative tolerance.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Absolute tolerance.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting
values are appended to the error message.

See also

numpy.testing.assert_allclose() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose]

cupy.testing.assert_array_almost_equal

	
cupy.testing.assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True)

	Raises an AssertionError if objects are not equal up to desired precision.

	Parameters:	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	y (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	decimal (int [https://docs.python.org/3/library/functions.html#int]) – Desired precision.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting
values are appended to the error message.

See also

numpy.testing.assert_array_almost_equal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_almost_equal.html#numpy.testing.assert_array_almost_equal]

cupy.testing.assert_array_almost_equal_nulp

	
cupy.testing.assert_array_almost_equal_nulp(x, y, nulp=1)

	Compare two arrays relatively to their spacing.

	Parameters:	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	y (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	nulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of unit in the last place for tolerance.

See also

numpy.testing.assert_array_almost_equal_nulp() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_almost_equal_nulp.html#numpy.testing.assert_array_almost_equal_nulp]

cupy.testing.assert_array_max_ulp

	
cupy.testing.assert_array_max_ulp(a, b, maxulp=1, dtype=None)

	Check that all items of arrays differ in at most N Units in the Last Place.

	Parameters:	
	a (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	b (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	maxulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of units in the last place
that elements of a and b can differ.

	dtype (numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – Data-type to convert a and b to if given.

See also

numpy.testing.assert_array_max_ulp() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_max_ulp.html#numpy.testing.assert_array_max_ulp]

cupy.testing.assert_array_equal

	
cupy.testing.assert_array_equal(x, y, err_msg='', verbose=True)

	Raises an AssertionError if two array_like objects are not equal.

	Parameters:	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The actual object to check.

	y (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The desired, expected object.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.

See also

numpy.testing.assert_array_equal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_equal.html#numpy.testing.assert_array_equal]

cupy.testing.assert_array_list_equal

	
cupy.testing.assert_array_list_equal(xlist, ylist, err_msg='', verbose=True)

	Compares lists of arrays pairwise with assert_array_equal.

	Parameters:	
	x (array_like) – Array of the actual objects.

	y (array_like) – Array of the desired, expected objects.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.

Each element of x and y must be either numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]
or cupy.ndarray. x and y must have same length.
Otherwise, this function raises AssertionError.
It compares elements of x and y pairwise
with assert_array_equal() and raises error if at least one
pair is not equal.

See also

numpy.testing.assert_array_equal() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_equal.html#numpy.testing.assert_array_equal]

cupy.testing.assert_array_less

	
cupy.testing.assert_array_less(x, y, err_msg='', verbose=True)

	Raises an AssertionError if array_like objects are not ordered by less than.

	Parameters:	
	x (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The smaller object to check.

	y (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or cupy.ndarray) – The larger object to compare.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.

See also

numpy.testing.assert_array_less() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_array_less.html#numpy.testing.assert_array_less]

cupy.testing.numpy_cupy_allclose

	
cupy.testing.numpy_cupy_allclose(rtol=1e-07, atol=0, err_msg='', verbose=True, name='xp', type_check=True, accept_error=False)

	Decorator that checks NumPy results and CuPy ones are close.

	Parameters:	
	rtol (float [https://docs.python.org/3/library/functions.html#float]) – Relative tolerance.

	atol (float [https://docs.python.org/3/library/functions.html#float]) – Absolute tolerance

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are
appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.

Decorated test fixture is required to return the arrays whose values are
close between numpy case and cupy case.
For example, this test case checks numpy.zeros and cupy.zeros
should return same value.

>>> import unittest
>>> from cupy import testing
>>> @testing.gpu
... class TestFoo(unittest.TestCase):
...
... @testing.numpy_cupy_allclose()
... def test_foo(self, xp):
... # ...
... # Prepare data with xp
... # ...
...
... xp_result = xp.zeros(10)
... return xp_result

See also

cupy.testing.assert_allclose()

cupy.testing.numpy_cupy_array_almost_equal

	
cupy.testing.numpy_cupy_array_almost_equal(decimal=6, err_msg='', verbose=True, name='xp', type_check=True, accept_error=False)

	Decorator that checks NumPy results and CuPy ones are almost equal.

	Parameters:	
	decimal (int [https://docs.python.org/3/library/functions.html#int]) – Desired precision.

	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values
are appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.

Decorated test fixture is required to return the same arrays
in the sense of cupy.testing.assert_array_almost_equal()
(except the type of array module) even if xp is numpy or cupy.

See also

cupy.testing.assert_array_almost_equal()

cupy.testing.numpy_cupy_array_almost_equal_nulp

	
cupy.testing.numpy_cupy_array_almost_equal_nulp(nulp=1, name='xp', type_check=True, accept_error=False)

	Decorator that checks results of NumPy and CuPy are equal w.r.t. spacing.

	Parameters:	
	nulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of unit in the last place for tolerance.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.

Decorated test fixture is required to return the same arrays
in the sense of cupy.testing.assert_array_almost_equal_nulp()
(except the type of array module) even if xp is numpy or cupy.

See also

cupy.testing.assert_array_almost_equal_nulp()

cupy.testing.numpy_cupy_array_max_ulp

	
cupy.testing.numpy_cupy_array_max_ulp(maxulp=1, dtype=None, name='xp', type_check=True, accept_error=False)

	Decorator that checks results of NumPy and CuPy ones are equal w.r.t. ulp.

	Parameters:	
	maxulp (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of units in the last place
that elements of resulting two arrays can differ.

	dtype (numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – Data-type to convert the resulting
two array to if given.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.

Decorated test fixture is required to return the same arrays
in the sense of assert_array_max_ulp()
(except the type of array module) even if xp is numpy or cupy.

See also

cupy.testing.assert_array_max_ulp()

cupy.testing.numpy_cupy_array_equal

	
cupy.testing.numpy_cupy_array_equal(err_msg='', verbose=True, name='xp', type_check=True, accept_error=False)

	Decorator that checks NumPy results and CuPy ones are equal.

	Parameters:	
	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are
appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.

Decorated test fixture is required to return the same arrays
in the sense of numpy_cupy_array_equal()
(except the type of array module) even if xp is numpy or cupy.

See also

cupy.testing.assert_array_equal()

cupy.testing.numpy_cupy_array_list_equal

	
cupy.testing.numpy_cupy_array_list_equal(err_msg='', verbose=True, name='xp')

	Decorator that checks the resulting lists of NumPy and CuPy’s one are equal.

	Parameters:	
	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are appended
to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

Decorated test fixture is required to return the same list of arrays
(except the type of array module) even if xp is numpy or cupy.

See also

cupy.testing.assert_array_list_equal()

cupy.testing.numpy_cupy_array_less

	
cupy.testing.numpy_cupy_array_less(err_msg='', verbose=True, name='xp', type_check=True, accept_error=False)

	Decorator that checks the CuPy result is less than NumPy result.

	Parameters:	
	err_msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error message to be printed in case of failure.

	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the conflicting values are
appended to the error message.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either
numpy or cupy module.

	type_check (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, consistency of dtype is also checked.

	accept_error (bool [https://docs.python.org/3/library/functions.html#bool], Exception [https://docs.python.org/3/library/exceptions.html#Exception] or tuple of Exception) – Sepcify
acceptable errors. When both NumPy test and CuPy test raises the
same type of errors, and the type of the errors is specified with
this argument, the errors are ignored and not raised.
If it is True all error types are acceptable.
If it is False no error is acceptable.

Decorated test fixture is required to return the smaller array
when xp is cupy than the one when xp is numpy.

See also

cupy.testing.assert_array_less()

cupy.testing.numpy_cupy_raises

	
cupy.testing.numpy_cupy_raises(name='xp')

	Decorator that checks the NumPy and CuPy throw same errors.

	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name whose value is either

	or cupy module. (numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy]) –

Decorated test fixture is required throw same errors
even if xp is numpy or cupy.

See also

cupy.testing.assert_array_less()

cupy.testing.for_dtypes

	
cupy.testing.for_dtypes(dtypes, name='dtype')

	Decorator for parameterized dtype test.

	Parameters:	
	dtypes (list of dtypes) – dtypes to be tested.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

This decorator adds a keyword argument specified by name
to the test fixture. Then, it runs the fixtures in parallel
by passing the each element of dtypes to the named
argument.

cupy.testing.for_all_dtypes

	
cupy.testing.for_all_dtypes(name='dtype', no_float16=False, no_bool=False)

	Decorator that checks the fixture with all dtypes.

	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

	no_float16 (bool [https://docs.python.org/3/library/functions.html#bool]) – If, True, numpy.float16 is
omitted from candidate dtypes.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If, True, numpy.bool_ is
omitted from candidate dtypes.

dtypes to be tested: numpy.float16 (optional), numpy.float32,
numpy.float64, numpy.dtype('b'), numpy.dtype('h'),
numpy.dtype('i'), numpy.dtype('l'), numpy.dtype('q'),
numpy.dtype('B'), numpy.dtype('H'), numpy.dtype('I'),
numpy.dtype('L'), numpy.dtype('Q'), and numpy.bool_ (optional).

The usage is as follows.
This test fixture checks if cPickle successfully reconstructs
cupy.ndarray for various dtypes.
dtype is an argument inserted by the decorator.

>>> import unittest
>>> from cupy import testing
>>> @testing.gpu
... class TestNpz(unittest.TestCase):
...
... @testing.for_all_dtypes()
... def test_pickle(self, dtype):
... a = testing.shaped_arange((2, 3, 4), dtype=dtype)
... s = six.moves.cPickle.dumps(a)
... b = six.moves.cPickle.loads(s)
... testing.assert_array_equal(a, b)

Typically, we use this decorator in combination with
decorators that check consistency between NumPy and CuPy like
cupy.testing.numpy_cupy_allclose().
The following is such an example.

>>> import unittest
>>> from cupy import testing
>>> @testing.gpu
... class TestMean(unittest.TestCase):
...
... @testing.for_all_dtypes()
... @testing.numpy_cupy_allclose()
... def test_mean_all(self, xp, dtype):
... a = testing.shaped_arange((2, 3), xp, dtype)
... return a.mean()

See also

cupy.testing.for_dtypes()

cupy.testing.for_float_dtypes

	
cupy.testing.for_float_dtypes(name='dtype', no_float16=False)

	Decorator that checks the fixture with all float dtypes.

	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

	no_float16 (bool [https://docs.python.org/3/library/functions.html#bool]) – If, True, numpy.float16 is
omitted from candidate dtypes.

dtypes to be tested are numpy.float16 (optional), numpy.float32,
and numpy.float64.

See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()

cupy.testing.for_signed_dtypes

	
cupy.testing.for_signed_dtypes(name='dtype')

	Decorator that checks the fixture with signed dtypes.

	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

dtypes to be tested are numpy.dtype('b'), numpy.dtype('h'),
numpy.dtype('i'), numpy.dtype('l'), and numpy.dtype('q').

See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()

cupy.testing.for_unsigned_dtypes

	
cupy.testing.for_unsigned_dtypes(name='dtype')

	Decorator that checks the fixture with all dtypes.

	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

dtypes to be tested are numpy.dtype('B'), numpy.dtype('H'),

numpy.dtype('I'), numpy.dtype('L'), and numpy.dtype('Q').

See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()

cupy.testing.for_int_dtypes

	
cupy.testing.for_int_dtypes(name='dtype', no_bool=False)

	Decorator that checks the fixture with integer and optionally bool dtypes.

	Parameters:	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which specified dtypes are passed.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.bool_ is
omitted from candidate dtypes.

dtypes to be tested are numpy.dtype('b'), numpy.dtype('h'),
numpy.dtype('i'), numpy.dtype('l'), numpy.dtype('q'),
numpy.dtype('B'), numpy.dtype('H'), numpy.dtype('I'),
numpy.dtype('L'), numpy.dtype('Q'), and numpy.bool_ (optional).

See also

cupy.testing.for_dtypes(),
cupy.testing.for_all_dtypes()

cupy.testing.for_dtypes_combination

	
cupy.testing.for_dtypes_combination(types, names=('dtype',), full=None)

	Decorator that checks the fixture with a product set of dtypes.

	Parameters:	
	types (list of dtypes) – dtypes to be tested.

	names (list of str) – Argument names to which dtypes are passed.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations
of dtypes will be tested.
Otherwise, the subset of combinations will be tested
(see the description below).

Decorator adds the keyword arguments specified by names
to the test fixture. Then, it runs the fixtures in parallel
with passing (possibly a subset of) the product set of dtypes.
The range of dtypes is specified by types.

The combination of dtypes to be tested changes depending
on the option full. If full is True,
all combinations of types are tested.
Sometimes, such an exhaustive test can be costly.
So, if full is False, only the subset of possible
combinations is tested. Specifically, at first,
the shuffled lists of types are made for each argument
name in names.
Let the lists be D1, D2, ..., Dn
where \(n\) is the number of arguments.
Then, the combinations to be tested will be zip(D1, ..., Dn).
If full is None, the behavior is switched
by setting the environment variable CUPY_TEST_FULL_COMBINATION=1.

For example, let types be [float16, float32, float64]
and names be ['a_type', 'b_type']. If full is True,
then the decorated test fixture is executed with all
\(2^3\) patterns. On the other hand, if full is False,
shuffled lists are made for a_type and b_type.
Suppose the lists are (16, 64, 32) for a_type and
(32, 64, 16) for b_type (prefixes are removed for short).
Then the combinations of (a_type, b_type) to be tested are
(16, 32), (64, 64) and (32, 16).

cupy.testing.for_all_dtypes_combination

	
cupy.testing.for_all_dtypes_combination(names=('dtyes',), no_float16=False, no_bool=False, full=None)

	Decorator that checks the fixture with a product set of all dtypes.

	Parameters:	
	names (list of str) – Argument names to which dtypes are passed.

	no_float16 (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.float16 is
omitted from candidate dtypes.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.bool_ is
omitted from candidate dtypes.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).

See also

cupy.testing.for_dtypes_combination()

cupy.testing.for_signed_dtypes_combination

	
cupy.testing.for_signed_dtypes_combination(names=('dtype',), full=None)

	Decorator for parameterized test w.r.t. the product set of signed dtypes.

	Parameters:	
	names (list of str) – Argument names to which dtypes are passed.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).

See also

cupy.testing.for_dtypes_combination()

cupy.testing.for_unsigned_dtypes_combination

	
cupy.testing.for_unsigned_dtypes_combination(names=('dtype',), full=None)

	Decorator for parameterized test w.r.t. the product set of unsigned dtypes.

	Parameters:	
	names (list of str) – Argument names to which dtypes are passed.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).

See also

cupy.testing.for_dtypes_combination()

cupy.testing.for_int_dtypes_combination

	
cupy.testing.for_int_dtypes_combination(names=('dtype',), no_bool=False, full=None)

	Decorator for parameterized test w.r.t. the product set of int and boolean.

	Parameters:	
	names (list of str) – Argument names to which dtypes are passed.

	no_bool (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, numpy.bool_ is
omitted from candidate dtypes.

	full (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, then all combinations of dtypes
will be tested.
Otherwise, the subset of combinations will be tested
(see description in cupy.testing.for_dtypes_combination()).

See also

cupy.testing.for_dtypes_combination()

cupy.testing.for_orders

	
cupy.testing.for_orders(orders, name='order')

	Decorator to parameterize tests with order.

	Parameters:	
	orders (list of orders) – orders to be tested.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which the specified order is passed.

This decorator adds a keyword argument specified by name
to the test fixtures. Then, the fixtures run by passing each element of
orders to the named argument.

cupy.testing.for_CF_orders

	
cupy.testing.for_CF_orders(name='order')

	Decorator that checks the fixture with orders ‘C’ and ‘F’.

	Parameters:	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Argument name to which the specified order is passed.

See also

cupy.testing.for_all_dtypes()

Profiling

time range

	cupy.prof.TimeRangeDecorator
	Decorator to mark function calls with range in NVIDIA profiler

	cupy.prof.time_range
	A context manager to describe the enclosed block as a nested range

cupy.prof.TimeRangeDecorator

	
class cupy.prof.TimeRangeDecorator(message=None, color_id=None, argb_color=None)

	Decorator to mark function calls with range in NVIDIA profiler

Decorated function calls are marked as ranges in NVIDIA profiler timeline.

>>> from cupy import prof
>>> @cupy.prof.TimeRangeDecorator()
... def function_to_profile():
... pass

	Parameters:	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a range, default use func.__name__.

	color_id – range color ID

	argb_color – range color in ARGB (e.g. 0xFF00FF00 for green)

See also

cupy.nvtx.range()
cupy.cuda.nvtx.RangePush()
cupy.cuda.nvtx.RangePop()

Methods

	
__call__(func)

	

	
__enter__()

	

	
__exit__(exc_type, exc_value, traceback)

	

cupy.prof.time_range

	
cupy.prof.time_range(message, color_id=None, argb_color=None)

	A context manager to describe the enclosed block as a nested range

>>> from cupy import prof
>>> with cupy.prof.time_range('some range in green', color_id=0):
... # do something you want to measure
... pass

	Parameters:	
	message – Name of a range.

	color_id – range color ID

	argb_color – range color in ARGB (e.g. 0xFF00FF00 for green)

See also

cupy.cuda.nvtx.RangePush()
cupy.cuda.nvtx.RangePop()

Environment variables

Here are the environment variables CuPy uses.

	CUPY_CACHE_DIR
	Path to the directory to store kernel cache.
$(HOME)/.cupy.kernel_cache is used by default.
See CuPy Overview for details.

For install

These environment variables are only used during installation.

	CUDA_PATH
	Path to the directory containing CUDA.
The parent of the directory containing nvcc is used as default.
When nvcc is not found, /usr/local/cuda is used.
See Install CuPy with CUDA for details.

Difference between CuPy and NumPy

The interface of CuPy is designed to obey that of NumPy.
However, there are some differeneces.

Cast behavior from float to integer

Some casting behaviors from float to integer are not defined in C++ specification.
The casting from a negative float to unsigned integer and infinity to integer is one of such eamples.
The behavior of NumPy depends on your CPU architecture.
This is Intel CPU result.

>>> np.array([-1], dtype='f').astype('I')
array([4294967295], dtype=uint32)
>>> cupy.array([-1], dtype='f').astype('I')
array([0], dtype=uint32)

>>> np.array([float('inf')], dtype='f').astype('i')
array([-2147483648], dtype=int32)
>>> cupy.array([float('inf')], dtype='f').astype('i')
array([2147483647], dtype=int32)

Random methods support dtype argument

NumPy’s random value generator does not support dtype option and it always resturns a float32 value.
We support the option in CuPy because cuRAND, which is used in CuPy, supports any types of float values.

>>> np.random.randn(dtype='f')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: randn() got an unexpected keyword argument 'dtype'
>>> cupy.random.randn(dtype='f')
array(0.10689262300729752, dtype=float32)

Out-of-bounds indices

CuPy handles out-of-bounds indices differently by default from NumPy when
using integer array indexing.
NumPy handles them by raising an error, but CuPy wraps around them.

>>> x = np.array([0, 1, 2])
>>> x[[1, 3]] = 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: index 3 is out of bounds for axis 1 with size 3
>>> x = cupy.array([0, 1, 2])
>>> x[[1, 3]] = 10
>>> x
array([10, 10, 2])

Duplicate values in indices

CuPy’s __setitem__ behaves differently from NumPy when integer arrays
reference the same location multiple times.
In that case, the value that is actually stored is undefined.
Here is an example of CuPy.

>>> a = cupy.zeros((2,))
>>> i = cupy.arange(10000) % 2
>>> v = cupy.arange(10000).astype(np.float)
>>> a[i] = v
>>> a
array([9150., 9151.])

NumPy stores the value corresponding to the
last element among elements referencing duplicate locations.

>>> a_cpu = np.zeros((2,))
>>> i_cpu = np.arange(10000) % 2
>>> v_cpu = np.arange(10000).astype(np.float)
>>> a_cpu[i_cpu] = v_cpu
>>> a_cpu
array([9998., 9999.])

For CuPy Developers

	CuPy Contribution Guide
	Classification of Contributions

	Release and Milestone

	Issues and PRs

	Coding Guidelines

	Testing Guidelines

	API Compatibility Policy
	Versioning and Backward Compatibilities

	Processes to Break Backward Compatibilities
	Deprecation, Dropping, and Its Preparation

	API Changes and Its Preparation

	Supported Backward Compatibility
	Documented Interface

	Undocumented behaviors

	Documentation Error

	Object Attributes and Properties

	Functions and Methods

	Exceptions and Warnings

	Installation Compatibility

CuPy Contribution Guide

This is a guide for all contributions to CuPy.
The development of CuPy is running on the official repository at GitHub [https://github.com/cupy/cupy].
Anyone that wants to register an issue or to send a pull request should read through this document.

Classification of Contributions

There are several ways to contribute to CuPy community:

	Registering an issue

	Sending a pull request (PR)

	Sending a question to CuPy User Group [https://groups.google.com/forum/#!forum/cupy]

	Writing a post about CuPy

This document mainly focuses on 1 and 2, though other contributions are also appreciated.

Release and Milestone

We are using GitHub Flow [http://scottchacon.com/2011/08/31/github-flow.html] as our basic working process.
In particular, we are using the master branch for our development, and releases are made as tags.

Releases are classified into three groups: major, minor, and revision.
This classification is based on following criteria:

	Major update contains disruptive changes that break the backward compatibility.

	Minor update contains additions and extensions to the APIs keeping the supported backward compatibility.

	Revision update contains improvements on the API implementations without changing any API specification.

The release classification is reflected into the version number x.y.z, where x, y, and z corresponds to major, minor, and revision updates, respectively.

We set a milestone for an upcoming release.
The milestone is of name ‘vX.Y.Z’, where the version number represents a revision release at the outset.
If at least one feature PR is merged in the period, we rename the milestone to represent a minor release (see the next section for the PR types).

See also API Compatibility Policy.

Issues and PRs

Issues and PRs are classified into following categories:

	Bug: bug reports (issues) and bug fixes (PRs)

	Enhancement: implementation improvements without breaking the interface

	Feature: feature requests (issues) and their implementations (PRs)

	NoCompat: disrupts backward compatibility

	Test: test fixes and updates

	Document: document fixes and improvements

	Example: fixes and improvements on the examples

	Install: fixes installation script

	Contribution-Welcome: issues that we request for contribution (only issues are categorized to this)

	Other: other issues and PRs

Issues and PRs are labeled by these categories.
This classification is often reflected into its corresponding release category: Feature issues/PRs are contained into minor/major releases and NoCompat issues/PRs are contained into major releases, while other issues/PRs can be contained into any releases including revision ones.

On registering an issue, write precise explanations on what you want CuPy to be.
Bug reports must include necessary and sufficient conditions to reproduce the bugs.
Feature requests must include what you want to do (and why you want to do, if needed).
You can contain your thoughts on how to realize it into the feature requests, though what part is most important for discussions.

Warning

If you have a question on usages of CuPy, it is highly recommended to send a post to CuPy User Group [https://groups.google.com/forum/#!forum/cupy] instead of the issue tracker.
The issue tracker is not a place to share knowledge on practices.
We may redirect question issues to CuPy User Group.

If you can write code to fix an issue, send a PR to the master branch.
Before writing your code for PRs, read through the Coding Guidelines.
The description of any PR must contain a precise explanation of what and how you want to do; it is the first documentation of your code for developers, a very important part of your PR.

Once you send a PR, it is automatically tested on Travis CI [https://travis-ci.org/cupy/cupy/] for Linux and Mac OS X, and on AppVeyor [https://ci.appveyor.com/project/cupy/cupy] for Windows.
Your PR need to pass at least the test for Linux on Travis CI.
After the automatic test passes, some of the core developers will start reviewing your code.
Note that this automatic PR test only includes CPU tests.

Note

We are also running continuous integration with GPU tests for the master branch.
Since this service is running on our internal server, we do not use it for automatic PR tests to keep the server secure.

Even if your code is not complete, you can send a pull request as a work-in-progress PR by putting the [WIP] prefix to the PR title.
If you write a precise explanation about the PR, core developers and other contributors can join the discussion about how to proceed the PR.

Coding Guidelines

We use PEP8 [https://www.python.org/dev/peps/pep-0008/] and a part of OpenStack Style Guidelines [http://docs.openstack.org/developer/hacking/] related to general coding style as our basic style guidelines.

To check your code, use autopep8 and flake8 command installed by hacking package:

$ pip install autopep8 hacking
$ autopep8 --global-config .pep8 path/to/your/code.py
$ flake8 path/to/your/code.py

To check Cython code, use .flake8.cython configuration file:

$ flake8 --config=.flake8.cython path/to/your/cython/code.pyx

The autopep8 supports automatically correct Python code to conform to the PEP 8 style guide:

$ autopep8 --in-place --global-config .pep8 path/to/your/code.py

The flake8 command lets you know the part of your code not obeying our style guidelines.
Before sending a pull request, be sure to check that your code passes the flake8 checking.

Note that flake8 command is not perfect.
It does not check some of the style guidelines.
Here is a (not-complete) list of the rules that flake8 cannot check.

	Relative imports are prohibited. [H304]

	Importing non-module symbols is prohibited.

	Import statements must be organized into three parts: standard libraries, third-party libraries, and internal imports. [H306]

In addition, we restrict the usage of shortcut symbols in our code base.
They are symbols imported by packages and sub-packages of cupy.
For example, cupy.cuda.Device is a shortcut of cupy.cuda.device.Device.
It is not allowed to use such shortcuts in the ``cupy`` library implementation.
Note that you can still use them in tests and examples directories.

Once you send a pull request, your coding style is automatically checked by Travis-CI [https://travis-ci.org/cupy/cupy/].
The reviewing process starts after the check passes.

The CuPy is designed based on NumPy’s API design. CuPy’s source code and documents contain the original NumPy ones.
Please note the followings when writing the document.

	In order to identify overlapping parts, it is preferable to add some remarks
that this document is just copied or altered from the original one. It is
also preferable to briefly explain the specification of the function in a
short paragraph, and refer to the corresponding function in NumPy so that
users can read the detailed document. However, it is possible to include a
complete copy of the document with such a remark if users cannot summarize
in such a way.

	If a function in CuPy only implements a limited amount of features in the
original one, users should explicitly describe only what is implemented in
the document.

Testing Guidelines

Testing is one of the most important part of your code.
You must test your code by unit tests following our testing guidelines.
Note that we are using the nose package and the mock package for testing, so install nose and mock before writing your code:

$ pip install nose mock

In order to run unit tests at the repository root, you first have to build Cython files in place by running the following command:

$ python setup.py develop

Once the Cython modules are built, you can run unit tests simply by running nosetests command at the repository root:

$ nosetests

It requires CUDA by default.
In order to run unit tests that do not require CUDA, pass --attr='!gpu' option to the nosetests command:

$ nosetests path/to/your/test.py --attr='!gpu'

Some GPU tests involve multiple GPUs.
If you want to run GPU tests with insufficient number of GPUs, specify the number of available GPUs by --eval-attr='gpu<N' where N is a concrete integer.
For example, if you have only one GPU, launch nosetests by the following command to skip multi-GPU tests:

$ nosetests path/to/gpu/test.py --eval-attr='gpu<2'

Tests are put into the tests/cupy_tests and tests/install_tests directories.
These have the same structure as that of cupy and install directories, respectively.
In order to enable test runner to find test scripts correctly, we are using special naming convention for the test subdirectories and the test scripts.

	The name of each subdirectory of tests must end with the _tests suffix.

	The name of each test script must start with the test_ prefix.

Following this naming convention, you can run all the tests by just typing nosetests at the repository root:

$ nosetests

Or you can also specify a root directory to search test scripts from:

$ nosetests tests/cupy_tests # to just run tests of CuPy
$ nosetests tests/install_tests # to just run tests of installation modules

If you modify the code related to existing unit tests, you must run appropriate commands.

Note

CuPy tests include type-exhaustive test functions which take long time to execute.
If you are running tests on a multi-core machine, you can parallelize the tests by following options:

$ nosetests --processes=12 --process-timeout=1000 tests/cupy_tests

The magic numbers can be modified for your usage.
Note that some tests require many CUDA compilations, which require a bit long time.
Without the process-timeout option, the timeout is set shorter, causing timeout failures for many test cases.

There are many examples of unit tests under the tests directory.
They simply use the unittest package of the standard library.

Even if your patch includes GPU-related code, your tests should not fail without GPU capability.
Test functions that require CUDA must be tagged by the cupy.testing.attr.gpu:

import unittest
from cupy.testing import attr

class TestMyFunc(unittest.TestCase):
 ...

 @attr.gpu
 def test_my_gpu_func(self):
 ...

The functions tagged by the gpu decorator are skipped if --attr='!gpu' is given.
We also have the cupy.testing.attr.cudnn decorator to let nosetests know that the test depends on cuDNN.

The test functions decorated by gpu must not depend on multiple GPUs.
In order to write tests for multiple GPUs, use cupy.testing.attr.multi_gpu() or cupy.testing.attr.multi_gpu() decorators instead:

import unittest
from cupy.testing import attr

class TestMyFunc(unittest.TestCase):
 ...

 @attr.multi_gpu(2) # specify the number of required GPUs here
 def test_my_two_gpu_func(self):
 ...

Once you send a pull request, your code is automatically tested by Travis-CI [https://travis-ci.org/cupy/cupy/] with –attr=’!gpu,!slow’ option.
Since Travis-CI does not support CUDA, we cannot check your CUDA-related code automatically.
The reviewing process starts after the test passes.
Note that reviewers will test your code without the option to check CUDA-related code.

Note

Some of numerically unstable tests might cause errors irrelevant to your changes.
In such a case, we ignore the failures and go on to the review process, so do not worry about it.

API Compatibility Policy

This document expresses the design policy on compatibilities of CuPy APIs.
Development team should obey this policy on deciding to add, extend, and change APIs and their behaviors.

This document is written for both users and developers.
Users can decide the level of dependencies on CuPy’s implementations in their codes based on this document.
Developers should read through this document before creating pull requests that contain changes on the interface.
Note that this document may contain ambiguities on the level of supported compatibilities.

Versioning and Backward Compatibilities

The updates of CuPy are classified into three levels: major, minor, and revision.
These types have distinct levels of backward compatibilities.

	Major update contains disruptive changes that break the backward compatibility.

	Minor update contains addition and extension to the APIs keeping the supported backward compatibility.

	Revision update contains improvements on the API implementations without changing any API specifications.

Note that we do not support full backward compatibility, which is almost infeasible for Python-based APIs, since there is no way to completely hide the implementation details.

Processes to Break Backward Compatibilities

Deprecation, Dropping, and Its Preparation

Any APIs may be deprecated at some minor updates.
In such a case, the deprecation note is added to the API documentation, and the API implementation is changed to fire deprecation warning (if possible).
There should be another way to reimplement the same things previously written with the deprecated APIs.

Any APIs may be marked as to be dropped in the future.
In such a case, the dropping is stated in the documentation with the major version number on which the API is planned to be dropped, and the API implementation is changed to fire the future warning (if possible).

The actual dropping should be done through the following steps:

	Make the API deprecated.
At this point, users should not need the deprecated API in their new application codes.

	After that, mark the API as to be dropped in the future.
It must be done in the minor update different from that of the deprecation.

	At the major version announced in the above update, drop the API.

Consequently, it takes at least two minor versions to drop any APIs after the first deprecation.

API Changes and Its Preparation

Any APIs may be marked as to be changed in the future for changes without backward compatibility.
In such a case, the change is stated in the documentation with the version number on which the API is planned to be changed, and the API implementation is changed to fire the future warning on the certain usages.

The actual change should be done in the following steps:

	Announce that the API will be changed in the future.
At this point, the actual version of change need not be accurate.

	After the announcement, mark the API as to be changed in the future with version number of planned changes.
At this point, users should not use the marked API in their new application codes.

	At the major update announced in the above update, change the API.

Supported Backward Compatibility

This section defines backward compatibilities that minor updates must maintain.

Documented Interface

CuPy has the official API documentation.
Many applications can be written based on the documented features.
We support backward compatibilities of documented features.
In other words, codes only based on the documented features run correctly with minor/revision-updated versions.

Developers are encouraged to use apparent names for objects of implementation details.
For example, attributes outside of the documented APIs should have one or more underscores at the prefix of their names.

Undocumented behaviors

Behaviors of CuPy implementation not stated in the documentation are undefined.
Undocumented behaviors are not guaranteed to be stable between different minor/revision versions.

Minor update may contain changes to undocumented behaviors.
For example, suppose an API X is added at the minor update.
In the previous version, attempts to use X cause AttributeError.
This behavior is not stated in the documentation, so this is undefined.
Thus, adding the API X in minor version is permissible.

Revision update may also contain changes to undefined behaviors.
Typical example is a bug fix.
Another example is an improvement on implementation, which may change the internal object structures not shown in the documentation.
As a consequence, even revision updates do not support compatibility of pickling, unless the full layout of pickled objects is clearly documented.

Documentation Error

Compatibility is basically determined based on the documentation, though it sometimes contains errors.
It may make the APIs confusing to assume the documentation always stronger than the implementations.
We therefore may fix the documentation errors in any updates that may break the compatibility in regard to the documentation.

Note

Developers MUST NOT fix the documentation and implementation of the same functionality at the same time in revision updates as “bug fix”.
Such a change completely breaks the backward compatibility.
If you want to fix the bugs in both sides, first fix the documentation to fit it into the implementation, and start the API changing procedure described above.

Object Attributes and Properties

Object attributes and properties are sometimes replaced by each other at minor updates.
It does not break the user codes, except the codes depend on how the attributes and properties are implemented.

Functions and Methods

Methods may be replaced by callable attributes keeping the compatibility of parameters and return values in minor updates.
It does not break the user codes, except the codes depend on how the methods and callable attributes are implemented.

Exceptions and Warnings

The specifications of raising exceptions are considered as a part of standard backward compatibilities.
No exception is raised in the future versions with correct usages that the documentation allows, unless the API changing process is completed.

On the other hand, warnings may be added at any minor updates for any APIs.
It means minor updates do not keep backward compatibility of warnings.

Installation Compatibility

The installation process is another concern of compatibilities.
We support environmental compatibilities in the following ways.

	Any changes of dependent libraries that force modifications on the existing environments must be done in major updates.
Such changes include following cases:
	dropping supported versions of dependent libraries (e.g. dropping cuDNN v2)

	adding new mandatory dependencies (e.g. adding h5py to setup_requires)

	Supporting optional packages/libraries may be done in minor updates (e.g. supporting h5py in optional features).

Note

The installation compatibility does not guarantee that all the features of CuPy correctly run on supported environments.
It may contain bugs that only occurs in certain environments.
Such bugs should be fixed in some updates.

License

Copyright (c) 2015 Preferred Infrastructure, Inc.

Copyright (c) 2015 Preferred Networks, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

CuPy

The CuPy is designed based on NumPy’s API.
CuPy’s source code and documents contain the original NumPy ones.

Copyright (c) 2005-2016, NumPy Developers.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	Neither the name of the NumPy Developers nor the names of any
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cupy	

 	
 	
 cupy.random	

 	
 	
 cupy.testing	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__call__() (cupy.prof.TimeRangeDecorator method)

 	(cupy.ReductionKernel method)

 	(cupy.ufunc method)

 	__copy__() (cupy.ndarray method)

 	
 	__enter__() (cupy.cuda.Device method)

 	(cupy.prof.TimeRangeDecorator method)

 	__exit__() (cupy.cuda.Device method)

 	(cupy.prof.TimeRangeDecorator method)

A

 	
 	absolute (in module cupy)

 	add (in module cupy)

 	add_callback() (cupy.cuda.Stream method)

 	all() (cupy.ndarray method)

 	(in module cupy)

 	alloc() (in module cupy.cuda)

 	amax() (in module cupy)

 	amin() (in module cupy)

 	any() (cupy.ndarray method)

 	(in module cupy)

 	arange() (in module cupy)

 	arccos (in module cupy)

 	arccosh (in module cupy)

 	arcsin (in module cupy)

 	arcsinh (in module cupy)

 	arctan (in module cupy)

 	arctan2 (in module cupy)

 	arctanh (in module cupy)

 	argmax() (cupy.ndarray method)

 	(in module cupy)

 	argmin() (cupy.ndarray method)

 	(in module cupy)

 	
 	array() (in module cupy)

 	array_repr() (in module cupy)

 	array_split() (in module cupy)

 	array_str() (in module cupy)

 	asanyarray() (in module cupy)

 	asarray() (in module cupy)

 	ascontiguousarray() (in module cupy)

 	asfortranarray() (in module cupy)

 	asnumpy() (in module cupy)

 	assert_allclose() (in module cupy.testing)

 	assert_array_almost_equal() (in module cupy.testing)

 	assert_array_almost_equal_nulp() (in module cupy.testing)

 	assert_array_equal() (in module cupy.testing)

 	assert_array_less() (in module cupy.testing)

 	assert_array_list_equal() (in module cupy.testing)

 	assert_array_max_ulp() (in module cupy.testing)

 	astype() (cupy.ndarray method)

 	atleast_1d() (in module cupy)

 	atleast_2d() (in module cupy)

 	atleast_3d() (in module cupy)

B

 	
 	base (cupy.ndarray attribute)

 	base_repr() (in module cupy)

 	binary_repr() (in module cupy)

 	bincount() (in module cupy)

 	bitwise_and (in module cupy)

 	
 	bitwise_or (in module cupy)

 	bitwise_xor (in module cupy)

 	broadcast (class in cupy)

 	broadcast_arrays() (in module cupy)

 	broadcast_to() (in module cupy)

 	bytes() (in module cupy.random)

C

 	
 	c_ (in module cupy)

 	ceil (in module cupy)

 	choice() (cupy.random.RandomState method)

 	(in module cupy.random)

 	cholesky() (in module cupy.linalg)

 	choose() (cupy.ndarray method)

 	(in module cupy)

 	clear_memo() (in module cupy)

 	clip() (cupy.ndarray method)

 	(in module cupy)

 	column_stack() (in module cupy)

 	compute_capability (cupy.cuda.Device attribute)

 	concatenate() (in module cupy)

 	copy() (cupy.ndarray method)

 	(in module cupy)

 	copy_from() (cupy.cuda.MemoryPointer method)

 	copy_from_async() (cupy.cuda.MemoryPointer method)

 	
 	copy_from_device() (cupy.cuda.MemoryPointer method)

 	copy_from_device_async() (cupy.cuda.MemoryPointer method)

 	copy_from_host() (cupy.cuda.MemoryPointer method)

 	copy_from_host_async() (cupy.cuda.MemoryPointer method)

 	copy_to_host() (cupy.cuda.MemoryPointer method)

 	copy_to_host_async() (cupy.cuda.MemoryPointer method)

 	copysign (in module cupy)

 	copyto() (in module cupy)

 	cos (in module cupy)

 	cosh (in module cupy)

 	count_nonzero() (in module cupy)

 	cstruct (cupy.ndarray attribute)

 	cublas_handle (cupy.cuda.Device attribute)

 	cumsum() (in module cupy)

 	cupy (module), [1], [2], [3]

 	cupy.random (module)

 	cupy.testing (module)

 	cusolver_handle (cupy.cuda.Device attribute)

D

 	
 	data (cupy.ndarray attribute)

 	deg2rad (in module cupy)

 	degrees (in module cupy)

 	Device (class in cupy.cuda)

 	device (cupy.cuda.Memory attribute)

 	(cupy.cuda.MemoryPointer attribute)

 	(cupy.ndarray attribute)

 	diag() (in module cupy)

 	diagflat() (in module cupy)

 	diagonal() (cupy.ndarray method)

 	(in module cupy)

 	
 	divide (in module cupy)

 	done (cupy.cuda.Event attribute)

 	(cupy.cuda.Stream attribute)

 	dot() (cupy.ndarray method)

 	(in module cupy)

 	dsplit() (in module cupy)

 	dstack() (in module cupy)

 	dtype (cupy.ndarray attribute)

 	dump() (cupy.ndarray method)

 	dumps() (cupy.ndarray method)

E

 	
 	ElementwiseKernel (class in cupy)

 	empty() (in module cupy)

 	empty_like() (in module cupy)

 	equal (in module cupy)

 	Event (class in cupy.cuda)

 	
 	exp (in module cupy)

 	exp2 (in module cupy)

 	expand_dims() (in module cupy)

 	expm1 (in module cupy)

 	eye() (in module cupy)

F

 	
 	fill() (cupy.ndarray method)

 	fill_diagonal() (in module cupy)

 	fix (in module cupy)

 	flags (cupy.ndarray attribute)

 	flatnonzero() (in module cupy)

 	flatten() (cupy.ndarray method)

 	flip() (in module cupy)

 	fliplr() (in module cupy)

 	flipud() (in module cupy)

 	floor (in module cupy)

 	floor_divide (in module cupy)

 	fmax (in module cupy)

 	fmin (in module cupy)

 	fmod (in module cupy)

 	for_all_dtypes() (in module cupy.testing)

 	for_all_dtypes_combination() (in module cupy.testing)

 	
 	for_CF_orders() (in module cupy.testing)

 	for_dtypes() (in module cupy.testing)

 	for_dtypes_combination() (in module cupy.testing)

 	for_float_dtypes() (in module cupy.testing)

 	for_int_dtypes() (in module cupy.testing)

 	for_int_dtypes_combination() (in module cupy.testing)

 	for_orders() (in module cupy.testing)

 	for_signed_dtypes() (in module cupy.testing)

 	for_signed_dtypes_combination() (in module cupy.testing)

 	for_unsigned_dtypes() (in module cupy.testing)

 	for_unsigned_dtypes_combination() (in module cupy.testing)

 	free_all_blocks() (cupy.cuda.MemoryPool method)

 	free_all_free() (cupy.cuda.MemoryPool method)

 	frexp (in module cupy)

 	full() (in module cupy)

 	full_like() (in module cupy)

G

 	
 	get() (cupy.ndarray method)

 	get_array_module() (in module cupy)

 	get_elapsed_time() (in module cupy.cuda)

 	
 	get_random_state() (in module cupy.random)

 	greater (in module cupy)

 	greater_equal (in module cupy)

 	gumbel() (in module cupy.random)

H

 	
 	hsplit() (in module cupy)

 	
 	hstack() (in module cupy)

 	hypot (in module cupy)

I

 	
 	id (cupy.cuda.Device attribute)

 	identity() (in module cupy)

 	in_params (cupy.ElementwiseKernel attribute)

 	initialize() (in module cupy.cuda.profiler)

 	inner() (in module cupy)

 	interval() (cupy.random.RandomState method)

 	
 	invert (in module cupy)

 	isfinite (in module cupy)

 	isinf (in module cupy)

 	isnan (in module cupy)

 	isscalar() (in module cupy)

 	itemsize (cupy.ndarray attribute)

 	ix_() (in module cupy)

K

 	
 	kwargs (cupy.ElementwiseKernel attribute)

L

 	
 	ldexp (in module cupy)

 	left_shift (in module cupy)

 	less (in module cupy)

 	less_equal (in module cupy)

 	linspace() (in module cupy)

 	load() (in module cupy)

 	log (in module cupy)

 	log10 (in module cupy)

 	log1p (in module cupy)

 	
 	log2 (in module cupy)

 	logaddexp (in module cupy)

 	logaddexp2 (in module cupy)

 	logical_and (in module cupy)

 	logical_not (in module cupy)

 	logical_or (in module cupy)

 	logical_xor (in module cupy)

 	lognormal() (cupy.random.RandomState method)

 	(in module cupy.random)

 	logspace() (in module cupy)

M

 	
 	malloc() (cupy.cuda.MemoryPool method)

 	Mark() (in module cupy.cuda.nvtx)

 	MarkC() (in module cupy.cuda.nvtx)

 	matmul() (in module cupy)

 	max() (cupy.ndarray method)

 	maximum (in module cupy)

 	mean() (cupy.ndarray method)

 	(in module cupy)

 	mem (cupy.cuda.MemoryPointer attribute)

 	memoize() (in module cupy)

 	
 	Memory (class in cupy.cuda)

 	MemoryPointer (class in cupy.cuda)

 	MemoryPool (class in cupy.cuda)

 	memset() (cupy.cuda.MemoryPointer method)

 	memset_async() (cupy.cuda.MemoryPointer method)

 	meshgrid() (in module cupy)

 	min() (cupy.ndarray method)

 	minimum (in module cupy)

 	mod (in module cupy)

 	modf (in module cupy)

 	multiply (in module cupy)

N

 	
 	n_free_blocks() (cupy.cuda.MemoryPool method)

 	name (cupy.ElementwiseKernel attribute)

 	nanmax() (in module cupy)

 	nanmin() (in module cupy)

 	nargs (cupy.ElementwiseKernel attribute)

 	nbytes (cupy.ndarray attribute)

 	nd (cupy.broadcast attribute)

 	ndarray (class in cupy)

 	ndim (cupy.ndarray attribute)

 	negative (in module cupy)

 	nextafter (in module cupy)

 	nin (cupy.ElementwiseKernel attribute)

 	nonzero() (cupy.ndarray method)

 	(in module cupy)

 	
 	norm() (in module cupy.linalg)

 	normal() (cupy.random.RandomState method)

 	(in module cupy.random)

 	not_equal (in module cupy)

 	nout (cupy.ElementwiseKernel attribute)

 	null (cupy.cuda.Stream attribute)

 	numpy_cupy_allclose() (in module cupy.testing)

 	numpy_cupy_array_almost_equal() (in module cupy.testing)

 	numpy_cupy_array_almost_equal_nulp() (in module cupy.testing)

 	numpy_cupy_array_equal() (in module cupy.testing)

 	numpy_cupy_array_less() (in module cupy.testing)

 	numpy_cupy_array_list_equal() (in module cupy.testing)

 	numpy_cupy_array_max_ulp() (in module cupy.testing)

 	numpy_cupy_raises() (in module cupy.testing)

O

 	
 	ones() (in module cupy)

 	ones_like() (in module cupy)

 	
 	operation (cupy.ElementwiseKernel attribute)

 	out_params (cupy.ElementwiseKernel attribute)

 	outer() (in module cupy)

P

 	
 	packbits() (in module cupy)

 	pad() (in module cupy)

 	params (cupy.ElementwiseKernel attribute)

 	power (in module cupy)

 	preamble (cupy.ElementwiseKernel attribute)

 	
 	prod() (cupy.ndarray method)

 	(in module cupy)

 	profile() (in module cupy.cuda)

 	ptr (cupy.cuda.Memory attribute)

 	(cupy.cuda.MemoryPointer attribute)

Q

 	
 	qr() (in module cupy.linalg)

R

 	
 	r_ (in module cupy)

 	rad2deg (in module cupy)

 	radians (in module cupy)

 	rand() (cupy.random.RandomState method)

 	(in module cupy.random)

 	randint() (in module cupy.random)

 	randn() (cupy.random.RandomState method)

 	(in module cupy.random)

 	random() (in module cupy.random)

 	random_integers() (in module cupy.random)

 	random_sample() (cupy.random.RandomState method)

 	(in module cupy.random)

 	RandomState (class in cupy.random)

 	ranf() (in module cupy.random)

 	RangePop() (in module cupy.cuda.nvtx)

 	RangePush() (in module cupy.cuda.nvtx)

 	RangePushC() (in module cupy.cuda.nvtx)

 	
 	ravel() (cupy.ndarray method)

 	(in module cupy)

 	reciprocal (in module cupy)

 	record() (cupy.cuda.Event method)

 	(cupy.cuda.Stream method)

 	reduce_dims (cupy.ElementwiseKernel attribute)

 	reduced_view() (cupy.ndarray method)

 	ReductionKernel (class in cupy)

 	remainder (in module cupy)

 	repeat() (cupy.ndarray method)

 	(in module cupy)

 	reshape() (cupy.ndarray method)

 	(in module cupy)

 	right_shift (in module cupy)

 	rint (in module cupy)

 	roll() (in module cupy)

 	rollaxis() (in module cupy)

 	rot90() (in module cupy)

S

 	
 	sample() (in module cupy.random)

 	save() (in module cupy)

 	savez() (in module cupy)

 	savez_compressed() (in module cupy)

 	scatter_add() (cupy.ndarray method)

 	(in module cupy)

 	seed() (cupy.random.RandomState method)

 	(in module cupy.random)

 	set() (cupy.ndarray method)

 	set_allocator() (in module cupy.cuda)

 	set_stream() (cupy.random.RandomState method)

 	shape (cupy.broadcast attribute)

 	(cupy.ndarray attribute)

 	sign (in module cupy)

 	signbit (in module cupy)

 	sin (in module cupy)

 	sinh (in module cupy)

 	size (cupy.broadcast attribute)

 	(cupy.cuda.Memory attribute)

 	(cupy.ndarray attribute)

 	sort() (cupy.ndarray method)

 	(in module cupy)

 	
 	split() (in module cupy)

 	sqrt (in module cupy)

 	square (in module cupy)

 	squeeze() (cupy.ndarray method)

 	(in module cupy)

 	stack() (in module cupy)

 	standard_normal() (cupy.random.RandomState method)

 	(in module cupy.random)

 	start() (in module cupy.cuda.profiler)

 	std() (cupy.ndarray method)

 	(in module cupy)

 	stop() (in module cupy.cuda.profiler)

 	Stream (class in cupy.cuda)

 	strides (cupy.ndarray attribute)

 	subtract (in module cupy)

 	sum() (cupy.ndarray method)

 	(in module cupy)

 	svd() (in module cupy.linalg)

 	swapaxes() (cupy.ndarray method)

 	(in module cupy)

 	synchronize() (cupy.cuda.Device method)

 	(cupy.cuda.Event method)

 	(cupy.cuda.Stream method)

T

 	
 	T (cupy.ndarray attribute)

 	take() (cupy.ndarray method)

 	(in module cupy)

 	tan (in module cupy)

 	tanh (in module cupy)

 	tensordot() (in module cupy)

 	tile() (in module cupy)

 	time_range() (in module cupy.prof)

 	TimeRangeDecorator (class in cupy.prof)

 	
 	tofile() (cupy.ndarray method)

 	tolist() (cupy.ndarray method)

 	trace() (cupy.ndarray method)

 	(in module cupy)

 	transpose() (cupy.ndarray method)

 	(in module cupy)

 	true_divide (in module cupy)

 	trunc (in module cupy)

 	types (cupy.ufunc attribute)

U

 	
 	ufunc (class in cupy)

 	uniform() (cupy.random.RandomState method)

 	(in module cupy.random)

 	
 	unpackbits() (in module cupy)

 	use() (cupy.cuda.Device method)

V

 	
 	values (cupy.broadcast attribute)

 	var() (cupy.ndarray method)

 	(in module cupy)

 	
 	vdot() (in module cupy)

 	view() (cupy.ndarray method)

 	vsplit() (in module cupy)

 	vstack() (in module cupy)

W

 	
 	wait_event() (cupy.cuda.Stream method)

 	
 	where() (in module cupy)

Z

 	
 	zeros() (in module cupy)

 	
 	zeros_like() (in module cupy)

 _static/up.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		CuPy – NumPy-like API accelerated with CUDA

 		CuPy Overview

 		Installation Guide

 		Recommended Environments

 		Dependencies

 		Install CuPy

 		Install CuPy via pip

 		Install CuPy from source

 		When an error occurs...

 		Install CuPy with CUDA

 		Install CuPy with cuDNN and NCCL

 		Install CuPy for developers

 		Uninstall CuPy

 		Upgrade CuPy

 		Reinstall CuPy

 		Run CuPy with Docker

 		FAQ

 		Warning message “cuDNN is not enabled” appears

 		CuPy Tutorial

 		Basics of CuPy

 		Basics of cupy.ndarray

 		Current Device

 		Data Transfer

 		Move arrays to a device

 		Move array from a device to the host

 		How to write CPU/GPU agnostic code

 		User-Defined Kernels

 		Basics of elementwise kernels

 		Type-generic kernels

 		Raw argument specifiers

 		Reduction kernels

 		CuPy Reference Manual

 		Indices and tables

 		Reference

 		Multi-Dimensional Array (ndarray)

 		Universal Functions (ufunc)

 		Routines

 		NumPy-CuPy Generic Code Support

 		Low-Level CUDA Support

 		Kernel binary memoization

 		Custom kernels

 		Testing Modules

 		Profiling

 		Environment variables

 		Difference between CuPy and NumPy

 		For CuPy Developers

 		CuPy Contribution Guide

 		Classification of Contributions

 		Release and Milestone

 		Issues and PRs

 		Coding Guidelines

 		Testing Guidelines

 		API Compatibility Policy

 		Versioning and Backward Compatibilities

 		Processes to Break Backward Compatibilities

 		Supported Backward Compatibility

 		Installation Compatibility

 		License

 		CuPy

_static/comment-bright.png

